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LINEAR AERO-ELASTIC MODELS OF A PRISMATIC BEAM
IN A CROSS-FLOW USING DOUBLE

DEGREE OF FREEDOM SYSTEM

Jǐŕı Náprstek, Stanislav Posṕı̌sil*

Double degree of freedom (DDOF) linear systems are frequently used to model
the aero-elastic response of slender prismatic systems until the first critical state is
reached. Relevant mathematical models appearing in literature differ in principle by
way of composition of aero-elastic forces. This criterion enables to sort them roughly
in three groups : (i) neutral models – aero-elastic forces are introduced as suitable
constants independent from excitation frequency and time; (ii) flutter derivatives
– they respect the frequency dependence of aero-elastic forces; (iii) indicial functions
– they are defined as kernels of convolution integrals formulating aero-elastic forces
as functions of time. The paper tries to put all three groups together on one common
basis to demonstrate their linkage and to eliminate gaps in mathematical formulations
between them. This approach allows formulate more sophisticated models combin-
ing main aspects of all groups in question keeping the DDOF basis. These models
correspond by far better to results of wind tunnel and full scale measurements.

Keywords : flutter derivatives, indicial functions, non-symmetric linear systems, dy-
namic stability

1. Introduction

Slender prismatic structures exhibited to strong dynamic wind effects (bridge decks,
towers, chimneys, etc.) are frequently analyzed using a double degree of freedom (DDOF)
linear model working with heaving and torsional components of a cross-section response, see
e.g. [2]. This aero-elastic model is often adequate to study the system response until the
first critical state is reached. Relevant mathematical models appearing in literature differ
in principle by way of composition of aero-elastic forces. This criterion enables to sort them
roughly in three groups. The first group can be possibly called neutral models – aero-elastic
forces are introduced as suitable constants independent from excitation frequency and time.
The second one involves flutter derivatives – they respect the frequency dependence of aero-
elastic forces, see [3]. Finally the third is working with indicial functions – they are defined as
kernels of convolution integrals formulating aero-elastic forces as functions of time, see [4], [5].
Second and third groups have been developing separately from each other and seem to
be isolated until now. Moreover they mostly suffer from various gaps in mathematical
formulations and further treatment. The paper tries to put all three groups together on one
common basis and to demonstrate linkage of them. This approach allows formulate more
sophisticated models combining main aspects of all groups keeping the DDOF basis. These
models correspond by far better to results of wind channel and full scale measurements and
seem to be very promising for the future investigation and practical applications.
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For purposes of this study the bridge girder is considered as axially symmetric or almost
symmetric with possible response components in heave u (vertical direction) and pitch ϕ

(rotation around S point). An outline can be seen in Fig. 1.

In principle all types of above models have been investigating many years. Each of
them has its advantages and shortcomings. However most of them suffer very often from
mathematical gaps preventing their generalization and synthesis on formal basis in order to
identify some special phenomena remaining hidden when dealing with heuristic approaches
only. Let us characterize now briefly the groups of models mentioned above in forthcoming
parts.

2. Neutral models

Neutral models are relatively the most simple and enable to provide many results analy-
tically in a form of closed solution. These models have been extensively studied for instance
in [1].

Fig.1: Schematic DDOF model of a bridge symmetric
cross-section under wind loading

Although there exist many versions of a basic formulation, in principle the most general
model of neutral type can be expressed in the form :

ü+ bm · u̇− h q · ϕ̇+ ω2
u · u− p · ϕ = 0 ,

ϕ̈+ q · u̇+ bI · ϕ̇+ g p · u+ ω2
ϕ · ϕ = 0

(1)

where we have denoted : ω2
u, ω2

ϕ [s−2] – square of the total eigenfrequencies in relevant
components including stiffness and aero-elastic components; bm, bI [s−1] – total damping
parameters including internal structural damping and aero-elastic contribution; q [(ms)−1] or
p [m.s−2] – gyroscopic or non-conservative forces of aero-elastic origin respectively; g [m−2],
h [m2] – auxiliary constants serving for dimensional compatibility of the above equations
(they can be regarded as certain characteristics of the cross-section). Parameters q, p in
general don’t include any static components which follow from elastic properties of the
system itself, they consist only of aero-elastic terms vanishing for zero velocity of the air
stream. So for stream velocity V = 0, the system (1) degenerates in two independent
equations.

