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H-INFINITY CONTROLLER DESIGN FOR A DC MOTOR
MODEL WITH UNCERTAIN PARAMETERS

Lukáš Březina*, Tomáš Březina**

The proposed article deals with uncertain description of permanent-magnet DC motor
Maxon RE 35 via parametric uncertainty and H-infinity controller design. There
was analyzed influence of uncertainties of the particular motor parameters on the
model behavior. Consequently there was designed an H-infinity controller via Matlab
functions. The behavior of the obtained controller was analyzed on the step responses
and course tracking of the closed loop with the nominal system and the system with
perturbed parameters.
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1. Introduction

Models describing dynamics of systems typically contain some inaccuracies when com-
pared with the real device. This is mostly caused by simplifications of the model, neglecting
of some factors influencing the dynamics or general modeling inaccuracy. However this might
be a problem when designing a control of the system – the precise model is needed for the
proper design of a controller.

The approach dealing with this problem is based on modeling of the real system as
a set of linear time-invariant models built around a nominal one, i.e. the model is built as
uncertain within known boundaries. The benefit of such a representation of the model is
the possibility of designing a robust controller stabilizing a closed loop system even with
uncertainties. The ideal goal is to design a controller capable of stabilizing even the ‘the
worst case scenario’ representing the most degraded model. Such a controller is then able
to stabilize also the real system.

Fig.1: M−Δ configuration of a model with uncertainty
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** doc. RNDr. Ing. T. Březina, CSc., Institute of Automation and Computer Science, FME Brno UT, Tech-
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The typical representation of the model with uncertainty is called M−Δ, Fig. 1. The
M matrix represents the augmented system obtained from the nominal system and Δ ma-
trix represents variations of the system parameters. The Δ matrix is a diagonal matrix
Δ = diag{δ1, . . . , δm} in case of the parametric uncertainty. The augmented model M is
typically obtained by upper linear transformation [1].

The approach of the uncertainty modeling is widely used in many technical areas
(e.g. [2], [3]) where a robust control is needed or a model precise description is impossible.
The proposed article presents its application on specific Maxon RE 35 PMDC.

The proposed controller for the single PMDC motor is based on a simple state-space
model transformed to the uncertain form and on the H-infinity controller design techniques
in Matlab.

2. Standard representation of the unloaded PMDC motor

The unloaded PMDC motor model is based on well known description
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which may be in a state-space form presented as
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The meaning of particular terms is following : Km is the torque constant, J is the rotor
inertia, Kf is coefficient of viscous friction, i is the instantaneous value of the electrical
current, ω is the instantaneous angular velocity of the shaft, Kb is the voltage constant
(inverse speed constant), R is the terminal resistance, L is the terminal inductance and
finally u is the instantaneous value of a supply voltage.

The values of the terms are for the Maxon RE 35 (catalogue number 273754) following :
J = 7.2×10−6 kg m2, R = 2.07 Ω, L = 0.00062 H, Km = 0.052 N m A−1, Kb = 0.052 V s rad−1

and Kf = 0.000048 Nm s rad−1.

3. Model of the motor Maxon RE 35 with uncertain parameters

The goal of the uncertain model is to cover possible difference between the model and the
reality by defining of the uncertainty for selected parameters. The following PMDC motor
model with uncertain parameters is based on description (1) and principles of uncertain
modeling [4].
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For x1 = i, x2 = ω and by introducing the parametric uncertainty, the equations (1) may
be transformed into a form
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where L̄, R̄, K̄b, J̄ , K̄m, K̄f are nominal parameters and δL, δR, δKb, δJ, δKm, δKf are
uncertainties of the nominal parameters. The model with uncertainties is then described by
the following scheme, Fig. 2. Let’s note that the general nominal state-space model may be
described by matrices Ā, B̄, C̄ and D̄.

Fig.2: Scheme of the PMDC motor with uncertain parameters
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[
ẋ1
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The compact form corresponding with the M−Δ configuration is then for matrix M
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The matrix (5) may be transformed into a general form
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Figure 3 shows the Simulink scheme of the obtained uncertain model. The matrix M
may be presented in Matlab as M = ss(A, [B1 B2], [C1; C2], [D11 D12; D21 D22]).

