
Engineering MECHANICS, Vol. 15, 2008, No. 2, p. 139–150 139

KINODYNAMIC ROBOT MOTION PLANNING BASED
ON THE GENERALISED VORONOI DIAGRAM

Petr Švec*

Kinodynamic motion planning of an autonomous robot in an unknown or partially
known indoor or outdoor environment is a challenging task, especially when the gen-
erated path must maintain the largest distance from surrounding obstacles and the
robot’s kinodynamic properties, its localisation, and uncertainty of the environment
are also considered. A new motion planning technique, which is built on the gener-
alised Voronoi diagram, for a robot with kinematic or dynamic constraints is proposed.
The generalised Voronoi diagram serves this task effectively as it maintains the largest
(the safest) possible distance from surrounding obstacles. Moreover, a novel approx-
imation geometric algorithm, which embodies a trade-off between the efficiency of
computation, implementation difficulty, and robustness, for computing this diagram
is presented.

Key words : kinodynamic motion planning, generalised Voronoi diagram, Fortune’s
plane sweep algorithm, global motion planning, real-time motion plan-
ning

1. Introduction

Kinodynamic motion planning of an autonomous robot in an unknown or partially known
indoor or outdoor environment is a challenging task, especially when the robot must maintain
the safest distance from surrounding obstacles and its kinodynamic properties, localisation,
and uncertainty of the environment are also considered (see Figure 1). The solution of
the kinodynamic motion planning task involves the global and real-time motion planning

between two given positions. See [12] for an overview of the basic motion planning methods.

Fig.1: Kinodynamic motion planning of a car-like robot
based on the generalised Voronoi diagram

*P. Švec, Institute of Automation and Computer Science, Faculty of Mechanical Engineering, Brno Uni-
versity of Technology, Technická 2, 616 69 Brno, Czech Republic

140 Švec P.: Kinodynamic Robot Motion Planning Based on the Generalised Voronoi Diagram

The technique presented solves this task efficiently by means of the computational ge-
ometry [3]. The computational geometry emerged from the field of algorithms design and
analysis in the late 1970s. Its success of the problems studied, practical and efficient solu-
tions from the asymptotic time complexity point of view, and its huge range of application
domains laid grounds for its future expansion into robotics.

One of the most useful structure in the computational geometry for robotics is the Voronoi

diagram [3, 9] (see Figure 2). It has a lot of applications in various fields since it maintains the
largest distance from surrounding generators. This property can be employed as a base for
several motion planning tasks, where these generators are formed by obstacles. In addition
to this, the retraction property of the Voronoi diagram ensures that the robot is always
capable of transferring itself onto this diagram along a collisionless sight line, from which
follows, that the Voronoi diagram entirely captures the continuity of the whole space as
a topological graph [9]. The extension of this diagram for point, segment, or polygonal
generators is called the generalised Voronoi diagram [9].

The usability of this diagram for the kinodynamic motion planning task is conditioned
by an existence of efficient, robust, and practical algorithms for its computation. A novel
approximation algorithm is presented together with its asymptotic time complexity. The
added value of this algorithm lies in robustness and simplicity of its implementation and
high computational efficiency in comparison to algorithms of the same class. This algorithm
is further utilised in global or real-time motion planning methods, which exploit main prop-
erties of the Voronoi diagram. Furthermore, the generated path does not have to strictly
maintain the largest distance from surrounding obstacles thus a path relaxation technique
can be applied.

Fig.2: Voronoi diagram for point generators

2. Voronoi Diagram

The Voronoi diagram [9] (further VD, see Figure 2) represents a way of dividing a m-
dimensional continuous space into a set of regions, where all locations in this space are
associated with the closest isolated points (so-called generators).

A major reason for persisting success of Voronoi diagrams is that it can be generalised
in a diversity of ways including 3D and higher dimensional varieties. There are a lot of
variants (different types of generators and distance measures) of this diagram, which are
covered in [6, 9].

