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CONTRIBUTION TO APPLICATION OF ‘PARAMETRIC
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This paper deals with the phenomenon of the parametric anti-resonance of autopara-
metric systems. It is shown that parametric anti-resonance (additional parametric
excitation fulfilling special conditions) can be used not only to suppress self-excited or
externally excited vibrations but can also be used to stabilize the equilibrium position
of the autoparametric system.
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1. Introduction

The different autoparametric systems are analysed in the book [1]. Parametric anti-
resonance is a phenomenon with a vibration suppression effect based on the parametric
excitation where the frequency is equal or close to either the difference or sum of eigenfre-
quencies of the primary system. The former can be realized by using periodic changes of
the spring element stiffness (see [2]–[9] and [11], [12]) and the latter appears in some systems
where angular displacements are among the coordinates (see [10]). Though the application
of this phenomenon was first analysed to suppress the self-excited vibrations, it was proven
that it can be used to suppress the parametric resonances, too (see [11]). This contribution
deals with a potential utilization of the phenomenon in autoparametric systems which are
characterized by a non-linear coupling between the primary and excited autoparametric sub-
systems and the excited sub-system is the vibration source of the primary sub-system (see
[1]). The aim of this study is to ascertain if the above mentioned phenomenon can be used
for a suppression, or at least, a partial decrease of vibrations of the primary sub-system. In
some cases, such a system can be used as a tuned mass damper, but in other cases vibrations
of this system are reversely spurious and they must be suppressed. We herein restrict to the
horizontal harmonic movement of the two-mass pendulum system (Fig. 1) no matter if it is
caused by the external, parametric of self-excited excitation.

2. Mathematical model of two-mass pendulum system

The designed system (Fig. 1) consists of two hanged massesM andm. The first pendulum
is coupled by one spring to the vertical axis and by the other spring to the other pendulum
with the mass m. The stiffness of the interconnection spring k2 is periodically changed.
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Gravitation is considered. The system is kinematically excited by the periodic function
z(t) = A cosωt that describes vibration of very small amplitude.

Fig.1: Schema of the two-mass system

The equations of motion are developed from the Lagrange equations of the second order.
The kinematic and potential energies are expressed as
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The periodically variable stiffness of the interconnection spring is expressed

k2 = k20 (1 + ε cos νt) . (2)

After substituting of (1) and (2) into the Lagrange equations we get
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The equation (3) can be transformed into the non-dimensional form after the substitution
of variables
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We get the final form of the equations by introducing the viscous damping
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For small vibrations of the masses M and m in the vicinity of the equilibrium position
ϕ = ψ = 0 and l = l0, eigenfrequencies Ω1, Ω2 are determined by the characteristic equation∣∣∣∣∣∣

−Ω2 + (1 + q21) + q220 −q220
−q

2
20

μ
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μ

∣∣∣∣∣∣ = 0 . (6)

Denoting the disturbing coordinates as u, v i.e.

ϕ = ϕ0 + u , ψ = ψ0 + v (7)

then for ϕ0 = ψ0 = 0 the equations of the disturbed motion get the form

u′′ + (1 + q21)u+ q220 (u − v) + U = 0 ,
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μ
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(8)

where U , V containing only small components have the form

U = κ1 u
′ + κ12 (u′ − v′) − A

l
[(η2 cos ητ)u + (η sin ητ)u′] + ε q220 cos ντ (u− v) ,

V = κ2 v
′ +

κ12

μ
(v′ − u′) − A

l
[(η2 cos ητ) v + (η sin ητ) v′] + ε

q220
μ

cos ντ (v − u) .
(9)

Using transformation to the quasi-normal form :

u = x1 + x2 ,

v = a1 x1 + a2 x2 ,
(10)

where
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μ
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μ
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j

, j = 1, 2 , a1 ≥ 0 , a2 ≤ 0 (11)

equations (8) get the form :
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where in U and V relations (9) are used. Now, using condition (6) in Appendix, the sufficient
stability condition can be formulated for the case η = 2 Ω1 :

P12 P21

Ω2
− Q2

11

Ω1
≥ 0 , (13)

where
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l
Ω2

1 (1 − a2) ,

P12 = −ε q220
(

1
μ
− a2

)
,
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(
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)
.

For small μ is P12 P21 a positive value and so the condition (13) can be fulfilled.

