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POSITION CONTROL OF ROBOT
UNDER ENDPOINT CONSTRAINTS

Václav Záda*

In this contribution we study PD-control of the robot endpoint that is constrained
to move on a given surface described by a scalar function. This function depends
on the Cartesian coordinates which are expressed in the inertial reference frame.
The contact friction force arises in the direction against the motion velocity. The
discussion of this contribution leads to formulate a theorem about asymptotic stability
in a neighborhood of desired position.
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1. Introduction

The research of robot control is oriented to build robots that can manipulate objects.
The robots are non-linear systems controlled using non-linear controllers will be used. The
problem is that non-linear control methods are more difficult to apply than linear ones. Very
often it is used linear controllers to control non-linear systems, firstly PD or PID controllers.
To adjust the controller parameters some method of linearization may be used. Theorists
often use stabilization by Lyapunov theory especially the LaSalle invariant theorem [3]. This
approach is used in this paper to control of end point of robot on a defined surface. Equations
of robot motion are described by the set of Lagrange equations in the special form. The
robot endpoint is constrained to move on the surface. We assume that the working space
is closed and bounded, that is compact. This assumption is fulfilled in each real case. This
article concurs on [1], [2].

2. Controlled system description

Let the working space Ω of robot be compact in the Euclidean space E3. Let L be a sur-
face in E3, bounded and closed. Hence L and Ω are closed and so their intersection L ∩ Ω
is the closed subset of compact set Ω. Thereupon L ∩ Ω is compact too. Suppose that the
robot dynamics is described by non-linear equation of motion in the matrix form

M(q) q̈ + C(q, q̇) q̇ + g(q) = Q (1)

where M(q) is the symmetric inertial matrix, positive definite and continuous whose second
partial derivatives are continuous too; q = (q1, . . . , qn)T is a set of generalized co-ordinates
complete, independent which has continuous second partial derivatives; g denotes the gravity
force vector force vector

g(q) =
(
∂V

∂q1
, . . . ,

∂V

∂qn

)T
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where V is the potential energy, C is the matrix defined by

C(q, q̇) =
1
2

Ṁ(q) + S(q, q̇) + M0

where the matrix M0 is diagonal non-negative and usually represents damping factors while
S is the skew symmetric matrix

Si,j(q, q̇) =
1
2

[
n∑

k=1

q̇k
∂Mi,k

∂qj
−

n∑
k=1

q̇k
∂Mj,k

∂qi

]
.

Q on the right hand side of (1) is the vector of generalized forces (torques). Let us make
a remark C(q, q̇) represents Coriolis and centrifugal forces.

Define a vector x = (x1, x2, x3)T in the Cartesian coordinates. Let the surface L be
described by the equation R(x) = 0, that is L = {x;R(x) = 0}. Suppose that this surface is
regular, so that its gradient ∂R/∂x exists and is non-zero. We suppose that R has continuous
second derivatives. If these conditions are fulfilled in a given neighborhoods around each
point, we can define the set Ω, such that they are verified in Ω. Therefore x = x(q) can be
replaced into R(x(q)) which leads one to consider R(x(q)) = 0. We shall usually write R(q)
instead of R(x(q)). The vector on the right-hand side of (1) has the following structure

Q = u + Qn − Qt (2)

where u is the control vector. The contact force in the normal direction of the surface is
described (3)

Qn =
(
n
∂x
∂q

)T

F (q) (3)

where n is the normal vector of the surface L

n =

∂R

∂x∥∥∥∥∂R∂x
∥∥∥∥
.

F is a scalar function of q and represents the force in the orthogonal direction. The tangent
force represents contact friction and is given by

Qt = λ(ẋ)
(
∂x
∂q

)T

ẋ . (4)

The function λ is positive, for linear dependence of the friction is only a constant. More
generally λ represents more complicated dependences of friction on the motion velocity
and sometimes may represent the influences of changes of position, so that very generally
λ = λ(ẋ,x) or

λ = λ

(
∂x
∂q

q̇,x(q)
)
.

Remark : The equation (1) is derived from Lagrange equations of Analytical mechanics and

it is well known that generalized forces expresses as follows :

Qj =
n∑

i=1

Fi
∂ri

∂qj
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where Fi is the sum of forces that actuate onto the mass point with a position ri. One of

these points is the end one, which we want to control on the surface (e.g. end point of the

tool). The forces can be splitted into normal and tangent forces. If we denote this end point

in the Cartesian coordinates as x = (x1, x2, x3)T, we obtain relations (3) and (4).

Remember, that by definition

∂x
∂q

=

⎡
⎢⎢⎢⎢⎢⎣

∂x1

∂q1
· · · ∂x1

∂qn
∂x2

∂q1
· · · ∂x2

∂qn
∂x3

∂q1
· · · ∂x3

∂qn

⎤
⎥⎥⎥⎥⎥⎦ and

∂R

∂x
=

[
∂R

∂x1

∂R

∂x2

∂R

∂x3

]
.

Suppose that the first of them is a full rank matrix.

