
Engineering MECHANICS, Vol. 14, 2007, No. 1/2, p. 91–104 91

LINEAR AND NONLINEAR DAMPING
IN DYNAMICS OF GEAR MESH

OF THE PARAMETRIC SYSTEMS WITH IMPACTS

Milan Hortel, Alena Škuderová*

The aim of this contribution is the analysis of damping properties both the material
of gear mechanism in the mesh and the lubricating oil film in tooth space at tooth
profile contact bounce into the area of technological gear backlash. The damping
influence over gear mesh stability is pursued on the special case of simulation model
of system with split power flow for selected frequency area of resonance characteristic.

Key words : nonlinear dynamics, parametric systems, motions with impacts, gearing
systems, numerical solution

1. Introduction

Present and future developments in the world of modern machines generally more and
more lead with their requirements to symbiosis of parameters in two extreme areas. It is on
the one hand the requirements for maximum power outputs of machines at high revolutions
and on the other hand the requirements for their minimum dimensions and mass, while
retaining operational reliability, safety, and service lifetime or durability.

The above mentioned, apparently contradictory extreme requirements, are at the present
time fulfilled most of all by systems with kinematic couplings – gears with split or branched
power flow, of all mechanical transmission systems. Their designing has to be based on
perfect knowledge of dynamic phenomena, which can occur in these weakly and strongly
nonlinear parametric systems.

Nonlinear dynamics of parametric, i.e. heteronomous systems forms in recent some decade
special, highly topical branch, which dominates especially in planetary transmission systems
with kinematic couplings in aeronautical turbopropelled units. High revolution of turbines
(order of tens of thousands rpm) are connected with the requirements for light elastic design
and take effect especially in the dynamics of kinematic couplings – gear mesh. Similar
structures are applied both in mobile machines – for instance Wilson’s transmission systems
containing planetary differential mechanisms and in stationary driving units namely with
turbined units etc.

The important problem here performs from internal dynamics e.g. the impact effects in
gear mesh due to existence technological tooth backlash, eventually mounting tolerances
when dynamic deformations are greater than static-elastic deformations. The impact effects
caused by influence of teeth bounce are respected in the mathematical description by so-
called strongly nonlinearities.
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Theme of contribution, which was presented at conference ‘Dynamics of Machines 2006’
and which referring to works subject [1–3], is the analysis of damping properties both the
material of gear mechanism in the mesh and the lubricating oil film in tooth backlash at
tooth profile contact bounce into the area of technological gear backlash. The influence of
damping over dynamic properties of nonlinear parametric system is analysed in all phases
of gear mesh, i.e. in the phase of normal gear mesh, in the phase of teeth profile contact loss
and in the phase of inverse gear mesh. The damping whether material – in the gear mesh, or
viscous – in the area of gear backlash is assumed partly linear, partly nonlinear – quadratic
and cubic. The damping influence over gear mesh stability is pursued on the special case of
simulation model of system with split power flow for selected frequency area of resonance
characteristic.

For the motion equations composition of mathematical physical models of planetary sys-
tems, alternatively their special cases with kinematic couplings – gears has been applied
Lagrange’s method. Lagrange (1736–1813) summarizes in his last work ‘Mechanique analy-
tique’ (1788) whole then progress in mechanics as integrated scientific subject of knowledge.
There is concerned systematically processing of then pieces of knowledge, which consist in
three fundamentals :
– principle of virtual working*,
– d’Alambert’s principle**,
– Lagrange’s principle of release***.

The solution of that way created motion equations of mechanic discrete system in the
form of weakly and strongly nonlinear parametric ordinary differential equations of second
order is carried out by means of
1) analytic : transformation of boundary differential problem onto equivalent system of

integrodifferential equations with solving kernel in form of Green’s resolvents and
E. Schmidt’s method of kernel splitting [4],

2) numerical : on the simulation model of system in MATLAB/Simulink [5].

Problems of gear conditions of teeth profiles of wheels is by the light shell structures
of transmission housing in comparison with stiff those, more complicated. Gear profiles of
kinematic pairs pursue complicated motion rolling – sliding namely sliding resulting as from
gear mesh geometry so from relative motions of elastic bearings, i.e. motions caused as by
elastic bearings so by wheel run-out. Gear profiles of kinematic pairs pursue complicated
motion rolling – sliding namely sliding resulting as from gear mesh geometry so from relative
motions of elastic bearings, i.e. motions caused as by elastic bearings so by wheel run-out.
The velocity of creation and quality (carrying capacity) of oily film after recontact of teeth
profiles in normal or inverse mesh depend on
– the contact distance from central point (line) of gear mesh,
– the size of relative motion of meshing teeth profiles from motions of elastic bearings.

