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PASSIVE AND ACTIVE MEANS FOR SELF-EXCITED
VIBRATION SUPPRESSING: TWO-MASS MODEL

Aleš Tondl*

Dedicated to my dear friend Prof. Dr.-Ing.G.Benz on the occasion of his 80th birthday.

A model with two masses is considered where the upper mass is self-excited due to
the negative linear damping component and the lower mass represents the damped
foundation subsystem. The passive means represents the positive linear damping of
foundation subsystem and the active one the linear parametric excitation due to the
periodic changing of the foundation mounts stiffness. In the case when only passive
means are used the optimal tuning can be reached when stability limits for both
vibration modes merge together. The condition for such tuning of the system in
question is formulated. But when the stability condition is not met then this tuning
of the system is not suitable for using in addition the active means in the form of
parametric excitation.
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1. Introduction

Self-excited vibration represents an important phenomenon in physical and mechanical
systems. There exist different sources of self-excitation, which need different mathematical
models describing important properties of the self-excitation. In most cases the self- excited
vibration represents a danger for the save run of different systems and devices. Therefore,
it is necessary to use means for vibration suppressing or, at least, for reducing the vibration
intensity.

There exists a lot of literature dealing with the analysis of self-excited systems and the
basic theory can be found in any book on oscillatory systems. The attention is given, first
of all, to the explanation of the excitation mechanism and to mathematical models (see
e.g. [1], [2]). Less attention is given to different means for vibration suppressing. This is
dealt especially in book [3]. The active means using parametric excitation represents quite
a new approach (see [4] to [18]).

One important group of these suppressing means is represented by additional subsystems
(e.g. a tuned absorber or foundation mass) where the suppressing effect is due to the action
of damping (e.g. absorber mass or foundation mass motion). In this contribution the effect
of both suppression means – passive and active – is analyzed on a simple two-mass system.
The upper mass m1 mounted on a spring having stiffness k1 is self-excited and this basic
subsystem is attached to a foundation subsystem characterized by mass m2 and spring
having stiffness k2 (see Fig. 1). The deflections are y1, y2. The foundation mass motion is
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damped. The self-excitation is supposed of van der Pol type. For the case of parametric
excitation this is due to the stiffness variation k2 = k20 (1 + ε γ cosωt).

Note : The scheme in Fig. 1 does not mean that deflections have to be in vertical direc-
tions. In most real systems of high structures these are lateral horizontal deflections.

Fig.1: Schema of the system

2. Differential equations of motion

The system in question is governed by the following equations :

m1 ÿ1 + k1 (y1 − y2) + ε (−b + d y2
1) ẏ1 = 0 ,

m2 ÿ2 − k1 (y1 − y2) + k2 y2 + b0 ẏ2 = 0 .
(1)

Using the time transformation ω1 t = τ (ω1 =
√

k1/m) equations (1) get the form :

y′′
1 + y1 − y2 + ε(−β + δ y2

1) y′
1 = 0 ,

y′′
2 −M (y1 − y2) + q2 y2 + ε (κ y′

2 + γ y2 cos η τ) = 0
(2)

where

β =
b

m1 ω1
, δ =

d

m1 ω1
, η =

ω

ω1
, M =

m1

m2
, q2 =

k20

m2

k1

m1

, κ =
b0

m2 ω1
.

Equations (2) can be transformed into the quasi-normal form using transformation

y1 = x1 + x2 , y2 = a1 x1 + a2 x2 (3)

where
a1 =

M

q2 + M − Ω2
1

, a2 =
M

q2 + M − Ω2
2

,

(Ω2)1,2 =
1
2

[
1 + q2 + M ±

√
(1 + q2 + M)2 − 4 q2

]
.

Note : It can be proved that (see [19]) the following relations are valid :

a1 > 0 , a2 < 0 , a1 a2 = −M . (4)

In this way equations (2) get the form :

x′′
1 + Ω2

1 x1 +
ε

a1 − a2
(−a2 F1 + F2) = 0 ,

x′′
2 + Ω2 x2 +

ε

a1 − a2
(a1 F1 − F2) = 0

(5)
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where
F1 =

[−β + δ (x1 + x2)2
]
(x′

1 + x′
2) ,

F2 = q2 (a1 x1 + a2 x2) cos η τ + κ (a1 x′
1 + a2 x′

2) .

3. Passive suppression means

For this case it is considered that γ = 0. Seeking the single-frequency vibration the
harmonic balance method can be used to determine the approximate solution. The solution
with the first mode can be sought in the form :

x1 = X1 cosΩ τ , x2 = 0 , (X1 > 0) , (6)

the solution with the second mode in the form :

x1 = 0 , x2 = X2 cosΩ t , (X2 > 0) . (7)

Inserting these into equations (5) and comparing the coefficients at cosΩ t (considering above
mentioned assumption on the form of functions F1, F2) the following results are obtained
for the first and second mode vibrations :

Ω = Ω1 , Ω = Ω2 . (8)

When comparing the coefficients at sin Ωτ the following relations are obtained for the first
mode :

Ω
π

2π/Ω1∫
0

[−a2 F1 (−Ω1 X1 sin Ω1τ, X1 cosΩ1τ) +

+ F2 (−a1 X1 sin Ω1τ, a1 X1 cosΩ1τ)
]

sin Ω1τ dτ = 0 .

