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MATHEMATICAL MODEL FOR VIBRATIONS
OF NON-UNIFORM FLEXURAL BEAMS

Mohamed Hussien Taha, Samir Abohadima*

A simplified mathematical model for free vibrations of nonuniform viscoelastic flexural
beams is presented. The mass intensity, the material damping intensity and the
flexural stiffness of the beam are assumed varying as power functions along the beam.
An analytical solution for the fourth order differential equation of beam vibration
under appropriate boundary conditions is obtained by factorization. Mode shapes
and damped natural frequencies of the beam are obtained for wide range of beam
characteristics. The model results agree with those found in literature for uniform
beams.
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1. Introduction

The dynamics of flexural beams has received an extensive research for a long period
due to its wide applications in civil, mechanical and aeronautical engineering. Recently, the
concept of linear systems has been generalized to nonlinear systems using perturbation tech-
niques to solve governing equations. Caruntu [1] used the factorization method to obtain
analytic solution of the differential equation of free bending vibration of nonuniform beams.
Nayfeh, et al [4] used the method of multiple scales to obtain the nonlinear modes of a can-
tilever beam. Li [3] suggested an approach to analyze the vibrations of narrow buildings as
a cantilever flexural-shear plate with variable cross section. In the mathematical treatment,
the plate is modeled as flexural bar and shear bar. Taha [5] obtained the transient response
of a finite viscoelastic beam resting on an elastic foundation due to stochastic dynamic load
using eigen-function expansion with variation of parameter techniques. Taha [6] studied the
vibration of a non-uniform shear beam resting on an elastic foundation using variation of
parameters.

In the present work a simplified mathematical model for free vibrations of non-uniform
viscoelastic flexural beams is presented. The beam mass intensity, the material damping
intensity and the flexural stiffness are assumed varying as power functions along the beam
length. The fourth order differential equation with variable coefficients of the beam vibra-
tion is obtained and factorized into two second order differential equations. The resulted
equations are solved by transformation to the Bessel equations to obtain mode shapes and
natural frequencies. Charts of natural frequencies for wide range of non-uniform flexural
beams are conducted.
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2. Problem formulation

Assuming nonuniform simply supported beam with length L, width b and variable depth
h(x). The dynamic equations of the beam may be expressed as [2] :

∂Q

∂x
+ q(x, t) = m(x)

∂2y

∂t2
+ C(x)

∂y

∂t
, (1)

Q =
∂M

∂x
(2)

where Q(x, t) is the shear force, q(x, t) is the vertical excitation acting on the beam, m(x)
is the beam mass intensity, C(x) is the material damping intensity, y(x, t) is the vertical
response of the beam, M(x, t) is the flexural moment and t is time.

The flexural moment acting on the beam cross section is related to the vertical response
as :

M(x, t) = −k(x)
∂2y

∂x2
(3)

where k(x) is the flexural stiffness of the beam. Substitution Eqs. (2) and (3) into Eqn. (1)
yields :

∂2

∂x2

[
k(x)

∂2y

∂x2

]
+ m(x)

∂2y

∂t2
+ C(x)

∂y

∂t
= q(x, t) (4)

2.1. The Boundary Conditions

The boundary conditions depend on the constraints at the beam ends, however for a
simply supported beam whose length is L, the vertical displacement at the beam ends are
given as :

y(0, t) = 0 , (5a)

y′′(0, t) = 0 , (5b)

y(L, t) = 0 , (6a)

y′′(L, t) = 0 (6b)

where dash means derivative with respect to x.

3. Problem solution

To obtain the natural frequencies and mode shapes, one can assume :

q(x, t) = 0 , (7)

y(x, t) = w(x) ei Ω t (8)

where, w(x) is the mode shape and Ω is the complex damped natural frequency of the
flexural beam. Substitution of Eqs. (7) and (8) into Eqn. (4), yields :

d2

dx2

[
k(x)

d2w

dx2

]
−
[
m(x)Ω2 − i C(x)Ω

]
w(x) = 0 . (9)
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Equation (9) is a fourth order differential equation with variable coefficients whose solution
depends mainly on the distribution functions representing the actual beam characteristics.
Many distributions are assumed to approximate the variation of the geometric and material
characteristics of the non-uniform beam as algebraic polynomials, exponential functions,
trigonometric series or their combinations. Two cases are considered in the present work :

Case (1): Uniform beam

k(x) = k0 , (10)

m(x) = m0 , (10b)

C(x) = C0 (10c)

where k0 is flexural rigidity, m0 is mass intensity and C0 is damping intensity of the beam.