Application of the Laplace transform on infinite time interval suppresses any influence
of initial conditions supposing that the system response is fully stationary. This step is
analogous with the Fourier transform adopting an equivalence ω = −iλ. It enables to
express the system (1) in the frequency domain, which reads in the matrix form as follows :[

λ2 + λ bm + ω2
u −λh q − p

λq + g p λ2 + λ bI + ω2
ϕ

] [
U
Φ

]
=
[

0
0

]
. (2)



Engineering MECHANICS 371

The determinant of the system matrix of Eq. (2) is the characteristic equation of the
system (1) and represents the main tool for stability investigation. It reads :

D = λ4 + λ3 (bm + bI) + λ2 (ω2
u + ω2

ϕ + bm bI + h q2) +

+ λ
(
ω2

u bI + ω2
ϕ bm + (1 + g h) p q

)
+ ω2

u ω
2
ϕ + g p2 = 0

(3)

The resulting characteristic equation represents annuled polynomial of the fourth order
(n = 4) with roots λ1, λ2, λ3 and λ4. The trivial solution of system (1) is stable only
if a real part of all four roots is negative. In other words, stability limits are given by
conditions :

Re(λi) = 0 , i ∈ (1, . . . , 4) . (4)

Consequently, the trivial solution of system (1) is stable in a domain representing an inter-
section of sub-domains Re(λi) < 0, i ∈ (1, . . . , 4).

The system (1) and the characteristic equation (3) can provide a lot of information re-
garding motion stability, critical velocities Vcrit, system response on stability limits, etc.
Consequently, it enables to predict flutter/divergence onset velocity as well as to estimate
their shapes in a particular case. However aero-elastic coefficients in Eqs (1) are introduced
as constants corresponding to certain conditions ruling around the cross-section. Anyway,
these coefficients are functions of the stream velocity V and of the frequency ω which rep-
resents a frequency of the model vibration in components u, ϕ due to cross-flow. This
frequency is unknown a priori and should be looked up solving equation (3) as the frequency
of the post-critical response. Therefore some iterative process should follow balancing these
effects in order to harmonize velocity V with velocity Vcrit. It is obvious that the neutral
models considers the aero-elastic forces as parameters only despite being dependent from V .
Despite these shortcomings the applicability of neutral models is quite wide if the variabi-
lity of the aero-elastic terms is approximately linear. Otherwise one of more sophisticated
models should be used, as we will see in next two parts.

Strategy of the stability investigation can be based on Routh-Hurwitz inspection of
Eq. (3). The detailed analysis and relevant results can be found e.g. in [6], [7]. The most
important types of aero-elastic stability loss (flutter and divergence) and their possible in-
teractions are there given together with the conditions of their existence.

3. Models with flutter derivatives

Flutter derivatives have been introduced many years ago, see for instance [8] and more
recently [9]. Their various aspects have been investigated extensively for a long time in the
aircraft, civil and other branches of engineering. They have been introduced as functions
in the frequency domain related to a particular cross-section without any link with other
system parameters (inertia, elastic stiffness, internal damping). Nevertheless they can be
understood as a certain extension of the damping and stiffness matrices. Flutter derivatives
can be interpreted as amplitudes of the heaving forces Q or the pitching moments M which
are needed to reach a unit amplitude of one response component under harmonic external
kinematic excitation, while remaining components are kept zero in the same time (excitation
frequency ω, stream velocity in wind tunnel V ). Thus the flutter derivatives are the functions
of the excitation frequency and the stream velocity which are combined in an argument
κ = B ω/(2π V ). So the basic relations between kinematic and force components read :
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u̇ u ϕ̇ ϕ

Q : H1(κ) H4(κ) H2(κ) H3(κ)
M : A1(κ) A4(κ) A2(κ) A3(κ)

Q : A11(κ) A12(κ) A13(κ) A14(κ)
M : A21(κ) A22(κ) A23(κ) A24(κ)

;
κ =

B ω

2π · V ⇒

⇒ κ =
ω

η
, η =

2π · V
B

,
(5)

where following notation has been introduced : Hi(κ) or Ai(κ) – amplitudes of flutter deriva-
tives corresponding to heaving forces Q or pitching moments M due to individual sets of
unit kinematic harmonic excitations of a proper cross-section in an aerodynamic tunnel (no-
tation and indexing corresponds to literature referenced); Aij(κ) – alternative notification
of flutter derivatives assigned with respect to the table (5); κ – argument (‘dimensionless’
frequency) depending on excitation frequency ω and a stream velocity V ; B – geometric
characteristic of the cross-section [m].

