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ELLIPTICAL CONTACT ON ELASTIC
INCOMPRESSIBLE COATINGS

Miroslav Hlaváček*

The study addresses a contact problem of a thin elastic (isotropic, incompressible
and homogeneous) layer bonded to a rigid plane foundation and indented by a rigid
frictionless punch in the form of an elliptical paraboloid. Given the total load, ap-
proximate analytical results for the contact ellipse, penetration depth and contact
pressure distribution are presented.
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1. Introduction

Contact problems involving bodies which are covered with a coating whose elastic prop-
erties differ from those of the substrate are frequently encountered in industry. Protective
adhesive coatings are used in tribosystems, microelectronic industry, polygraphic, textile and
paper machinery, naval vessels and airplanes, etc. The coatings increase the wear resistance,
decrease the energy losses, suppress noise, quell vibrations and protect the components from
impact damage. Incompressible elastomers are successful partly because of their large strain
to fracture, resulting in the ability to absorb large amounts of impact energy in elastic de-
formation. They are reinforced by adhesion to the substrate. Good adhesion reduces the
strains in the coating and is essential for their optimal performance.

The mathematical problem of the contact of a rigid punch pressed against a compliant
layer bonded to a rigid half-space is of great practical interest. Cylindrical, spherical and
flat-ended indenters were discussed by the Russian writers Lebedev, Ufliand, Aleksandrov,
Vorovich et al. in the early 1960s. Axi-symmetrical contact problems for an elastic layer of
arbitrary thickness are studied in Aleksandrov and Pozharskii [1]. Meijers [2] obtained an
asymptotic solution to the problem of a rigid cylinder pressed on an isotropic elastic plane
layer of any thickness and Poisson’s ratio. Using Legendre polynomials, Jaffar [3] examined
the case of circular and flat-ended indenters. The method of matched asymptotic expansions
was used for the indentation by a rigid elliptical paraboloid of an elastic compressible layer
bonded to a rigid foundation by Argatov [4] who tackled also the case of a thin layer [5].
The solutions were obtained in an explicit form for the axi-symmetric problem.

Matthewson [6] published an interesting solution for the indentation by a rigid, axially
symmetric, frictionless punch of an elastic coating, bonded to a rigid half-space. The essence
of the method lies in the fact that a simple polynomial approximation across the layer
thickness for the displacement vector is assumed and an averaging technique through the
layer thickness is applied. Due to this approximation, most equations and conditions can be
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satisfied only averaged through the coating thickness. Matthewson obtained simple analytic
formulas for the contact pressure distribution and contact radius. Especially, in the case of
an incompressible compliant coating, these analytic results agreed surprisingly well, when
compared to numerical results of other authors.

In the current paper, a thin elastic isotropic incompressible layer bonded to a rigid foun-
dation is indented by a rigid frictionless punch in the form of an elliptical paraboloid. Simple
approximations for the contact ellipse, penetration depth and contact pressure distribution
are presented for a given total load. The above averaging method used by Matthewson [6]
for the axially symmetric case is applied. Any contact of two rigid highly congruent bod-
ies, both coated with thin deformable layers of the same thickness, can be replaced with
a contact of a coated rigid half space with a rigid uncoated indenter. This indenter can be
replaced by an elliptic paraboloid with the same main curvatures. The results obtained in
the current paper for an incompressible coating are more general compared to the axially
symmetric case studied by Matthewson [6]. In Par. 2 the mathematical model is presented,
Par. 3 shows results of the model in Figures and the conclusion is in Par. 4.

Fig.1: Indentation of an elastic isotropic incompressible coating by
a rigid frictionless ellipsoidal surface (elliptical paraboloid)

2. Mathematical model

2.1. Formulation of the problem

Cartesian coordinates x, y, z are introduced in an elastic plane layer of thickness h,
bonded to a rigid substrate at the plane z = 0 (Fig. 1). Material of the coating is isotropic,
homogeneous and incompressible. The layer is indented by a rigid frictionless ellipsoidal
surface, with its axis situated in z axis. The radii of the principal curvatures at the indenter
vertex are Rx, Ry, and xz, yz planes are the planes of symmetry of the contact. A constant
compressive force F is applied in z axis.