Substitute Eqs. (10a), (10b) and (10c) into Eqn. (9), one obtains :

d4w

dx4
− m0 Ω2 − i C0 Ω

k0
w(x) = 0 . (11)

The general solution of the above equation is given as :

w(x) = A1 eθ x + A2 e−θ x + A3 sin(θ x) + A4 cos(θ x) (12)

where :

θ4 =
m0 Ω2 − i C0 Ω

k0
. (13)

Case (2) : Non-uniform beam

The distribution of the non-uniform characteristics may be assumed as power functions.
The parameters α and n are used to approximate the actual non-uniformity of the beam,
i.e. :

k(x) = k0 (1 + α x)n+2 , (14a)

m(x) = m0 (1 + α x)n , (14b)

C(x) = C0 (1 + α x)n (14c)

where k0, m0 and C0 are the beam characteristics at x = 0. Substituting Eqs. (14a), (14b)
and (14c) into Eqn. (9), one obtains :

(1 + α x)2
d4w

dx4
+ 2 α (n + 2) (1 + α x)

d3w

dx3
+ α2 (n + 2) (n + 1)

d2w

dx2
− θ4 w(x) = 0 . (15)

Introduce the operator :

Δ = α (n + 1)
d
dx

+ (1 + α x)
d2

dx2
. (16)

Using the above operator, Eqn. (15) may be rewritten as:

(Δ + θ2) (Δ − θ2)w(x) = 0 . (17)
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The general solution of Eqn. (15) is the sum of the solutions of the two equations :

(1 + α x)
d2w1

dx2
+ α (n + 1)

dw1

dx
+ θ2w1(x) = 0 , (18)

(1 + α x)
d2w2

dx2
+ α (n + 1)

dw2

dx
+ θ2w2(x) = 0 . (19)

Introducing new variables ξ(x) and Z1(ξ), as :

ξ(x) = (1 + α x)μ , (20)

Z1(ξ) = ξ−ν w(x) . (21)

Using the new variables (Eqs. 20 and 21), Eqn. (18) can be expressed as:

d2Z1

dξ2
+

1
ξ

dZ1

dξ
+
(

η2 − ν2

ξ2

)
Z1(ξ) = 0 (22)

where the transformation parameters μ, ν and η are given by :

μ =
1
2

, (23)

ν = −n , (24)

η =
2 θ

α
. (25)

Equation (22) is the Bessel’s differential equation of order n with parameter η. Its general
solution yields, [7] :

w1(x) = (1 + α x)−
n
2 [B1 Jn(η ξ) + B2 Yn(η ξ)] , (26)

where, Jn and Yn are the Bessel functions of first and second kind of order n.

Similarly, Eqn. (19) can be transformed to the modified Bessel’s equation of order n with
parameter η, whose general solution is leads to, [7] :

w2(x) = (1 + α x)−
n
2 [B3 In(η ξ) + B4 Kn(η ξ)] , (27)

where, In and Kn are the modified Bessel functions of the first and second kind of order n.

3.1. Mode shapes and Natural Frequencies

Applying the boundary conditions at beam ends, constants Ai and Bi, i = 1, 2, 3, 4 for
the above two cases can be obtained. Then, the frequency equation, the mode shapes and
the natural circular frequencies of the beam may be obtained.

Case (1) : Uniform Beam

Mode shapes : Equation (12) may be rewritten as :

w(x) = C1 sinh(θ x) + C2 cosh(θ x) + C3 sin(θ x) + C4 cos(θ x) . (28)
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Applying the boundary conditions (5a) and (5b), yields :

C2 = 0 , (29a)

C4 = 0 . (29b)

Applying boundary conditions (6a), the nontrivial condition yields :

C1 = 0 . (29c)

Then, the normalized mode shapes are obtained as :

w(x) = sin(θ x) . (30)

Natural frequencies :

Using Eqn. (30) with the boundary condition (Eqn. 6b), the frequency equation of the
beam vibration may be expressed as :

θr =
r π

L
, r = 1, 2, 3, . . . (31)

Substituting Eqn. (31) into Eqn. (13), the complex damped natural frequencies are obtained
as :

Ωr =
i C0

2 m0
+

√
r4 π4 k0

m0 L4
− C2

0

4 m2
0

. (32)

The first part of Eqn. (32) represents the attenuation of the beam vibration due to damping,
while the second term represents the actual natural frequency of the beam. The r-mode
damped natural frequency of the beam may be expressed as :

ωdr = ωr

√
1 − d2 (33)

where :

ωr =
π2 r2

L2

√
k0

m0
, (34)

d =
C0

Cc
, (35)

Cc =
2 r2 π2

L2

√
k0 m0 (36)

where, ωr is the undamped natural frequency of r-mode, k0 is the flexural stiffness of the
beam, m0 is the linear mass density of the beam, d is the damping ratio and Cc is the critical
damping coefficient of the beam material.

Case (2) : Non-uniform beams

Mode shapes :

Using Eqs. (17), (26) and (27) the general solution of Eqn. (15) is obtained as :

w(x) = (1 + α x)−
n
2 [B1 Jn(η ξ) + B2 Yn(η ξ) + B3 In(η ξ) + B4 Kn(η ξ)] . (37)
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Applying boundary conditions (5a, 5b) and (6a, 6b), yields a linear system of algebraic
homogeneous equations with coefficients of Bessel’s functions and its derivatives at x = 0
and x = L. This system my expressed as :

AC = 0 (38)

where A is the coefficient matrix and C is the constant vector. For nontrivial solution, the
frequency equation of the system may be expressed as :

det(A) = 0 . (39)

The frequency equation is a nonlinear equation in η which may be solved using appropriate
iterative technique to obtain the roots ηr, then the natural frequency of the system can be
determined.

