PHENOMENON OF THE ANOMALOUS SUPERSATURATION IN Al-Sc, Al-Mg-Sc ALLOYS RAPID QUENCHED FROM THE LIQUID STATE

A.L. Berezina*, T.A. Monastyrskaya*, E.A. Segida*, K.V. Chuistov*, U. Schmidt**, A.V. Kotko*, V.I. Laďyanov[†], A.L. Beľtyukov[†], V.A. Volkov[†]

An ability of Al-Sc and Al-Mg-Sc alloys rapid quenched from the liquid state to be supersaturated by Sc has been studied. Structural states of ribbons rapid quenched from $1000\,^{\circ}\mathrm{C}$ and $1400\,^{\circ}\mathrm{C}$ have been investigated. It has been established that the Al-0.67at.%Sc alloy is anomalous supersaturated by Sc under the quenching from $1400\,^{\circ}\mathrm{C}$ while under the quenching from $1000\,^{\circ}\mathrm{C}$ the 'fan' structure containing the Al₃Sc-phase has a place. Furthermore the Mg addition to Al-Sc alloys provides the anomalous supersaturation of the solid solution by Sc in all investigated alloys quenched even from $1000\,^{\circ}\mathrm{C}$

Key words: the anomalous supersaturation, rapid quenching, the 'fan' structure, fractal structure

1. Introduction

It is generally known that Sc creates supersaturated solid solution with Al which is decomposed with the precipitation of coherent refractory particles of the Al₃Sc-phase with LI₂-type. This phase is isomorphic to the matrix and strengthens Al-alloys. However, according to the Al-Sc phase diagram hardening effect of Sc is limited by maximum solid solubility of Sc (Sc < 0.15 at.%). It is common knowledge that the rapid quenching allows increase the solid solubility of alloying elements. Nevertheless an ability of Al-Sc and Al-Mg-Sc alloys rapid quenched from the liquid state to be supersaturated by Sc has not uniquely determined so far. Our preliminary study of the structural state of Al-Sc alloys showed that the variation of the cooling rate under constant quenching temperature does not affect the Al₃Sc-phase morphology but leads to dispersion of structural constituents. The change of the quenching temperature from 1000 °C to 1400 °C significantly influences on the ribbon structure. The 'fan' structure containing the Al₃Sc-phase was formed by the rapid quenching from 1000 °C while it was absent by the rapid quenching from 1400 °C [1, 2]. The purpose of presented study was to determine the rapid quenching conditions for obtaining the anomalous supersaturated solid solution by Sc in Al-Sc and Al-Mg-Sc alloys.

2. Materials and experimental methods

The alloys were prepared by the melt spinning onto a rotating copper wheel with peripheral speed of $44 \,\mathrm{m/s}$. The rapid quenching was carried out from $1000 \,^{\circ}\mathrm{C}$ and $1400 \,^{\circ}\mathrm{C}$.

^{*}Institute of Metal Physics NASU, 36 Vernadsky Blvd., Kiev 03680, Ukraine

^{**} Department of Physics, Martine-Lutter-University, Hohen Weg 7, Halle, Germany

[†] Physical-Technical Institute of Ural Branch RAS, Kirov street 132,426000 Izhevsk, Russia