3. Stability and control

In this section will be treated the stability problem for PD controller with compensation
of gravity force and contact force. Let the control vector be defined by

u = −A Δq − B q̇ + g(q) − Qn,d (5)

where A and B are diagonal positive definite matrices, which represent P and D components
of PD controller,

Qn,d =
(
n(q)

∂x(q)
∂q

)T

F (qd)

where qd is a given desired end-position and

Δq = q − qd .

Substituting (5) into (1) with using (2) yields the equation of the closed loop

Mq̈ +
(
M0 + B +

1
2

Ṁ + S
)

q̇ + A Δq + Qt = Qn − Qn,d .

Let us define
D = M0 + B and ΔF = F (q) − Fd ,

where F (qd) = Fd is the desired value of the normal force at the endpoint. From the
definition of the surface it can be verified that

ẋ(q) =
∂x
∂q

q̇ ,

we can rewrite the closed loop equation into

Mq̈ +

[
D +

1
2

Ṁ + S + λ

(
∂x
∂q

)T
∂x
∂q

]
q̇ + A Δq =

(
n
∂x
∂q

)T

ΔF . (6)

Let us define the following Lyapunov function

W (Δq, q̇) =
1
2

q̇T M(q) q̇ +
1
2

ΔqT A Δq . (7)
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If we differentiate this function and using

d
dt

(q − qd) = q̇ ,

we get :
dW (Δq, q̇)

dt
= q̇T

(
Mq̈ +

1
2

Ṁ q̇ + A Δq
)
.

Substituting this equation into (6), then

dW
dt

= −q̇T (D + S) q̇ − λ

(
∂x
∂q

q̇
)T

∂x
∂q

q̇ +
(
n
∂x
∂q

q̇
)T

ΔF . (8)

The matrix S is skew symmetric and hence

q̇T S q̇ = 0 .

For points of the surface R(x) = 0 by differentiation

∂R

∂x
∂x
∂q

q̇ = 0

and hence
n
∂x
∂q

q̇ = 0 . (9)

From these results we obtain the inequality

dW
dt

= −q̇T Dq̇ − λ

(
∂x
∂q

q̇
)T (

∂x
∂q

q̇
)

≤ 0 . (10)

The matrix D is diagonal positive definite and the function λ is positive. Hence the re-
lations (7) and (10) show that the control process is stable, as it is well known from the
Lyapunov theory of stability.

From (9) we can derive

n
∂x
∂q

q̈ = − d
dt

(
n
∂x
∂q

)
q̇ . (11)

If we use (11) in (6), we can compute the difference ΔF as a function of q, q̇. Because
all functions and matrices are continuous in compact working space, they are bounded and
hence if q̇ and Δq converge to zero, then ΔF converges to zero too. ΔF is obtained from (6)
and (11) :

ΔF =
KM−1 F q̇ − K̇ q̇ + KM−1 A Δq

KM−1 KT
(12)

where
K = nT(q)

∂x
∂q

, N =
∂x
∂q

, F = D + 0.5 Ḣ + S + λNT N .

Consider the inequality
W (Δq, q̇) < η .
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If η → 0+, then from (7), with respect that the matrix M has a positive lower bound,
follows q → qd, q̇ → 0 and hence from (12) ΔF → 0. Therefore for Fd > 0, there exists
α > 0, such that for arbitrary η < α |ΔF | < Fd. But the inequality |ΔF | < Fd is equivalent
to 0 < F < 2Fd and so the endpoint is in contact with the surface, that is R(x(q)) = 0.
Therefore, if the control process will be started from any initial point

(q(0), q̇(0)) ,

such that
W (Δq(0), q̇(0)) < η ,

then, as the function W is not increasing (10), it is clear that

W (Δq(t), q̇(t)) < η ,

for any t > 0. According to previous discussion 0 < F , and hence the endpoint will be
maintained in contact with the constraint surface.

Accordingly, from (7) it follows that there is a neighborhood of the point (qd,0) such that
every trajectory which starts from this neighborhood will remain there for every positive t.

Next, consider the invariant set of equation (6). According to (10), every point from the
invariant set must be (q,0) and must satisfy the equation

A Δq =
(
n
∂x
∂q

)T

ΔF . (13)

As we supposed, the second partial derivatives of R(x) exist and are continuous. The vector
function

K(q) = n(q)
∂x
∂q

has continuous partial derivatives and using the middle value theorem of functions in linear
norm spaces it follows that

|K(q) Δq − K(qd) Δq| ≤ ‖K(q) − K(qd)‖ ‖Δq‖ ≤ sup
p∈[q,qd]

∥∥∥K̇(q)qd

∥∥∥ ‖Δq‖2 ≤ C1 ‖Δq‖2

where p ∈ [q,qd] means, that the vector p is a convex combination of the points q, qd. C1

is a non-negative constant. From this follows

|K(q) Δq| ≤ |K(qd) Δq| + C1 ‖Δq‖2 . (14)

If we use Taylor’s expansion theorem at point qd of function R(x(q)), then

R(q) = R(qd) +
(
∂R

∂x
∂x
∂q

)
q=qd

Δq +
1
2

ΔqT H Δq + o
(‖Δq‖2

)
. (15)

If points q, qd are on the surface L, then R(x(q)) = 0, R(x(qd)) = 0, so it follows from (15)
that (

∂R

∂x
∂x
∂q

)
qd

Δq = −1
2

ΔqT H Δq − o
(‖Δq‖2

)
(16)
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where H is the Hessian matrix. The non-zero function∥∥∥∥∂R∂x
∥∥∥∥

is continuous on the compact set Ω or Ω ∩ L, respectively. Hence there exists a positive m,
such that

m = inf
x

∥∥∥∥∂R∂x
∥∥∥∥ .