Substituting the obtained values of ηr in Eqn. (38) and assuming any arbitrary value for
the constant B1 (say B1 = 1), constants B2, B3 and B4 may be obtained, then, the r-mode
shape can be obtained.

Natural frequencies :

Using Eqs. (13) and (25), the r-mode complex damped frequency is obtained as :

Ωr =
iC0

2 m0
+

√
α4 η4

r k0

16 m0
− C2

0

4 m2
0

. (40)

Similarly, the first part of Eqn. (40) represents the attenuation of the beam vibration due to
the damping, while the second term represents the actual natural frequency of the r-mode.
The r-mode damped natural frequency of the beam may be expressed as :

ωdr = ωr

√
1 − d2 (41)

where:

ωr =
α2 η2

r

4

√
k0

m0
, (42)

d =
C0

Cc
, (43)

Cc =
α2 η2

r

4

√
k0 m0 (44)

where, ωr is the undamped natural frequency of r-mode, d is the damping ratio and Cc is
the critical damping coefficient of the beam.

4. Numerical results

Many cases occur in actual applications where the beam is made of homogeneous material
with constant cross section (prismatic). In such cases, the present model can predict the
exact natural undamped frequency [2]. To obtain the damped vibration behavior of the
uniform homogeneous beam the damping coefficient C must be known. However, using
the results of present model, it is easy to measure the damping coefficient of the system
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experimentally by implementation of the techniques of single degree of freedom system.
Also, it is obvious from Eqn. (33) that the damping is only significant in the case of highly
damped system.

For the case of non-uniform beams, the proposed model can deal with any variations
in the beam cross section by identifying suitable values for n and α that approximate the
beam configurations. However, more frequent cases in real applications of beams made of
homogeneous material with uniform width and linearly variable depth (beams with linearly
tapered depth). In this case the beam depth is given by:

h(x) = h0 (1 + α x) . (45)

In this case (n = 1), the nonlinear frequency equation (39) is solved numerically to obtain
the roots ηr, and then the mode shapes and natural frequency are obtained.

The significant parameters of the non-uniform beam are the slenderness ratio λ and the
non-uniformity factor α. The slenderness ratio λ is defined as :

λ =
L

h0
. (46)

Figure (1) shows the first four mode shapes of a beam with linearly increasing depth (α = 0.2,
λ = 10). The amplitude of vibration decreases as x increases as the rigidity of the beam
increases.

Figure (2) depicts the effect of nonuniformity factor α on the vibration amplitude of the
mode shapes (λ = 10, r = 1, 2). It is found that as α increases, the vibration amplitude
decreases as the beam depth increases, i.e., the beam becomes more rigid.

Fig.1: Mode shapes for beam with linearly variable depth (α = 0.2, n = 1, λ = 10)

Fig.2: Effect of nonlinearity factor α on mode shapes (r = 1, 2, n = 1, λ = 10)
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The effect of α on the first four dimensionless natural frequencies ω∗ of the nonuniform
beam is shown in Figure (3). The dimensionless natural frequency ω∗ is defined as :

ω∗ =
ωr L2

ν h0
, ν =

√
E

�
(47)

where ν is the longitudinal wave velocity in the beam material, E is the modulus of elasticity
of the beam material and � is the volumetric density of the beam material.

Figure (4) shows the dimensionless fundamental natural frequency for a homogeneous
beam with linearly increasing depth for a very wide range of beam characteristics. However,
the fundamental natural frequency is important for design purposes. Using curve fitting
techniques, the fundamental natural frequency of any beam of that type can be calculated
(to accuracy of 0.1%) as :

ω∗
1 = 2.831529 + 0.004979 λ + 0.718315 α + 0.531724 λα . (47)

Fig.3: Variation of the First Four Eigen Values with α (n = 1, λ = 12)

Fig.4: Variation of fundamental natural frequency
with slenderness ratio λ (n = 1, r = 1)
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5. Conclusions

A simplified model predicting the vibration behavior of viscoelastic uniform and non-
uniform flexural beam is presented. Two distributions for beam characteristics are suggested,
the first is constant distribution to represent prismatic beam and the second as a power
function to represent the non-uniform beam. The dynamic equation of the beam is solved by
introducing new variables to transform the equation to the Bessel differential equations. The
obtained solutions are used to find the mode shapes and the natural frequencies. Charts that
depicts the variation of the natural frequencies and mode shapes of the first four frequencies
(ωr, r = 1, 2, 3, 4) of homogenous beam with constant width and linearly increasing depth
are given of a wide range of practical beam characteristics for design purposes. An accurate
expression to calculate the fundamental natural frequency of homogeneous beams of constant
width and linearly tapered depth is given. The fundamental natural frequency decreases as
the slenderness ratio λ increases and as the nonuniformity factor α decreases, i.e., as the
beam becomes more flexible.
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