For a thin layer, the displacements ux, uy, uz in the contact region of the layer (referred
to the rigid substrate) are approximated as

ux(x, y, z) = αx(x, y) z + βx(x, y) z2 ,

uy(x, y, z) = αy(x, y) z + βy(x, y) z2 ,

uz(x, y, z) = γ(x, y) z .

(1)
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The form of (1) corresponds to that for the displacements in Matthewson [6]. Only the
Cartesian x and y coordinates are used instead of the polar coordinates, while the dependence
on z coordinate remains the same. Functions αx(x, y), αy(x, y), βx(x, y), βy(x, y) are to be
found and function γ(x, y) is determined except for a constant by the indenter profile. In
fact, setting z = h in (1)3 and approximating quadratically the surface of the ellipsoidal
indenter yields

γ(x, y) = 	 +
x2

2 h Rx
+

y2

2 h Ry
. (2)

	 is an unknown dimensionless constant, h 	 means the penetration depth. Note that (1)
meet the conditions ux = uy = 0 at the rigid interface z = 0. The Hooke law of an elastic
isotropic incompressible coating is of the form

σxx = −p + 2 μ εxx , σyy = −p + 2 μ εyy , σzz = −p + 2 μ εzz ,

σxy = 2 μ εxy , σxz = 2 μ εxz , σyz = 2 μ εyz .
(3)

Here, σij and εij = u(i,j) (i, j = x, y, z) are the stress tensor and small deformation tensor,
while μ and p(x, y, z) denote the shear modulus and the spherical part of the stress tensor,
respectively. It follows from (1)3 that εzz = γ(x, y).

The equilibrium equations and the incompressibility condition are σij,i = 0 and εii = 0,
respectively. A comma followed by a subscript denotes a partial differentiation and sum-
ming is taken over repeated pairs of subscripts i. Due to the simple approximation (1),
most equations and boundary conditions can be satisfied only averaged through the coating
thickness h.

Assume that the vertical projection of the contact edge is formed by an ellipse with the
semi-axes rx, ry in x and y direction, respectively, and, moreover, let rx, ry � h. Introduce
elliptical coordinates r, φ in xy plane : x = rx r cosφ, y = ry r sin φ. For the border ellipse
r = 1 and x = rx cosφ, y = ry sin φ. Denote

ry

rx
= δ . (4)

In what follows, the value of a function f(x, y) at point (x, y) is denoted by f and the average
of a function f(z) through h is denoted by f .

The contact is assumed frictionless, i.e. σxz(x, y, h) = σyz(x, y, h) = 0, and (1), (3) yield

αx + 2 βx h + γ,x h = 0 , αy + 2 βy h + γ,y h = 0 . (5)

The average incompressibility condition, εii = 0, gives, after eliminating βx and βy, by
means of (5),

h

3
(αx,x + αy,y) − h

6

(
1

Rx
+

1
Ry

)
+ γ = 0 . (6)

The equilibrium equations in x and y directions, averaged through h, give by means of (1), (3)
and (5)

1
2 μ

p,x =
h

3

(
αx,xx +

1
2

αx,yy +
1
2

αy,xy

)
− 1

2 h
αx ,

1
2 μ

p,y =
h

3

(
αy,yy +

1
2

αy,xx +
1
2

αx,yx

)
− 1

2 h
αy .

(7)
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Note that the averaging procedure through h makes the equilibrium equation in z direction
irrelevant.

2.2. Solution to the problem

Symmetry of the displacement (1) with respect to the planes x = 0 and y = 0 yields
the conditions αx(x, y) = −αx(−x, y) = αx(x,−y) and αy(x, y) = −αy(x,−y) = αy(−x, y).
Take αx, αy in the form of infinite polynoms in x, y. Then, αx can contain only odd powers
in x and even powers in y, while αy contains only odd powers in y and even powers in x.
Thus,