Given a finite set P = {p1, . . . , pn} ⊂ �
2, where 1 ≤ n < ∞, of n point generators in

the plane. Let xi and xj be location vectors of pi and pj. Then, xi �= xj for i �= j, i, j ∈ �n

Engineering MECHANICS 141

(�n is a set of native numbers with the size n). All sites in the space are assigned to
their nearest point generators from P with regard to the Euclidean distance. The result is
a transformation of �2 into a set of regions

V (pi) = {x| ‖ x− xi ‖≤‖ x− xj ‖ for ∀x ∈ �2, i, j ∈ �n; j �= i} (1)

associated with generator pi. The ordinary Voronoi diagram consists of regions VD(P) =
= {V (p1), . . . , V (pn)} generated by a set of point generators P and all points laying on this
diagram are ensured to have the largest possible distance from surrounding point generators.

Generalised Voronoi diagram

Given a set O = {o1, . . . , on} ⊆ �
2(1 ≤ n < ∞) of n generators in the plane, their

generalised Voronoi diagram [9] (further GVD) is a partition of the plane into regions, one
for each generator, such that the region of generator oi ∈ O contains all locations of the
plane that are closer to oi than to any other generator oj ∈ O. The generators in O can be
a set of points, segments, polygons, areas, polyhedrons, etc.

3. Generalised Voronoi Diagram Computation

Challenging implementation of the Fortune plane sweep algorithm (Fortune, 1986) and
other efficient methods for computing the GVD for segment generators leads further research
to approximation algorithms, that represent a trade-off between speed of computation and
implementation difficulty, and are easy made to be numerically robust. For most applications
(like the robot motion planning) the computation of an approximated Voronoi diagram
within a given precision is sufficient.

To evaluate an efficiency of an algorithm that carries out a computation over a set of
input data, a standard approach, that is not susceptible to implementation or hardware,
is needed. This approach evaluates the asymptotic behaviour of the time required by the
algorithm with respect to the size of input data [9].

By using efficient techniques and data structures, the time complexity of the Voronoi
diagram computation can equal to O(n log n). This is the case of the Fortune plane sweep

algorithm (see [3, 5, 9, 12]), which is based on the fundamental plane sweep technique of the
computational geometry.

The main idea of this algorithm is a shift of a horizontal line l (called a sweep line) from
the top to the bottom part of a plane over all n generators p ∈ P , where P = {p1, . . . , pn} ⊆
⊆ �

2(1 ≤ n <∞), while constructing the VD(P). During this shift, a sequence of parabolic
arcs (so-called a beach line) is maintained consisting of points, which have the same distance
from the sweep line l and the generators of these parabolic arcs, as is illustrated in Figure 3.
During the computation, the breakpoints between these parabolic arcs in the beach line
trace the VD(P), and the part of the plane above l does not affect the computation in
comparison to the part of the plane below l.

Refer to [12] or [15] for a detailed description of this algorithm including description of
its implementation and handling degenerated cases.

The basic uniform approximation algorithm uniformly approximates segment or polyg-
onal generators by point generators first [9] and then applies the modified Fortune plane
sweep technique to compute the GVD over this set [12]. Due to the uniform approximation

142 Švec P.: Kinodynamic Robot Motion Planning Based on the Generalised Voronoi Diagram

Fig.3: Beach line – a sequence of parabolic arcs

nature, this algorithm is very slow, thus a new approximation algorithm, which attempts to
put approximation points only to places where needed, was proposed.

3.1. Approximation Algorithm with Fast Preprocessing

There is presented a new approximation algorithm for constructing the generalised
Voronoi diagram for point, segment, or polygonal generators, which is a successor of the real-
time non-uniform approximation algorithm as introduced in [14]. This algorithm is based
on the Fortune plane sweep technique, which combines advantages of being optimal like
the divide-and-conquer algorithm but avoiding the difficult merge step, and being relatively
simple like the incremental algorithm, while representing a trade-off between a complexity
of implementation and a speed of computation [3, 9].