If we divide (16) by ‖∂R/∂x‖x(qd), then we obtain

|K(qd) Δq| =

∣∣∣∣∣
(
n
∂x
∂q

)
qd

Δq

∣∣∣∣∣ ≤
[

1
2
‖Δq‖2 ‖H‖ + o

(‖Δq‖2
)]
m−1 ≤ C2 ‖Δq‖2 .

From this inequality, and using (13) and (14) we get

0 = ΔqT
[
A Δq − KT ΔF

]
= ΔqT A Δq − (K Δq)T ΔF ≥

≥ ΔqT A Δq − (C1 + C2 ΔF ) ‖Δq‖2 ≥ (C3 − C1 − C2 ΔF ) ‖Δq‖2

for positive constant C3. But for suitable neighborhood of the end point it is possible to
choose C3 sufficiently large such that

C3 − C1 − C2 ΔF > 0 . (17)

and hence Δq = 0. These results demonstrate that the maximum invariant set of (6) has
only one point (qd,0). If we apply the LaSalle invariant theorem, then

q(t) → qd(t) , q̇(t) → 0 as t→ ∞ .

But this means that F → Fd as t→ ∞.

Remark that often it is possible to choose the matrix A sufficiently large so that C3 is
sufficiently large, too.

We see that this manner it was proved a theorem, which can be reformulated in the
following compact form for using :

Theorem :

Let us assume that the conditions

R(qd) = 0 , qd ∈ Ω , Fd > 0 ,
∂R

∂q
�= 0 in Ω ,

hold and that the diagonal matrix A > 0 is chosen sufficiently large. Then the equilibrium
point (qd,0) is asymptotically stable in the sense that there exists a neighborhood Bd of
(qd,0) on the subsurface L∩Ω, such that every solution of (6) starting from arbitrary initial
state

(q(0), q̇(0)) ∈ Bd ,

asymptotically approaches the point

(qd,0) as t→ ∞ and F → Fd as t→ ∞ .

End of theorem
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4. Additional information

The controller parameters can be adjusted by optimization of suitable criterion [8]. The
form of this criterion effects onto the quality of the control process. Classically it can be
used quadratic criterion, which is not usually the best of all. For optimal setting of param-
eters of controller it can be used a lot of methods. Many of them are based on variational
approaches, for example [5], [6]. The controlled system is nonlinear and hence for optimiza-
tion of parameters it is interesting to combine global optimization methods [9], [10], [11] with
local ones, which are well known in mathematical programming. Any other using of PD or
PID control of robots can be found in [7], [8] or in robotics journals.

References
[1] McClamroch N.H., Wang D.: Linear feedback control of position and contact force for

a nonlinear constrained mechanism, Journ. of Dynamic Systems, Measurement and Control,
112 (1990) pp. 640–645

[2] Mills J.K., Goldenberg A.A.: Force and position control of manipulators during constrained
motion tasks, IEEE Trans. on Robotics and Automation, 5 (1989), 30–46

[3] LaSalle J.P: Some extensions of Lyapunov’s second method. IRE Trans. on Circuit Theory,
7 (1960), pp. 520–527

[4] Willems J.C.: Stability Theory of Dynamical Systems, Nelson 1970, London
[5] Hrubina K., Jadlovska A.: Optimal control and approximation of variational Inequalities,

Kybernetes – Jour. of Systems & Cybernetics, 31 (2002), 1401–1408
[6] Zeidler E.: Nonlinear Functional Analysis and its Applications, III: Variational Methods and

Optimization, Springer-Verlag 1985, Berlin
[7] Záda V.: The Compare of Robot Position Control with PD Controller and Parallel Model

Controller, In: RAAD’02, Balatonfüred 2002, pp. 423–428
[8] Záda V.: Optimal Setting of PID Parameters of Nonlinear Systems , In: PROCESS CONTROL

2002, Kouty nad Desnou 2002, Czech Republic, p. 224
[9] Price W.L.: A Controlled Random Search Procedure for Global Optimisation, Computer Jour-

nal, 20 (1996), pp. 367–370
[10] Reiner H., Tuy H.: , Global Optimisation. Springer-Verlag 1990, Berlin-Heidelberg
[11] Handbook of Global Optimisation, Kluwer Academic Publishers 1995, Netherlands

Received in editor’s office : August 8, 2006
Approved for publishing : November 27, 2006

Note : The paper is an extended version of the contribution presented at the national con-
ference with international participation Engineering Mechanics 2006, Svratka, 2006.