In accordance with brief consideration is evident that creation of carrier oily film in gear
mesh is complicated matter of tribology and dynamic forces here create conditions for point
of issue medium- dry or dry friction, and conditions for issue self-excited vibrations. This

* Johann Bernoulli (1667–1747) formulates principle of virtual working 1712.
**D’Alambert (1718–1783) presents universal principle of mechanics, when transforms problems of kinetics

on problems of statics, s. Traité de dynamique, 1743.
*** A. A.Andronov, M.A. Leontovič : O kolabanijach sistěmy s periodičeski menjajuščimsja parametrami.

Ž. Russ. Fiz. Chim. Obšč. (fiz) 559, 429–443.
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phenomenon is so very important in dynamics of gearing by analysis of motion in mechanical
systems with kinematic couplings.

Parametric excited vibration constitutes partial area of heteronomous vibration, which is
quickly exploited by reason of physical trend of light structures. The vibration can be called
heteronomous, when can be described by differential equations of second order in form

y′′ = f(y, y′, t) ,

autonomous afterwards vibration, where no explicit dependence on time occur. If there
are coefficients – parameters on y dependent terms with time periodic, is vibration called
parametric excited (after A. A. Andronov and M. A. Leontovič ).

In the given model is parametric function represented by time variable resulting stiffness
function in gear mesh.

2. Mathematical physical model of spur gear mesh

The influence of parametric vibration is below pursued on the model of one gear of one
branch of power – forces flow of pseudoplanetary transmissive reducer with three double
satellites, whose substitute mechanical system is presented in Fig. 1. It is the elastic sup-
ported spur gear unit with six degrees of freedom.

The cog wheels (j = 3, 2, mj . . . the mass, Jj . . . inertia torque, ϕj . . . angular displace-
ment, Rbj . . . radius of basic circle, Mj . . . external momentum, zj . . . number of teeth
of jth wheel, α′ pressure angle) are connected each other parallel with the spring C(t) and
the damper, which model elasticity in gear mesh. The time variable function s(t) is the
teeth backlash. This is influenced by possible eccentricities ej of wheels and their relative
angular displacement for the phase angle Δ and in the case of elastic mounting gear even
by the motions in bearing yj , zj of wheels. 1,2f(t) is the deflect function, or the deviation
of the cog side form from the ideal involute, 1,2FT(t) is the friction force in gear mesh. The
index number 1 denotes the normal mesh, 2 the inverse mesh. The bearings of wheels are
modelled by the stiffness Cjy, Cjz and the damping coefficients kjy, kjz in two orthogonal
directions of the coordinate system, which is oriented in the direction of the mesh line c.

The resulting stiffness function C(t) changes periodically at mesh line in course of change
generally k and k + 1 pairs of teeth in gear mesh.

Analytical form of the resulting stiffness function of spur gearing in mesh can be expressed
by Fourier’s series in form [6]

C(t) = Cs +
Cmax (1 − κ)

2

∞∑
n=1

4
π n

(−1)n sinn [(ε− 2)π] cosnωc t , (1)

where the mean stiffness is defined by

Cs = κCmax +
Cmax (1 − κ)

2
[1 + (2 ε− 3)] . (2)

The symbol κ = CminC
−1
max represent the amplitude modulation of resulting stiffness

function in gear mesh, Cmin, Cmax are minimal and maximal values of stiffness in gear mesh
and ε is coefficient of mesh duration, which indicates how many teeth pairs is at any one
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Fig.1: The substitutive mathematical – physical model of kinematic pair of gears (b)
of pseudoplanetary system with double satellites – (a), the technological teeth
backlash and the values of Heaviside’s functions H in the areas of gear mesh
with clearances (c)

time in mesh at mesh line. In extreme cases, for example ε = 1, is during the mesh time
at mesh line only one teeth pair, in the case ε = 2 are two pairs of teeth whole time in
mesh. Intermediate values ε determine relationship of the alternation of teeth pair number
in mesh at mesh line. In the Fourier’s series (1) ε determines the time relationship of
alternation minimal and maximal resulting stiffness Cmin, Cmax during the gear mesh. This
fact indicates markedly in dynamics of system in size of amplitude of relative motion in gear
mesh. The amplitude is impacted by time duration of gear mesh at the given potential level
of stiffness of relevant reversible force. In the stiffness of teeth will in the next application
respected only the stiffness of separate cogs and fixation into a solid half-space, discs are
considered absolutely solid.