The main idea of this algorithm is uniform or non-uniform approximation of every seg-
ment generator or series of segment generators by sequences of point generators with higher
density in narrow corridors (see Figure 4 on the right). This approach attempts to ef-
ficiently detect edges of narrow corridors (segment generators), which are approximated
by more point generators than others, thereby the computation is faster in comparison to
uniform point distribution with the same precision for all generators.

Fig.4: Result of the computation of the basic uniform approximation algorithm (left)
and the result of the computation of the approximation algorithm with fast
preprocessing (right)

Algorithm Outline

The computation is divided into two stages, the first – segment or polygonal generators
fast preprocessing stage and the second – computing GVD using the Fortune plane sweep
algorithm stage itself, refer to [12].

Engineering MECHANICS 143

The preprocessing part includes a point approximation process, that is applied only when
two neighbouring generators are close enough. It is based on the plane sweep technique to
be able to detect the closest neighbouring segment generators in O(n log n) time complexity,
where n is a number of segment generators. Having applied the neighbouring detection
procedure, these segments are uniformly updated by new approximation point generators,
which is followed by computing the GVD.

Having constructed the GVD for approximation point generators made in the prepro-
cessing part, the redundant edges are deleted or not considered during further computation
on this structure, see [12] for details.

Data Structures

The preprocessing part of the algorithm uses the following data structures :

1. Priority queue Q represented by a heap sorting its content according to y coordinates of
input points [7].

2. Status structure T represented as AVL tree [3]. It serves for an efficient detection of
neighbouring horizontal segments in O(log n) time complexity. It stores only top end
points of segments detected on the plane sweep line (see Figure 5).

3. Visibility structure V serves for an efficient detection of neighbouring vertical segments
in O(log n) time complexity. This structure belongs to the category of dimensional range
searching data structures [3]. The input data is a set of segments S ← {s1, s2, . . . , sn} in
one dimensional space. A query asks for a segment containing a given point or returns
segments inside a one dimensional interval [s : s′]. The main operations are adding a new
segment and removing a set of segments within an interval.

The searching task can be implemented using a balanced binary search AVL tree for
efficiency. Each node in this tree stores a visibility segment for guiding the search. Each
visibility segment contains a pointer to the original segment from which was generated.

To find a segment containing a given point can be done as follows. Start in the root
node and return the segment of this node if this segment contains the point, otherwise
descend into its left or right child node. The decision which node to descend to depends
on x coordinates of its segment end points and x coordinate of the given point. Repeat
the whole process until a segment is found or return an empty set.

To find a set of visibility segments within an interval is more complex. Traversing of
the tree starts again in its root. While descending, x coordinates of both segment points
in a node are being compared to x coordinates of the left and right points of the given
input interval. It can result in six cases, refer to [12] for details.

Preprocessing Stage Outline

The algorithm starts by storing end points of all segment generators into the priority
queue Q, where these end points are represented as events. During the process, these events
are being dequeued from Q and handled according to their type.

If an event ep represents the top point of its parent segment generator, neighbouring
horizontal segment generators of this point are found in the status structure T (see Figure 5)
and their point resolution is changed.

To detect neighbouring horizontal segment generators using the status structure T , tra-
verse through this tree of top segment end points. The algorithm starts in the root node of T

144 Švec P.: Kinodynamic Robot Motion Planning Based on the Generalised Voronoi Diagram

and descends into its left or right child node according to the x coordinate of the event. Dur-
ing this descend, it maintains current left and right neighbouring segment generators. Once
a leaf node is detected, the latest detected left and right neighbouring segment generators
given by their end points are returned.

The point resolution of a given segment generator can be both, the uniform or the
non-uniform point distribution. In case of using the uniform point distribution, the distance
between points on a segment generator represents the value of resolution, and is given by
the precision approximation factor P .

The next step is inserting the top point of the segment generator into the status struc-
ture T . This is followed by changing of resolution of segment generators immediately above
currently processed segment generator. These segment generators are detected using the
visibility structure V as described earlier. During this process, a few visibility segments
disappear and maximum three new visibility segments in V are created.