αx(x, y) = b1 x + b2 x3 + b3 x y2 + . . . ,

αy(x, y) = c1 y + c2 y3 + c3 x2 y + . . . ,
(8)

where b1, b2, b3, . . . , c1, c2, c3, . . . are unknown constants. Insert (8) into (6), valid for any
x, y, and use (2). It follows that

b1 + c1 − 1
2

(
1

Rx
+

1
Ry

)
+

3
h

	 = 0 ,

3 b2 + c3 +
3

2 h2 Rx
= 0 , 3 c2 + b3 +

3
2 h2 Ry

= 0
(9)

and higher order coefficients in (8) are zero. Insert (8) into (7) and integrate to obtain

b3 = c3 (10)

and p(x, y), by means of of (9)2,3, becomes

1
2 μ

p = p0 + p1 x2 + p2 y2 + p3 x2 y2 + p4 x4 + p5 y4 ,

p1 =
h

3
(3 b2 + b3) − b1

4 h
= − b1

4 h
− 1

2 h Rx
,

p2 =
h

3
(3 c2 + b3) − c1

4 h
= − c1

4 h
− 1

2 h Ry
,

p3 = − b3

4 h
, p4 = − b2

8 h
, p5 = − c2

8 h
.

(11)

The condition of zero averaged normal stress,

σzz = σzz(x, y) = −p + 2 μ γ = 0 ,

at the contact edge at x = rx cosφ and y = ry sin φ, valid for any φ, yields by means
of (2), (11)

p0 + p1 r2
x + p4 r4

x = 	 +
r2
x

2 h Rx
,

−p1 r2
x + p2 r2

y + p3 r2
x r2

y − 2 p4 r4
x = − r2

x

2 h Rx
+

r2
y

2 h Ry
,

−p3 r2
x r2

y + p4 r4
x + p5 r4

y = 0 .

(12)

(12)3 yields by means of (11)4–6 and (4)

b2 − 2 δ2 b3 + δ4 c2 = 0 ,
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which, together with (9)2–3, gives b2, b3, c2 in the form

b2 = − δ2

2 h2 D

(
δ2 + 6

Rx
− δ2

Ry

)
, b3 = − 3

2 h2 D

(
1

Rx
+

δ4

Ry

)
,

c2 =
1

2 h2 D

(
1

Rx
− 1 + 6 δ2

Ry

)
,

(13)

where
D = 1 + 6 δ2 + δ4 . (14)

(12)2 yields with the aid of (11)2−5 and (4)

b1 − δ2 c1 = r2
x (δ2 b3 − b2) − 4

Rx
+

4 δ2

Ry
,

which, together with (9)1, gives b1, c1 in the form

b1 =
1

1 + δ2

[
−3 δ2

h
	 +

r2
x δ2 d1

2 h2 D
+

δ2 − 8
2 Rx

+
9 δ2

2 Ry

]
,

c1 = − 1
1 + δ2

[
3
h

	 +
r2
x δ2 d1

2 h2 D
− 9

2 Rx
+

8 δ2 − 1
2 Ry

]
, d1 =

δ2 + 3
Rx

− δ2 (1 + 3 δ2)
Ry

.

(15)

Now, using (3)3, (11), (12)1, (13) and (15), the averaged total normal stress σzz in the
contact ellipse can be obtained for a thin layer as

1
μ

σzz =
3 r2

x δ2 	

2 h2 (1 + δ2)
(1 − r2) +

r4
x δ2 d1

4 h3 D
(r2 − r4) cos2 φ +

+
r4
x δ4

8 h3 D (1 + δ2)
[
2 d1 (1 − r2) − d2 (1 − r4)

]
,

d2 = (1 + δ2)
(

1
Rx

− 1 + 6 δ2

Ry

)
.

(16)

2.3. Parameters δ, �, rx

It remains to find unknown parameters δ, 	 and rx. Quotient δ = ry/rx defines the shape
of the contact. In his model of the indentation of a thin elastic incompressible layer by an
ellipsoidal punch, Barber [7] assumed that both the contact pressure and its gradient across
the contact boundary are zero there. This gives for the contact form the following variation
of δ with k = Ry/Rx

δ2 =
1
6

{
k − 1 +

[
(k − 1)2 + 36 k

]1
2
}

.