The motion equations are composed by means of Lagrange’s methodology in the form [6]

Mv′′ + 1K(β, δi, H)v′ +
∑

K1>1

K1K(D,Di, H) |w′(v′)|K1 sgn(w′(v′)) +

+ 1C(ε, κ, Yn, Un, Vn, H, τ)v +
∑
K>1

KC(ε, κ, In, H, τ)wK(v) = F(an, bn, ϕ̄,H, τ) .
(3)
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Here v means generally the m-dimensional vector of displacement of system vibration,
wK(v) K-th power of vector v, which is defined by expression wK(v) = D(w(v)wK−1(v)).
D(w(v)) denotes the diagonal matrix, whose elements at the main diagonal are comprised
by elements of vector w(v) ≡ v. Furthermore M is the matrix of mass and inertia forces,
1K and K1K are the matrix of linear and nonlinear damping forces, 1C and KC are the ma-
trix of linear and nonlinear reversible forces and F(τ) is the vector of non-potential external
excitation with components an, bn and with the phase angle ϕ̄. H is the Heaviside’s func-
tion, which allows to describe the motions – contact bounces – due to strongly non-analytical
nonlinearities, for example due to technological tooth backlash s(τ). Corresponding linear
and nonlinear coefficients of damping are denoted by β, δi, D, Di linear parametric stiffness
function by the symbols Yn, Un, Vn and nonlinear parametric functions, so-called parametric
nonlinearities, by the symbol In. ε and κ are the coefficients of mesh duration and amplitude
modulation of stiffness function 1C. Derivative by non-dimensional time τ are denoted by
dashes, τ = ωc t, ωc . . . mesh frequency, t . . . time.

The relative motion as the measure of dynamic loading in the gear mesh, i.e. in the
course of mesh line, can be described for the generally elastic supported system with bearing
motions {y3,2; z3,2} of the gear pairs 3,2 by respecting so-called run-out of pitch circles, which
are modelled by eccentricities e3,2, in the form

y(τ) = Rb3 ϕ3 +Rb2 ϕ2 + y3 − y2 + e3 sinϕ3 − e2 sin(Δ − ϕ2) + 1,2f(τ) . (4)

The dynamic force in gear mesh can be expressed in the form Fdyn = 1C(τ) y(τ). The
technological tooth backlash s is not in elastic supported systems constant sk, but is time
function s(t), respectively s(τ)

s(τ) = −sk + y3 − y2 + e3 sinϕ3 − e2 sin(Δ − ϕ2) ,

see Fig. 1.

3. The analysis of special cases of damping

The resonance characteristics of linear as well as nonlinear systems with constant coef-
ficients with typical overhangs of solidifying or softening resonance characteristics has been
enough known. The same cannot be declared in full about the resonance characteristics
of linear or nonlinear parametric systems, where can occur the all phenomena of linear or
nonlinear systems including the influences of time variation of stiffness level and phase shift
of amplitude of relative motions y by reason of damping forces action against the parametric
exciting function C(t), see Fig. 2. The phase shift of relative motions y(t) is here by reason
of clearness evident from two courses of y(t) with hundredfold different coefficient of linear
material damping k1 of cogs in gear mesh. In figure mentioned values k1 conform to pro-
portional damping β = 0.0624 for k1 = 4Nmm−1 s, β = 0.000624 for k1 = 0.04Nmm−1 s.

The resonance characteristics for the fifth revolution of gear wheels with strong nonlin-
earities – tooth backlash are shown in the coordinates of relative motion y depending on
the tuning νs, that is related to mean value of resulting stiffness Cs of gear in mesh, see
equation (2)

νs = ωc Ω−1
s ,

where ωc is mesh frequency of given gearing and Ω2
s = Csm

−1
red is mean eigenfrequency, mred

is reduced mass of solved model [6].
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Fig.2: The exemplification of phase shift in
time courses of relative motion as a
result of the size of coefficients of the
linear material damping k1 towards
the parametric excited function C(t)