If the event ep represents a bottom point of its parent segment generator, the top point
of this generator is removed from the status structure T . This is followed by the horizontal
resolution update procedure.

Theorem 1. The asymptotic time complexity of the preprocessing part of the approximation
algorithm with fast preprocessing is O(n log n) for n input segment generators (including
segments of polygonal generators).

Theorem 2. The asymptotic time complexity of the approximation algorithm with fast
preprocessing is O(n log n) for n input segment generators, where the resolution of appro-
ximation point generators on each segment generator is upper bounded by the precision
approximation factor P .

Refer to [12] for a formal description of the algorithm above and proofs of the theorems.

3.2. Analysis of Experiments

According to accomplished experiments [12], there is a clear evidence, that the approx-
imation algorithm with fast preprocessing is substantially faster than the basic uniform
approximation algorithm, especially for large and detailed environments. The main reason
for this is the amount of approximation point generators, which are put in a higher density
into problematic places like narrow corridors to achieve sufficient precision. Not only the
amount of approximation point generators is important but also their distribution. Based on
these experiments, the less uniform distribution, the better efficiency of the Fortune plane
sweep algorithm is. The reason for this is the amount of circle events being processed in the
Fortune plane sweep algorithm, refer to [12].

Fig.5: The status structure T

Engineering MECHANICS 145

Even though the environment is very dense, the speed of the preprocessing part of the
approximation algorithm with fast preprocessing is very high. Further, the amount of the
time spent in this preprocessing part is negligible as follows from experiments [12]. The
percentage from the whole time spent on computing of this part of the algorithm over
a small amount of generators is actually dropping to an insignificant part as the amount of
generators is raising.

In the case of the basic uniform approximation algorithm, the sufficient precision of ap-
proximation is not known in advance as in the case of the approximation algorithm with fast
preprocessing. This makes a substantial practical difference between these two algorithms
since the sufficient precision for the basic one must be determined in advance.

4. Motion Planning with Kinematic and Dynamic Constraints

The robot’s free configuration space Cfree [3] defines a range of possible positions, which
the robot can achieve in its environment. All these positions are defined by its controllability.
This controllability is given by the robot’s kinematic model, which is consequently given by
the robot’s underlying mechanism. This kinematic model, to some extent, limits the robot’s
ability to move in a certain way. The robot dynamics is related to the robot’s inertia and adds
another additional constraints on Cfree and trajectory due to mass and force considerations.

In robotics, when referring to the kinematic constraints, the term holonomic is used. By
definition, a holonomic robot is a robot, that does not have any nonholonomic kinematic
constraints [8] (for example, a wheel sliding constraint). Similarly, a nonholonomic robot is
defined as a robot, that has one or more nonholonomic kinematic constraints [2, 8, 11]. The
holonomic constraint reduces the size of Cfree (or workspace W in case when the robot is
represented by a point), whereas the non-holonomic constraint reduces the control space U

with respect to the current configuration.

4.1. Kinematic models

A mathematical description of the robot’s underlying mechanism can be described by its
kinematic model. There are different kinematic models for different types of robots. Two
kinematic models used in this work follow, other can be found in [1, 2, 4, 8, 11].

The kinematic model of a unicycle robot is defined using a set of differential equations,

ẋ = f1(x, y, θ, uυ, uω) , (2)

ẏ = f2(x, y, θ, uυ, uω) , (3)

θ̇ = f3(x, y, θ, uυ, uω) (4)

as

ẋ = uυ cos θ , (5)

ẏ = uυ sin θ , (6)

θ̇ = uω (7)

where x and y are the coordinates of the robot’s position, θ is its orientation, and uυ and uω

are the longitudinal and angular velocities, respectively. From the previous equations follow
that the unicycle robot is defined as omnidirectional because it can move in any direction.