In the classical Hertzian solution for a layer of an infinite thickness, δ also depends only on
k, however, through elliptical integrals [8] and for 0.2 < k ≤ 1 this variation can be approxi-
mated as δ = k2/3. Argatov [5] investigated asymptotic expansions for the indentation of
a thin plane layer by a rigid elliptical paraboloid. The first approximation yields

δ = k
1
2 , (17)
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which corresponds to a plane section of the indenter parallel to the layer surface. The
Hertzian solution gives a higher (or lower) swelling of the coating for more (or less) distant
edge points, respectively, compared to the plane section. Barber’s model gives quite the
opposite. Thus, the Hertzian solution gives a thinner and the Barber solution a thicker
contact ellipse compared to that of a plane section of the indenter. In the present paper
relation (17) is accepted.

In order to determine the unknown parameters 	 and rx, special cases are considered
first, i.e. axial symmetry and plane strain.

2.4. Axial symmetry

Matthewson [6] considered an axi-symmetric case of the spherical indenter. In this case,
the problem formulated in the polar coordinates r, φ (x = ra r cosφ, y = ra r sin φ), with
a simple approximation for ur, uz analogical to (1), leads to ordinary differential equations
with one variable, r, and general solutions can be found both inside and outside the contact
region. The conditions at the contact edge ra (r = 1), i.e. the continuity conditions for εrr,
εzz (incompressibility also yields that for εφφ) and the total load condition

−F = r2
a

2π∫
0

1∫
0

σzz r dφdr (18)

yields an equation for ra as

25 h3 Ra F

π μ r6
a

= 1 +
24
η2
a

+
6 K1(ηa)

2 K1(ηa) + ηa K0(ηa)
, ηa =

(
2
3

)1
2 ra

h
. (19)

Here Ra is the indenter radius, and K0, K1 are the modified Bessel functions of zero and
first order, respectively. By replacing the varied radial coordinate r in the coefficients of
the differential equation for the radial displacement ur outside the contact by its fixed value
at the contact edge ra (see [9], equation (A2) for isotropy), the following equation for an
approximate value of ra was obtained in this modification of the Matthewson approach

25 h3 Ra F

π μ r6
a

= 1 +
6
ηa

+
26

3 η2
a

. (20)

No special functions are used in (20). ra in (20) is a good approximations of ra in (19) for
h � ra (see Fig. 3). The reason for it is the fact that stress and strain decay quickly near
ra with the increasing r > ra.

2.5. Plane strain case

In the case of plane strain (cylindrical indenter), the corresponding value of the contact
half-width, denoted as rp, takes the form [10]

3 · 5 h3 Rp Fp

2 μ r5
p

= 1 +
23 5
32 ηp

+
3 · 5
η2
p

, ηp =
(

2
3

)1
2 rp

h
. (21)

Here, Rp and Fp are the radius of the cylindrical indenter and the load per one meter of
the cylinder, respectively. (21) has been obtained using the Matthewson approach [6] as



Engineering MECHANICS 255

a special case in an analysis of the contact of two parallel circular coated cylinders [10], if
the radii tend to infinity, with the equivalent contact radius Rp kept constant.

2.6. General case

For a general ellipsoidal case, it is not possible to proceed exactly as Matthewson [6] did
in the axi-symmetric case in order to find the contact region. In fact, the system of partial
differential equations (6–7) for αx(x, y), αy(x, y), γ(x, y) should be also solved outside the
contact region, with boundary conditions at the contact boundary varying with φ. This
solution for an ellipsoidal indenter is not available. However, the total load condition,

−F = rx ry

2π∫
0

1∫
0

σzz r dφdr , (22)

can be used to find 	 as a function of rx, ry. By using (3)3 averaged through h, (2), (4),
(15)3 and (16), then, condition (22) yields 	 for a thin layer in the form

	 = −4 h2 F (r2
x + r2

y)
3 π μ r3

x r3
y

− 1
12 h

(
r2
x

Rx
+

r2
y

Ry

)
. (23)

Now, it remains to find δ and rx or ry . For the spherical indenter, some authors used the
condition of zero volume change of the material in the contact region [8], [11], [12]. For the
ellipsoidal case, this condition is

rx ry

2π∫
0

1∫
0

h γ r dφdr = 0 . (24)