In given parametric, i.e. heteronomous,
systems but the stiffness functions, see eq. (1),
and consequently also the eigenfrequencies in
gear mesh vary between Ωmax (for Cmax) and
Ωmin (for Cmin) in certain time distances t.
These time distances t, i.e. time duration gen-
erally k and k + 1 cogs pairs in mesh are
functions of coefficient of mesh duration ε

and the amplitude modulation κ. For every
ε and κ has resonance characteristic the dif-
ferent course. The time distances t in them
the gear mesh inhered in that which frequency
tuning νmax or νmin are deciding about exten-
sion of amplitude course at that which stiffness
level of gear mesh. For example for ε = 1.1,
see Fig. 4a, prevails the time distance of gear
mesh at the minimal stiffness level Cmin, con-
versely for ε = 1.9, see Fig. 4b, prevails gear
mesh at the maximal stiffness level Cmax. The
course of relative motion y, which is plotted
by thin line, is for the system with linear ma-
terial damping in gear mesh k1 = 0, i.e. for
conservative system in gear mesh, the course
of relative motion y which is marked by the
thick line is for the non-conservative system
with damping k1 �= 0. The values of linear
material damping k1 and linear viscous damp-
ing in tooth backlash k1m are considered in all
next given examples of solution identical, i.e.
k1 = k1m = 3.95N mm−1 s, which corresponds
to proportional damping β = βm = 0.062 .

In Fig. 3 are given by reason of comparison the scale of tuning νs towards mean value of
resulting stiffness Cs in gear mesh and scales of tuning νmax = ωc Ω−1

max = νs Ωs Ω−1
max and

νmin = ωc Ω−1
min = νs Ωs Ω−1

min towards maximal Cmax alternatively minimal Cmin stiffness
values in gear mesh, with Ω2

max = Cmaxmred and Ω2
min = Cminm

−1
red.

In the graph are determined the area of normal gear mesh for y ≥ 0 – by white coloured
area, phase with contact bounces due to tooth backlash s(t), where |y| < s(t) – light grey
coloured area and phase of inverse gear mesh, where |y| > s(t) – dark grey coloured area.
The resonance characteristic of relative motion y of cogs in mesh are given in Fig. 3 for
different combination of linear damping both material k1 and viscous k1m in lubricating oil
film, alternatively in lubricating medium in the phase of contact bounce.

The courses yma, ymin for purely conservative system, i.e. for k1 = k1m = 0, are marked
by circlets. The courses have in the frequency area νs ∈ 〈0.6; 0.8) smooth, i.e. continuous
character excepting the small area in vicinity νs = 0.66 . With exception of this singularity is
the kinematic pair of teeth in the normal mesh y ≥ 0. In the area νs ≈ 0.8 dawn the contact
bounces (y < 0), the motion through tooth backlash, even inverse gear mesh (|y| > s) and
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Fig.3: The resonance characteristics {y; ν} of parametric – heteronomous system

for ε = 1.569; κ = 0.5879; Cmax = 0.4×106 N mm−1; mred = 0.003123 kg,
for the linear damping : � – material k1 �= 0; k1m = 0; • – in the tooth
backlash (viscous) k1 = 0; k1m �= 0; × – material and viscous k1 �= 0;
k1m �= 0; ◦ – conservative system in gear mesh k1 = 0; k1m = 0

impact effects. For νs > 0.8 appear in the whole area the similar phenomena with contact
bounces and inverse gear mesh. The course of relative motion y has the chaotic character.

The other courses y in Fig. 3 for the non-conservative system with different combination
of damping have continuous convergent character excepting the area νs ≈ 0.8 . In the interval
νs ∈ 〈0.6; 0.8〉 has the solved system continuous divergent character with the normal gear
mesh. The amplitudes of relative motion y increase in the area νs ∈ 〈0.8; 1.12〉, the contact
bounces come up with consequential impact effects. There is not inverse gear mesh. The
gear mesh in area νs > 1.12 is in the phase of purely normal mesh excepting the damping
variant k1 = 0; k1m �= 0. The course of relative motion of this damping variant is marked
by dots.

The phase planes {y′; y} of relative motion in gear mesh are given in Fig. 5 for six values of
tuning νs and four combinations of linear damping k1, k1m by reason of the better physical
explanation of some quantitative and qualitative phenomena in resonance characteristics
from Fig. 3. The values of tuning νs were selected from resonance characteristics what are
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Fig.4: The time course of stiffness function C(t), relative motions y(t),
their velocity y′(t), acceleration y′′(t) and the phase planes {y′; y}
for a) ε = 1.1 and k1 = 0, k1m > 0; b) ε = 1.9 and k1 = 0, k1m > 0

given in Fig. 3. They are data record of fifth revolution of gear wheels with transmission
i = 1. The area which are marked by light grey colour represent the area of tooth backlash.