146 Švec P.: Kinodynamic Robot Motion Planning Based on the Generalised Voronoi Diagram

By adding an actively controlled steering angle uδ, the car-like model (only Dubin’s
car [1] is considered) can be defined as,

ẋ = uυ cos θ , (8)

ẏ = uυ sin θ , (9)

θ̇ =
uυ

L
tan uδ (10)

where L is the length of the robot, x and y are the coordinates of the middle point on the
robot’s rear axle, uv ≥ 0 is the longitudinal velocity, and |uδ| ≤ uδmax is the steering angle.

The total number of control degrees of freedom for the car-like model (two control degrees
– actuation of the drive wheels and steering) is different in comparison to the number of its
total degrees of freedom – coordinates x, y, and orientation parameter θ. For the car-like
model, the first-order derivatives depend on each other, which means that the following
nonholonomic constraint exists:

g(ẋ, ẏ, θ̇) = 0 . (11)

However, there is no constraint in the form of

f(x, y, θ) = 0 , (12)

which implies, that the car-like model is only governed by the nonholonomic constraint.

4.2. Dynamic models

By adding two integrators in front of action variables uυ and uω in the unicycle kinematic
model, a dynamic version of this model follows [8],

ẋ = s cos θ , (13)

ẏ = s sin θ , (14)

θ̇ = ω , (15)

ṡ = ua , (16)

ω̇ = uα (17)

where s and ω are new phase variables. The speed s is obtained by integration of acceleration
ua and the angular velocity ω is obtained by integration of angular acceleration uα. Now
the speed s and the unicycle orientation θ are continuous functions of time.

Similarly for the car-like model, a dynamic version follows,

ẋ = s cos θ , (18)

ẏ = s sin θ , (19)

θ̇ =
s

L
tan δ , (20)

ṡ = ua , (21)

δ̇ = ω , (22)

ω̇ = uα (23)

where s, δ, and ω are new phase variables. The speed s is obtained by integration of the
acceleration ua, the steering angle δ is obtained by integration of the steering velocity ω,

Engineering MECHANICS 147

which is given by integration of the steering acceleration uα. Now the speed s is a continuous
function of time and the steering angle δ is a C1 smooth function of time.

4.3. Path following

A robot must be able to move correctly between two configurations on the constructed
path. The nonholonomic constraint imposes that the curvature of a resulting path should
have a maximum limit. For a robot in order to stay on the trajectory, it must exert effort
to overcome the centrifugal acceleration, therefore a circular arc on the path should have
a minimum curvature radius. To get a feasible version of this path under kinematic and
dynamic constraints imposed by the robot, these straight angles should be approximated by
circular arcs.

The task of the planner is to compute a trajectory through a state space (a configuration
space or a phase space of this configuration space, see [8]) that connects initial and goal
states while satisfying differential constraints. Let U be an action space, which is a bounded
subset of �m. The planner computes an action trajectory ũ defined as a function ũ : t→ u,
where the time t = 〈0,∞) and the control action u ∈ U .

Fig.6: Path constructed by the kinematic controller
of a robotic car (light gray path on the left)

The planner has to consider the robot’s kinematic or dynamic constraints by either
postprocessing the path (in the global motion planning) or directly including the kinematic
and dynamic models into the path computation (in the real-time motion planning).

Global motion planning

In the global motion planning task, the GVD is used as a roadmap (see [12, 13]) in the
workspace for a robot to be able to find a path between two given locations while preserving
the largest (the safest) distance from surrounding obstacles. In this task, the postprocessing
variant involves a decision whether the type of the path is suitable for the robot (due to
its size or velocity), and if not, it attempts to find an another path and creates a new
kinodynamic trajectory going through all key vertices on this path.