3. Results of the numerical simulation

The solution of the equations of motion (5) were ascertained by the Runge-Kutta method
of the fourth order. The following parameters of the system were chosen : μ = 0.2, q21 = 1,
q220 = 0.2, χ1 = χ2 = χ12 = 0.01, A/l = 0.05, ε = 0.5 . Then the left side of inequality (13)
acquires a positive value 0.0541 and therefore the stability condition is fulfilled.

Then, eigenfrequencies computed from the Eq. (6) are Ω1 = 1.28, Ω2 = 1.6 .

The excitation frequency η = 2 Ω1 [13] and a variable stiffness frequency, i.e. the so-called
frequency of additional parametric excitation ν = Ω2−Ω1 [2–5], were chosen for the analysis
of the vibration suppression.

Fig.2: The amplitude-frequency dependences of mass M
and m displacements under sweep excitation
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Fig.3: Time characteristics of mass M and m displacement under harmonic
excitation (η = 2.56) and zero additional excitation (ε = 0)

Fig.4: Time characteristics of mass M and m displacement under harmonic
excitation (η = 2.56) and non-zero additional excitation (ε = 0.5)
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The amplitude-frequency characteristics of movements of masses M and m under
a very small sweep excitation frequency rate (η̇ = 1 e−5) in the vicinity of the frequency
η = 2 Ω1 = 2.56 are depicted in the Fig. 2. It is obvious that a very fast increase of ampli-
tudes at the frequency 2.56 is what corresponds to the loss of stability assumption.

The time characteristics of displacements ϕ, ψ of masses M and m, respectively, at the
harmonic excitation η = 2.56 and the initial conditions ϕ = ϕ̇ = ψ = ψ̇ = 1 e−6, are shown
for the case of zero additional excitation (ε = 0) and non-zero additional excitation (ε = 0.5)
in figures 3 and 4, respectively.

4. Conclusion

This contribution dealt with a potential utilization of the parametric anti-resonance for
autoparametric systems. Though the analysis was restricted to the pendulum system which
consisted of two masses interconnected with the spring of periodically changing stiffness (the
change in frequency given by the difference between the system eigenfrequencies), results
confirmed a possibility of the movement stabilization in the equilibrium position. A future
analysis will target the autoparametric system with additional mass transmitting external
excitation into the system.

Appendix

Let us suppose that both parametric excitations (original and the additional) are har-
monic. Such a system after transformation into the quasi-normal form is governed by the
following equations :

ẍs = Ω2
s xs + ε

{
n∑

k=1

[Θsk ẋk + cosωtQsk xk + cos ηt Psk xk]

}
= 0 , (s = 1, . . . , n) , (A.1)

where ε is a small parameter, ω is the frequency of the acting original parametric excitation
and η is the frequency of the additional parametric excitation which should suppress the
parametric resonance of the original parametric excitation and Psk, Qsk are the coefficients.

Let us suppose that the aim of the additional parametric excitation is to suppress the
parametric resonance of the first kind and first order, e.g. at ω = 2 Ω1.

It is necessary to take into account the following facts :

1) Considering the case η t = 0 the resonance at ω = 2 Ω1 is the parametric resonance of
the first kind. The trivial solution is unstable, unless the following condition is met
(see [1]) : (

Q11

2 Ω1

)2

− Θ2
11 ≥ 0 . (A.2)

For positive damping is Θ11 positive and so the condition for suppression this para-
metric resonance reads :

Q11

2 Ω1
≤ Θ11 . (A.3)

2) Considering the case when cosωt = 0, cos ητ = cos |Ωk − Ω1|t, then the conditions to
eliminate the effect of the negative linear damping are (see [14]) :

Θ11 + Θkk ≥ 0 ,
P1k Pk1

4 Ω1 Ωk
+ Θ11 Θkk ≥ 0 . (A.4)
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For positive damping the first condition (4) is met and the second is decisive. We
can see that the first term in the second condition (4) can represent the additional
positive damping when P1k Pk1 is a positive value. For the positive linear damping
the conditions for avoiding the parametric resonance at ω = 2 Ω1 is :

P1k Pk1

4 Ω1 Ωk
−
(
Q11

2 Ω1

)2

+ Θ2
11 + Θ11 Θkk ≥ 0 . (A.5)

For positive damping the sufficient condition of the parametric resonance suppression
at ω = 2 Ω1 reads :

P1k Pk1

Ωk
− Q2

11

Ω1
≥ 0 . (A.6)
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