Fig.3: Simulink scheme of the uncertain model of the Maxon RE 35 PMDC motor

4. Frequency characteristics of the uncertain model

The following figures (Fig. 4–9) present the impact of the uncertainty of the particular
parameters on the behavior of the model. The uncertainty was randomly changed between
−100 % and 100 % of the nominal value for the selected parameter. The model behavior is
presented on Bode diagrams for twenty random samples from the uncertainty range.
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Fig.4: Uncertainty in parameter R Fig.4: Uncertainty in parameter L

Fig.6: Uncertainty in parameter Km Fig.7: Uncertainty in parameter Kf

Fig.8: Uncertainty in parameter Kb Fig.9: Uncertainty in parameter J
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It is obvious that the least impact on the model behavior has the uncertainty of the
parameter Kf (Fig. 7). On the other hand uncertainty of the parameter Kb (Fig. 8) is
changing the model behavior dramatically even at very low frequencies. The uncertainties
in the rest of parameters brings higher changes to the model behavior of the model from
the frequencies about 20 rad/s, except the uncertainty of parameter L (Fig. 5) which starts
to influence the behavior approximately at 300 rad/s.

5. H-infinity controller design

The H-infinity controller design is in general based on minimization of H-infinity norm
[5] of the selected closed loop system described as

||Fl(M,K)∞ = sup
ω
σ̄(Fl(M,K)(jω))

where σ̄ is the singular value of the function Fl(M,K)(jω) and K is the controller.
The expression Fl(M,K) is called lower fractional transformation [1]. It is defined as
Fl(M,K)(jω) = M11 + M12 K(I −M22 K)−1M21. The obtaining of the controller is then
based on solution of Riccati equations [6], [7]. This is quite complicated thus some of avail-
able robust control design tools for the numerical solution is often used, e.g. Matlab ‘hinfsyn’
function.

It is suitable to transform the obtained uncertain model (5), (6) according to [8], [4] for
the controller design purposes as
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where x = [x1 x2]T, ẋ = [ẋ1 ẋ2]T, zA = zC = x, zB = zD = u, y = ω, u = u, dA = ΔΔA zA,
dB = ΔΔB zB, dC = ΔΔC zC, dD = ΔΔD zD and finaly −I ≤ ΔΔA,B,C,D ≤ I.

AΔ = Amax − Ā where Amax is the state-space matrix of the model with maximal
uncertainty in its parameters. BΔ, CΔ and DΔ are obtained similarly.

The transformed matrix M then contains information about the uncertainty. It was
contained only in the Δ matrix before the transformation. The transformed matrix M is
the input parameter for the Matlab functions (e.g. hinfsys) solving the Riccati equations in
order to design a robust controller K.



Engineering MECHANICS 277

6. Examples of the obtained robust controller behavior

The example shows the behavior of the theoretically designed controller K based on the
uncertain model with following experimental values of parameters δL = 0.02, δKb = 0.3,
δKf = 1. Let’s note that the controller is of the same order as the controlled system. The
control scheme is standard feedback control scheme.

The first example (Fig. 10) shows the step response of the closed loop with the nominal
system, i.e. without any uncertainty in parameters. The action time of the controller is in
this case approximately 0.042 s. Almost the same action time is then for the step response
of the uncertain system with uncertainty δL = 0.02, Fig. 11. It is then approximately 0.045 s
for the uncertainty δKf = 1; 0.062 s for the uncertainty in δKb = 0.3 and 0.064 s for the
combination of mentioned uncertainties, Fig. 11. Thus the action time of the controller gets
longer with the increasing amount of the uncertainty in the controlled system. The system
response is without any overshoot for all of these examples.

Fig.10: Step response of the nominal model Fig.11: Step responses of perturbed models

Fig.12: Comparison between desired and
obtained angular velocity course

Fig.13: Comparison between desired and obtain-
ed angular velocity course – detail
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Fig.14: The controller action

The following example (Fig. 12–13) simulates sharp increasing and decreasing of the
angular velocity in approximate range of ±470 rad/s (maximum for the given motor is
ca. 780 rad/s) with observed energy requirements (controller action), Fig. 14. The exam-
ple is performed for the uncertain model with combination of all of mentioned uncertainties.

The controller action moves between ±33 V which still satisfies the maximal motor supply
voltage 42 V. The tracking ability is given by the mentioned action time of the controller.

7. Conclusions

The article presents quite simple approach for the robust controller design for the PMDC
motor Maxon RE 35. The approach is based on uncertain model of the motor. Consequently
the H-infinity controller was designed via Matlab functions. The controller is of the second
order, thus quite simple. It was tested in a simulation and it was proved that the controller
is able to stabilize even the most degraded model within the given uncertainty range. Such
a controller should be theoretically able to stabilize also the real system with behavior
covered by the uncertainty.

The approach is quite simple and possibly applicable to other systems where it is impos-
sible to create precise model for the control design.
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