Real-time motion planning

In the real-time motion planning task, the robot must be able to autonomously detect
surrounding obstacles, represent the raw sensor data as high-level features (segments), com-
pute a local generalised Voronoi diagram, and proceed with a series of local motion planning

148 Švec P.: Kinodynamic Robot Motion Planning Based on the Generalised Voronoi Diagram

tasks to achieve the final position by having only a direction to it or by having only its local
referenced coordinates. This motion planning task is based on a sequence of local GVDs
(see [12]), however, the robot’s path-planning task is reduced to setting intermediate vertices
(subgoals) lying on requested path and the local trajectories between these vertices are cre-
ated according to the kinodynamic model. Clearly, the controller is able to adapt the path
if dynamic changes of the environment occurs (it belongs to the feedback control category)
and it can react to moving obstacles by recomputing a part of the GVD (or constructing
a new local GVD).

The computation of a new global or local trajectory based on the kinodynamic model is
handled by the task controller. The task controller generates a final smooth path based on
spline curves (for examples cubic splines). The objective of the kinematic controller is to
follow the path made up of a sequence of key vertices and segments.

An example of an applied car-like kinematic model on a generated global path laying on
the generalised Voronoi diagram is shown in Figure 1. In this example, the key points on the
found path during the computation are determined first, and then the path between these key
points is interpolated with respect to a chosen kinematic model. The differential constraints
are ignored in the planning process (construction of the GVD) first to be appropriately
handled later on. This corresponds to executing the computed path as closely as possible
using control techniques.

An example of an applied car-like kinodynamic model in the real-time motion planning
is shown in Figure 6. In this example, differential constraints are considered directly in the
planning process, which conforms to the natural motions of a mechanical system. Similarly,
see Figure 7 for an omnidirectional robot moving in an office-like environment.

The change in the nonholonomic robot’s orientation is coupled with the motion of the
robot’s origin that is why there is no need for planning of the robot’s angular motion. Yet the
change in the orientation of a holonomic robot is independent of the motion of the robot’s
origin. This orientation can be kept fixed or linearly interpolated, where the rotation angle θ

is divided into n equal intervals and the equivalent rotation angle is

θi = i
θ

n
, i = 1, 2, . . . , n (24)

where i is a time interval [10] (especially in cases when the orientations of the initial and
final configurations are different).

Fig.7: Real-time motion planning for a robot in an office-like environment

Engineering MECHANICS 149

Even an omnidirectional robot can demand a smoothing postprocessing step not only in
case of a path based on the global GVD (see Figure 7). This path has strictly the largest
distance from surrounding obstacles. This property is not necessary for all parts of the path
and can be easily relaxed (see Figure 8).

The corridor made along the path consists of maximal clearance circles of Voronoi ver-
tices. This corridor can be used for constructing an arbitrary path, which suits a particular
application regardless of the shape of the original path. Figure 8 shows this situation, where
the original path strictly lays onto the generalised Voronoi diagram while the other one rep-
resents a path, which is short enough and still maintains some amount of clearance between
the robot and obstacles. This path can be computed in O(n) time complexity, where n is
a number of path vertices.

Fig.8: Corridor which is encoded into the path during the computation can be used
to create different types of paths for different applications later on. There is
shown a path strictly laying onto the generalised Voronoi diagram and the
other one that is computed to be used in a relevant application

5. Conclusions

Considering kinodynamic properties of a nonholonomic robot is an inevitable part of the
design of motion planning methods. In this work, the tasks solved include kinodynamic
constraints in both the real-time (single-query) and global motion planning (multi-query)
methods.

The main task of the kinodynamic robot motion planning is a collisionless transfer of
a nonholonomic robot amid point, segment, or polygonal obstacles from an initial position to
a final one, while satisfying the robot’s kinematic and dynamic constraints. It is obvious that
the rigidity of the generalised Voronoi diagram to maintain the largest or the safest distance
from surrounding obstacles can be relaxed to accommodate the practicality of various motion
planning tasks.

A novel approximation algorithm for constructing the generalised Voronoi diagram has
been proposed. The Voronoi diagram is one of the most important structures in the com-
putational geometry and is made by a topological graph, which has two main important
properties of having the largest distance from surrounding generators (or obstacles) and an
ability to represent the continuity of the whole space. These two properties directly satisfy
a robot motion planning task, where the problem of finding the safest path amid obstacles
is reduced to a problem of finding a path in a topological graph made by the generalised
Voronoi diagram.