In (24), the volume change of the layer outside the contact is not taken into account. (The
upper bound 1 is used for r in (24) instead of infinity). For the spherical and cylindrical
indenters, condition (24) is equivalent to the condition of zero gradient (normal to the
edge) of the contact pressure at the contact edge. Barber [7] also used this condition for
an ellipsoidal indenter. However, it has been shown [13] that for spherical and cylindrical
indenters the above conditions yield the contact width considerably different from the values
obtained numerically by Meijers [2], McCormick [14] and Jaffar [3]. See also Figs. 2–3.
The difference increases quickly with the decreasing contact width-to-layer thickness ratio.
Condition (24), with the use of (2), (4) and (23), gives a simple relation

24 h3 (Rx + Ry)F

π μ r3
x r3

y

= 1 . (25)

For the circular contact (rx = ry = ra, Rx = Ry = Ra), (25) takes the form of
25 h3 Ra F/(π μ r6

a) = 1, which differs from (19) and (20). Thus, for axial symmetry, condi-
tion (24) yields an equation for ra different from (19) or (20).

The following way is suggested in the general case. Instead of (25) write the equation
(symmetric in x and y)

24 h3 F (Rx + Ry)
π μ r3

x r3
y

= 1 + 3
(

1
ηx

+
1
ηy

)
+

25

3

(
1
η2

x

+
1
η2

y

)
, (26)
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where

ηx =
(

2
3

)1
2 rx

h
and ηy =

(
2
3

)1
2 ry

h
.

For k = 1 (spherical indenter) equation (26) takes the form of (20). Write (26) for the
limiting case realizing the line contact (cylindrical indenter). Let Ry = Rp be fixed. Consider
a series of Rx and that of F with Rx → ∞, F → ∞ such that (26) yields F/rx → Fp with
0 < Fp < ∞. The limit corresponds to plane strain in yz plane (cylindrical punch) with
a loading Fp in Newtons per meter. Now, k → 0, ηx → ∞, and due to (17), the series of ry

obtained from (26) tends to a fixed value rp with 0 < rp < ∞. (26) becomes in this limit

24 h3 Rp Fp

π μ r5
p

= 1 +
2
ηp

+
25

3 η2
p

. (27)

To sum up, with (4) and (17) taken into account, equations (26), (23) and (16) for
the contact semi-axis ry, the penetration depth h 	 and the contact pressure distribution
S(r, φ) = −σzz, respectively, can be written in the form

24 h3 Ry F k
1
2 (1 + k)

π μ r6
y

= 1 +
1
ηy

(
1 + k

1
2

)
+

25

3 η2
y

(1 + k) ,

−3 Ry h

r2
y

	 =
22 h3 Ry F k

1
2 (1 + k)

π μ r6
y

+
1
2
− 3 (1 + k)

η2
y

,

2 h3 Ry (1 + k)
μ r4

y

S(r, φ) = −3 h Ry

r2
y

	 (1 − r2) −

− 1
1 + 6 k + k2

[
(1 − k2) (r2 − r4) cos2 φ +

+
1
4

(1 + k) (1 + 5 k) (1 − r4) + k (1 − k) (1 − r2)
]

,

(28)

where k = Ry/Rx. Remind that r, φ are the elliptic coordinates, i.e. x = rx r cosφ,
y = ry r sin φ. Due to (17), radius rx is given as rx = ry k−1/2.

With the known contact pressure distribution, S(r, φ) = −σzz(r, φ), an analytic asym-
ptotic solution for the displacement vector, the stress and strain tensors in the coating inside
the contact region can be obtained, using a perturbation method [15] with a small parameter
ε � h/rx � 1. Introduce non-dimensional (primed) variables and functions

x = x′ rx , y = y′ ry , z = z′ h , S = S′ μ ,

ux = u′
x rx , uy = u′

y ry , uz = u′
z h , p = p′ μ

into the equations of equilibrium (with the use of Hooke’s law), the incompressible condition
and the boundary conditions ux = uy = uz = 0 at z = 0 and −S = −p + 2 μ εzz, εxz =
εyz = 0 at z = h. Assume that u′

x, u′
y, u′

z, p′ can be represented by asymptotic series in
terms of powers of ε and let rx, ry be of the same order of magnitude. Collect the terms
of the same power of ε. The system of the differential equations is replaced by a series of
simple differential systems thus obtained for the expansion coefficients that can be easily
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solved. The solution for the dimensional quantities ux, uy, uz, p to order ε2 becomes in the
end

ux =
h2

2 μ
S,x

(
z′2 − 2 z′

)
, uy =

h2

2 μ
S,y

(
z′2 − 2 z′

)
,

uz =
h2

2 μ
(S,xx + S,yy)