From Fig. 5 is evident that all phase planes {y′; y} of fourth column for damping values
k1 = k1m = 0 present unsteady solution of analysed system of gears in mesh and have for
tuning values νs = 0.66, 0.80, 0.81, 0.82 unstable gear mesh with contact bounces, i.e. with
impact effects. For the tuning values νs = 0.81, 0.82 arise even the inverse gear mesh.

Similarly unsteady motions of different intensities demonstrate the phase planes in the
second column, i.e. for k1 = 0, k1m �= 0 and the tuning νs = 0.60, 0.66, 0.78 . In all others
cases are the phase planes of relative motion in gear mesh during the fifth revolution of gears
for given tuning steady.

As has already been noted on beginning of this section, the resonance characteristics of
here analysed parametric systems with impact effects in the gear mesh are sensitive function
especially of parameters of amplitude modulation κ and coefficients of mesh duration ε of
resulting stiffness function C(t) in gear mesh, see eq. (1), (2). The greater is the number κ,
the greater is the amplitude of potential stiffness level Cmax, Cmin of resulting stiffness
function C(t) in gear mesh with corresponding possible dynamic – resonance effect on the
course of relative motion y(t), as is for example evident from Fig. 5 for the phase planes
{y′; y} in the range of tuning νs = 0.81 and νs = 0.82 and for combination of linear material
damping k1 of cogs in the gear mesh and the viscous mediums k1m in the tooth backlash s(t).
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Fig.5: The phase planes {y′; y} of relative motions y in gear mesh for the combinations
of linear material damping k1, viscous those k1m and the tuning νs
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Fig.6: Comparison of influence of modify stiffness functions C(t)(H1 + H2)
on the relative motion y(t) in gear mesh by normal mesh and by phase
of contact bounce for the tuning : a) νs = 0.815; b) νs = 0.8151

The explanation of the so large springs in the phase planes in mentioned small interval of
frequency tuning νs = 0.81 and νs = 0.82 is evident from Fig. 6. Here are mentioned for the
tuning νs = 0.815 and νs = 0.8151 the phase planes {y′; y} and courses of y(t), y′(t) including
the courses of C(t) and of modify stiffness function C(t)(H1 + H2) for the same values of
damping k1 and for κ = 0.5879. For the tuning νs = 0.815 is the value of frequency tuning
νmax = 0.7391 and νmin = 0.9639, for νs = 0.8151 is νmax = 0.7392 and νmin = 0.9640 . Both
of the values νmin are near the main resonance.

The exciting modifying function are significantly different for the fifth revolution of cog
wheels and three last period accordant with the mesh frequency ωc. Their courses are
denoted by dark grey colour. While the time course in Fig. 6a begin with contact bounces
of cogs into the tooth backlash s(t) (denoted by light grey colour), in the Fig. 6b run the
gear mesh at the potential stiffness level Cmax. After the follow-up contact of cogs sides
with impact run the gear mesh in the Fig. 6a both at the maximal level Cmax and at the
minimal stiffness level Cmin till the follow-up contact bounce in the tooth backlash s(t).
The gear mesh in the Fig. 6b run after the longer contact bounce at the lower potential
level Cmin (i.e. the amplitude of relative motion y(t) grow fast) at the level Cmax and there
occurs the contact bounce of cogs (light grey area). The amplitude of relative motion y(t) in
Fig. 6a reaches in contrast to its course in Fig. 6b the lower value in normal gear mesh and
as well the lower value in the phase of contact bounces, see the singular area of resonance
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Fig.7: The phase planes {y′; y} of relative motion y(t) in gear mesh for the
combinations of linear material k1 of cogs in mesh and the viscous
mediums k1m (k1 = k1m = 3.9537 N mm−1 s) a) k1 �= 0, k1m = 0;
b) k1 = 0, k1m �= 0; c) k1 �= 0, k1m �= 0

characteristics in vicinity νs = 0.8 in Fig. 3. The phase planes {y′; y} of solved system are
varied considerably. In the resonance characteristic they created the area with singular
– non-continuous course.