150 Švec P.: Kinodynamic Robot Motion Planning Based on the Generalised Voronoi Diagram

The new algorithm – the approximation algorithm with fast preprocessing is based on the
Fortune plane sweep technique and attempts to detect narrow corridors in an environment
that are consequently sampled with a higher density of approximation point generators.
From this follows that the speed of computation of this algorithm is faster in comparison
to the speed of computation of the basic uniform algorithm, which uses a uniform point
approximation on every segment generator. The result of the approximation is that the
parabolic arcs of the generalised Voronoi diagram (its edges) are substituted by sequences
of straight segments.

The approximation algorithm with fast preprocessing directly falls into the family of
geometric algorithms and it represents a trade-off between the speed of computation, ro-
bustness, and implementation difficulty while preserving the sufficient precision for most
applications. The time complexity of this algorithm is O(n log n) for n input segment gen-
erators (or segments of polygonal generators) provided that the resolution of approximation
point generators on every segment is upper bounded. This theorem was proved theoretically
and in a suite of experiments [12].

References
[1] Anisi D.A.: Optimal Motion Control of a Ground Vehicle, Tech. rep., Swedish Defence Research

Agency, System Technology Division, 2003, Stockholm.
[2] Braun T.: Embedded Robotics, Mobile Robot Design and Applications with Embedded Sys-

tems, Springer-Verlag, 2006, New York
[3] De Berg M., Van Kreveld M., Overmars M., Schwarzkopf O.: Computational Geometryš,:

Algorithms and Applications, Springer-Verlag, 2000, Utrecht, Netherlands
[4] Egerstedt M.: Motion Planning and Control of Mobile Robots, PhD thesis, Department of

Mathematics, Royal Institute of Technology, 2000, Stockholm
[5] Fortune S.: A Sweepline Algorithm for Voronoi Diagrams, In: Second Annual Symposium on

Computational Geometry, New York 1986, pp. 313–322
[6] Fortune S.: Voronoi Diagrams and Delaunay Triangulations, In: Computing in Euclidean

Geometry, Singapore 1995, vol. 4 of Lecture Notes Series on Computing, pp. 225–265
[7] Korsh J.F., Garrett L.J.: Data structures, algorithms, and program style using C, PWS Pub-

lishing Co., 1988, Boston, MA, USA
[8] Lavalle S.: Planning Algorithms, Cambridge University Press, 2006, Cambridge
[9] Okabe A., Boots B., Sugihara, K. Chiu S. N.: Spatial Tesselations : Concepts and Applications

of Voronoi Diagrams, John Wiley & Sons, 2000, Chichester
[10] Selig J.M.: Introductory Robotics, Prentice-Hall, 1992, Hertfordshire
[11] Siegwart R., Nourbakhsh I.R.: Introduction to Autonomous Mobile Robots, 2004, Bradford

Book
[12] Šeda M.: A Comparison of Roadmap and Cell Decomposition Methods in Robot Motion

Planning, WSEAS Transactions on Systems and Control, 2, 2, (2007), pp. 101–108

[13] Švec P.: Using Methods of Computational Geometry in Robotics, PhD thesis, Institute of
Automation and Computer Science, Faculty of Mechanical Engineering, Brno University of
Technology, 2007, Brno

[14] Švec P.: A Construction of the 2D Generalized Voronoi Diagram, Part I : An Approximation
Algorithm, In: Proceedings of the 12th International Conference on Soft Computing MENDEL
2006, Brno 2006, pp. 124–134

[15] Švec P.: A Construction of the 2D Generalized Voronoi Diagram, Part II : Some Issues of
Implementation of Fortunes Plane Sweep Algorithm, In: Proceedings of the 12th International
Conference on Soft Computing MENDEL 2006, Brno 2006, pp. 135–144

Received in editor’s office : December 27, 2007
Approved for publishing : February 13, 2008