(
z′2 − z′3

3

)
, p = S +

h2

2
(S,xx + S,yy)

(
1 + 2 z′ − z′2

)
.

(29)

Note that uz in (29) is different from the expression in (1)3. The forms of (1) were just used
to obtain the contact pressure distribution S = −σzz . Then, this traction is applied to solve
asymptotically the boundary-value problem in this Paragraph for ux, uy, uz and p in one
thin layer. (29) can be used to obtain the stress and strain in the layer.

3. Results

Let rpH = [Rp Fp/(π μ)]1/2 denote the Herzian contact width of a rigid cylinder on an
incompressible layer of infinite thickness [8]. Fig. 2 shows a variation of rp/rpH with rpH/h

for the cylindrical indenter. The thick solid line represent the numerical asymptotic values
obtained by Meijers [2], valid for rpH/h > 2. The dashed line is calculated from (21), valid
for a thin layer and obtained in [10] by the method of Matthewson [6]. Both curves differ
less than 5% for rpH/h > 4, which justifies the Matthewson approach. The thin solid curve
calculated from (27) differs very little from the dashed line obtained using (21) for the whole
range of rpH/h. Good coincidence of the dashed, thin solid and thick solid lines obtained
for the cylindrical case corroborates the choice of (26) for general elliptical contacts.

Fig.2: Variation of rp/rpH with rpH/h for a cylindrical
indenter; rpH is the Hertzian contact width

Fig. 3 is an analogy to Fig. 2 for the spherical indenter. This time, raH = [3 Ra F/(24μ)]1/3

denotes the Hertzian contact radius for the spherical rigid indenter on an elastic incom-
pressible layer of infinite thickness [8]. The thick solid line gives the numerical results by
McCormick [14] and Jaffar [3] – see also Fig. 5 in Ref. [6]. The thin solid and dashed lines are
calculated from equations (20) and (19), respectively, and approximate well the numerical
results, which again justifies the Matthewson approach as well as its modification [9].
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Fig.3: Variation of ra/raH with raH/h for a spherical
indenter; raH is the Hertzian contact radius

Fig.4: Variation of max S/maxSH with ry/h for an ellipsoidal indenter with
k = Ry/Rx = 0.1, 0.3 and 1; max SH is the maximum Hertzian
contact pressure for the spherical indenter with radius Rx

The dash-dot lines calculated in Fig. 2 from (21) and in Fig. 3 from (20), but in both cases
with the second and third terms on the right-hand side left out, lie much apart from the
thick solid lines representing numerical asymptotic values by Meijers [2] and McCormick [14],
respectively. The dash-dot lines correspond to the condition of zero gradient of the con-
tact pressure across the contact edge (or, equivalently, to (24)), used by some other au-
thors [12], [11], [8], [7]. It is apparent in Figs. 2–3 that for axial symmetry and plane strain
the condition of zero gradient of the contact pressure across the contact edge does not give
good results. On the contrary, (26) yields for these two special cases much better results.

Fig. 4 shows the variation of the quotient of the maximum contact pressures max S to
max SH for k = 1, 0.5 and 0.1 as a function of ry/h. max S is calculated from (28) for a rigid
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ellipsoid with the curvatures Rx, Ry. max SH is the maximum Hertzian contact pressure
(for the layer of infinite thickness) for a rigid spherical indenter of radius Rx [8], i.e.

maxSH =
22

π

(
3 F μ2

2 R2
x

)1
3

.

The curves are independent of μ. The curve for k = 0.1 is compared to the numerical results
of McCormick [14] – for this curve see also [16] – and good agreement is obtained, which
again speaks in favor of (26) applied to an ellipsoidal punch.