(9)

Similarly for the second mode we obtain:

Ω
π

2π/Ω2∫
0

[
a1 F1 (−Ω2 X2 sin Ω2τ, X2 cosΩ2τ)−

− F2 (−a2 X2 sin Ω2τ, a2 X2 cosΩ2τ)
]

sin Ω2τ dτ = 0 .

(10)

For the first mode vibration we obtain equation

a2

[
−Ω1 X1

(
−β +

1
4

δ X2
1

)]
− a1 κ X1 = 0 . (11)

Then the amplitude is given by equation :

X2
1 =

4
δ

(
β +

a1

a2
κ

)
. (12)

Considering that a1/a2 < 0 for the real value of X1 reads :

β > −a1

a2
κ . (13)
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Then relation
κ > −a2

a1
β (14)

is the condition for the full suppressing of the vibration with the first mode. Similarly
for X2 :

X2
2 =

4
δ

(
β +

a2

a1
κ

)
. (15)

The condition for the full suppression of the second mode vibration reads :

κ > −a1

a2
β . (16)

It is necessary mention that in the case of self-excitation due to the flow coefficient β depends
on the flow velocity, i.e. increasing with increasing with flow velocity. How the ratio −a1/a2

depends on tuning coefficient q for different mass ratio M shows the following table.

M = 0.1 M = 0.2 M = 0.5 M = 1 M = 2 M = 5
q = 0.4 7.322 3.782 1.611 0.852 0.450 0.190
q = 0.6 4.697 2.584 1.218 0.699 0.395 0.178
q = 0.8 2.226 1.429 0.820 0.533 0.332 0.163
q = 1 0.730 0.642 0.500 0.382 0.268 0.146
q = 1.2 0.213 0.264 0.287 0.262 0.210 0.128
q = 1.4 0.076 0.116 0.164 0.177 0.161 0.111
q = 1.6 0.034 0.057 0.096 0.118 0.122 0.095

Tab.1: The dependence of −a1/a2 on q for different values of mass ratio M

For −a1/a2 < 1 the stability limit β for the first vibration mode is lesser than for the
second mode. For −a1/a2 > 1 it is just a reverse case. The second case can be expected for
smaller mass ratio M . Some more information (diagrams and tables) on a1, a2, Ω1, Ω2 and
other functions see [19], Appendix I.

When the absolute values of a1/a2 and a2/a1 are different then also differ the conditions
for the existence of vibration with a certain mode. For the full suppression of self-excited
vibration both modes could be suppressed, i.e. the conditions for the not existence of vibra-
tion for both modes must be met. The stability boundaries for both vibration modes are
the same in the case when

a1

a2
=

a2

a1
. (17)

Using the relations for a1, a2 we obtain

a1

a2
=

q2 + M − 1 +
[
(1 + q2 + M)2 − 4 q2

]
q2 + M − 1− [(1 + q2 + M)2 − 4 q2]

. (18)

When
q2 + M = 1 (19)

the following equations are valid:
a1

a2
=

a2

a1
= −1 ,

Ω1 =
√

1−
√

1− q2 ,

Ω2 =
√

1 +
√

1− q2 .

(20)
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In the case when relation (19) is met then for the above-mentioned alternatives only a single
condition is necessary both vibration modes to be stable :

β < κ . (21)

Of course condition (21) cannot be realized for any system because the mass ratio M had
to be small.

4. Active means

The system in question is governed by differential equations having the nonlinear terms
only for expressing positive damping and the equilibrium position is given by the trivial
solution (ys = 0; s = 1, 2). When investigating the stability of the equilibrium position
given by the trivial solution of the governing differential equations the linear equations can
be considered. These read for our system :

x′′
s + Ω2

s xs +
ε

a1 − a2

2∑
k=1

(Θsk x′
k + Qsk xk sin ητ) = 0 . (22)

For Θkk > 0 the k-th vibration mode is stable, for Θss < 0 the s-th vibration mode unstable.
The conditions that trivial solution is stable at η = η0 = Ω2 − Ω1 read :

Θ11 + Θ22 > 0 , (23)
Q12 Q21

4 Ω1 Ω2
+ Θ11 Θ22 > 0 , (24)

Θ11 = a2 β + a1 κ , Θ22 = −a1 β − a2 κ , Q12 = a2 q2 , Q21 = −a1 q2 . (25)

Condition (23) reads that (a1 − a2)(κ− β) should be positive value, which is identical with
condition (21) considering that (a1− a2) is a positive value. From it follows that the tuning
of the system so that relation (17) is met is not convenient for the use of the additional
active suppression means using parametric excitation by variation of the foundation spring
stiffness. The necessary condition for the successful use of parametric excitation is: One
vibration mode must be stable for passive means.

5. Conclusion

In the case when only passive means are used the optimal tuning is for the case when
stability limits for both vibration modes merge together and so only one stability condition is
sufficient. However when this stability condition is not met then this tuning is not suitable
for using in addition the active means in the form of parametric excitation because the
necessary condition (23) would not be met. Two stability conditions must be met to stabilize
the equilibrium position at parametric excitation frequency equal to the difference of the
natural frequencies of the abbreviated system. The enough stability of one vibration mode
represents the necessary condition.

In this contribution the parametric excitation by spring stiffness variation is considered.
Similar effect would be possible to achieve by parametric excitation using periodic mass
variation, e.g. using a mechanism changing the corresponding reduced mass but this type of
parametric excitation would need a special analysis for the considered system.
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[13] Tondl A.: Three-mass self-excited systems with parametric excitation, Acta Technica ČSAV,
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