The influence of damping, i.e. combination of linear material k1 of cogs in the gear mesh
and the viscous mediums k1m, on the relative motion y(t), its velocity y′(t) and on the
dynamic force Fdyn(t) in gear mesh are shown from the Fig. 7. On the basis of Fig. 5 are
plotted here among others the course of exciting modify stiffness functions C(t)(H1 +H2)
for tuning value νs = 0.82 and for the combinations of damping k1, k1m. From the courses of
exciting modify stiffness functions is evident the influence of damping combinations on the
time distances of contact bounce of cogs in gear mesh at the potential levels Cmax or Cmin.
These take effect in the courses of y(t), y′(t) and Fdyn(t) partly by the phase – time shift,
partly by the amplitude size of relative motion y(t) or dynamic force Fdyn(t) in gear mesh.
From the figure is evident that during the time, when the gear mesh wages at stiffness
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level Cmin, validates for given tuning and mentioned combinations of damping the relation
t1c > t1a > t1b. The influence of damping is then also evident from the courses of phase
planes of relative motion.

Fig.8: The phase planes {y′; y} and time courses of relative motion y(t) in gear mesh,
resulting stiffness function C(t), its modification C(t)(H1 +H2) with respect
to phase of gear mesh, dynamic Fdyn(t) and friction FT(t) forces for tuning
value νs = 0.66 and damping k1 = k1m = 0 during the fifth revolution of the
analysed gearing system with six degrees of freedom

In Fig. 8 is given the example of analysis of dynamic behaviour of solved system for the
damping k1 = k1m = 0 and the tuning νs = 0.66 in the fifth revolution of gear wheels. The
solved system has unsteady relative motion y(t) in gear mesh. That is evident both from
phase plane of relative motion {y′; y} and from partial time courses of relative motion y(t) in
gear mesh, its velocity y′(t) and acceleration y′′(t). Provided that the amplitudes of relative
motion in gear mesh are greater than the static-elastic deformations, arise to contact bounces
of cog profiles and to issue of impact effects. The resulting stiffness function C(t) in gear
mesh modifies by theirs influence in the form C(t)(H1 + H2), see time course in Fig. 8,
where are according to Fig. 1, relevant Heaviside’s functions denoted by C(t)(H1 + H2).
The parametric excited function in gear mesh has then the character, which correspond to
modifying course C(t)(H1 +H2).

In the Fig. 8 are given more the time courses of dynamic force Fdyn(t) and friction
force FT(t) in gear mesh. The impact effects in gear mesh caused by dynamic forces in-
fluences the tribological conditions in mesh because the transitions between the phases of
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gear mesh and tooth backlash can induce the disturbance of supporting oil film layer which
are connected with the creation of condition for issue of medium-dry and dry friction in the
gear mesh, with the consequence of issued self-excited vibration and noise.

4. Concluding remarks

The mentioned exemplifications of damping influence bring out some partial results of
analysis of the internal dynamics of strongly nonlinear parametric systems which are excited
purely parametrical i.e. by only mentioned modify resulting stiffness function C(t)(H1+H2)
in the gear mesh.

In conclusion can yet note, that the problems of analysis of parametric vibration in the
systems with kinematic coupling – gear pairs is functional dependence of many parameters
above all

– the size of tooth backlash s(t), which is time variable in consequence of elastic sup-
porting of wheels and possible run-out of pitch circles meshing wheels,

– the value of the coefficient of mesh duration ε which determines at which stiffness
level (potential level) Cmax or Cmin and in what time interval run the solution of
relative motion in gear mesh,

– the value of the amplitude modulation κ = Cmin C
−1
max,

– the resonance tuning of stiffness level at which the solution of relative motion just
run, i.e. the relation between the exciting mesh frequency ωc and eingenfrequencies
Ωmax,min = Cmax,minm

−1
red,

– the form of modify resulting stiffness function CM ≡ H C(t, ε, κ) in gear mesh in the
framework of vibration of system with impact effects in mesh, where H is Heaviside
function,

– the phase shift ψ of relative motion y(t) towards stiffness function C(t, ε, κ) alter-
natively towards its modify form CM ≡ H C(t, ε, κ) caused by linear and nonlinear
damping effects both the material in gear mesh and temperature dependent viscosity
of environment in the area of tooth backlash.

Detailed analysis of influence of parametric vibrations and influence of system parameters
on the quality and quantity of amplitude of relative motion y(t) will be the theme of next
research, which is yet not finished. The closing results and principles will be published in
next works.
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