Fig. 5 shows a variation of the contact pressure S(x, y) as calculated from (28). Here,
μ = 0.3MPa, h = 2 mm, Ry = 0.5m, k = Ry/Rx = 0.1 and F = 10N. Axial plane cross-
sections of S(x, y) are shown and indicate an elliptic-bell-shaped pressure distribution. The
gradient of S at the boarder ellipse in the normal direction takes a finite negative value.
Numerical results for the spherical indenter yield this gradient value infinite [3]. For a thin
layer, however, the above analytic and numeric forms of S for the spherical indenter are close
to each other, with the exception of a narrow boundary strip of a high numerical gradient
of S [13].

Fig.5: The contact pressure distribution S(x, y) for an ellipsoidal indenter with
μ = 0.3 MPa, h = 2mm, Ry = 0.5 m, k = Ry/Rx = 0.1 and F = 10 N

4. Conclusion

Equations (28) present an analytic approximation of the contact ellipse, penetration
depth and contact pressure distribution for an elastic isotropic incompressible coating
bonded to a rigid backing and indented by a rigid frictionless indenter in the form of an ellip-
soid (or an elliptical paraboloid). In accord with Argatov [5], the form of the contact ellipse
is given by the relation (ry/rx)2 = Ry/Rx. The contact radius ra and the contact width
rp for the spherical and cylindrical indenters, obtained from (28)1 respectively for k = 1
and k → 0, are good approximations of the numerical values by McCormick [14], Jaffar [3]
and Meijers [2]. The maximum contact pressure from (28) for the ellipsoidal indenter of
k = 1/10, normalized by that for infinite layer thickness (the Hertz solution), also agrees
well to the numerical values by McCormick [14] in this severe check. All this substantiates
the choice of equation (26) for the contact ellipse.
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It has been shown that the condition of zero change in volume of the material under the
indenter (or equivalently, the condition of zero gradient of the contact pressure across the
contact edge), as used by Johnson [8], Barber [7], Jaffar [11] and Ateshian et al. [12], does
not yield acceptable estimates for the contact surface (see the dash-dot lines in Figs. 2–3 for
the cylindrical and spherical indenter). The error increases with the decreasing quotient of
the Hertzian value of the contact surface to the layer thickness.

The results obtained can be used as simple approximate solutions to contacts of coated
rigid congruent bodies of any form, with measured main curvatures at the contact center.
If a more exact solution is looked for, the present solution can serve as a starting estimation
for a numerical solution (e.g., using FEM) to this difficult problem with the contact region
unknown in advance.

Nomenclature

F total load
Fp load per unit length of cylinder
h coating thickness
k Ry/Rx

max S maximum contact pressure for rigid ellipsoid
max SH 22 [3 F μ2/(2 R2

x)]1/3/π, maximum Hertzian contact pressure for rigid
sphere of radius Rx

p spherical part of stress tensor
r, φ elliptical coordinates
raH [3 Ra F/(24 μ)]1/3, Hertzian contact radius for rigid sphere of radius Ra

rpH [Rp Fp/(π μ)]1/2, Hertzian contact width for rigid cylinder of radius Rp

rx, ry , ra, rp semi-axes, radius and width of contact ellipse, circle and strip, respec-
tively

Rx, Ry, Ra, Rp main curvature radii of rigid ellipsoidal, spherical and cylindrical inden-
ters

S −σzz(r, φ), contact pressure for rigid ellipsoidal indenter
x, y, z Cartesian coordinates
αx, αy, βx, βy, γ functions of x, y defined in (1)
δ ry/rx

εij (i, j = x, y, z) strain tensor
σij (i, j = x, y, z) stress tensor
ηy (2/3)1/2ry/h; similarly for ηx, ηa, ηp using rx, ra, rp, respectively
μ shear modulus
	 penetration depth divided by h

f average of f through layer thickness h

f value of f at contact edge
f ′ dimensionless variable of f

subscripts:

a value for axial symmetry (for spherical indenter)
H Hertzian value (for layer of infinite thickness)
p value for plane strain (for cylindrical indenter)
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