Fig.2: Outline of flutter derivatives; rectangular cross-section, ratio 1:5;
position of A11–A24 pictures correspond with table in Eq. (5)

The definition itself of flutter derivatives apparently implicates that they can serve only
to develop a linear mathematical model as their application is based on the superposition
principle. Flutter derivatives can be incorporate into the governing equations of type (1)
only if these equations are expressed in the frequency domain. Hence system (1) should be
written in a form of the two-way Laplace transform (integration t ∈ (−∞,+∞)) to unify
the basis of both parts, for instance : U(λ) =

∫∞
−∞ u(t) exp(−λ t) ·dt. Transformation exists

if the system is stable and therefore influence of initial conditions disappear with increasing
time. It means, however, that only steady state problems with explicit frequency −iλ can
be investigated. Finally we write the complete system in the frequency domain, so that it
has a character of an algebraic (unknowns U , Φ) rather then differential system :

Q :

M :

⎡⎢⎢⎣
λ2 + λ bm,c (1 + κA11) + ω2

u,c (1 + κ2A12) ;
−λh qc (1 + κA13) − pc (1 + κ2A14)

λ qc (1 + κA21) + g pc (1 + κ2A22) ;
λ2 + λ bI,c (1 + κA23) + ω2

ϕ,c (1 + κ2A24)

⎤⎥⎥⎦ ·
⎡⎣U

Φ

⎤⎦ =

⎡⎣ 0

0

⎤⎦ , (6)

where subscript c means a parameter related to the structure only (static air pressure is
not included). The shape of flutter derivatives for the rectangular cross-section as they
are plotted in Fig. 2 is commonly accepted. Let us go briefly through individual graphs in
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this figure. It can be observed that functions Aij related with u̇, ϕ̇ are odd, while those
related to u, ϕ are even with respect to the vertical axis. Indeed this fact can be shown also
theoretically using Theodorsen functions, see [8]. Looking through Fig. 2, it is obvious that
the courses of individual Aij are not ‘dramatic’. Hence with respect to the interval length
needed on the 1/κ axis, only the first and the second terms of Taylor expansion seem to be
satisfactory to characterize Aij in equations (6). Thus for instance :

A11 ≈ a11
1
κ

+ b11
1
κ3

, A12 ≈ a12
1
κ2

+ b12
1
κ4

, etc. (7)

where aij and bij are relevant dimensionless coefficients of the Taylor expansion. Moreover,
function values of A12 and A22 are markedly small. Indeed, dealing with a symmetrical
cross-section and supposing perfectly uniform stream velocity in a wind tunnel, functions
A12 and A22 should vanish identically. Their non-zero values presented in Fig. 2 are most
probably the results of imperfections ruling in experiments. Despite this fact, these terms
have been included to keep theoretical consistency of relevant matrices (many papers omit
those and work with six derivatives only).

Coefficients (1 + aij) are ratios of parameters with/without influence of air surrounding
the cross-section in the still air. So for instance 1 + a11 = bm/bm,c or 1 + a12 = ω2

u/ω
2
u,c.

In normal models Eqs (1) are implicitly introduced parameters including the influence of
surrounding air, e.g. respecting dimensionless coefficients 1 + aij while coefficients bij are
put equal zero. It is apparent, see Fig. 2, that aij can be positive or negative. Therefore the
application of aij can result in an increase or a decrease of effective system parameters due
to the aero-elastic effects.

Coefficients bij quantify the influence of (V/λ)2 argument. Putting expressions (7)
into (6) and being aware that ω2 = −λ2, one obtains with respect to (5) :

Q :

M :

⎡⎢⎢⎢⎣
λ2 + λ bm (1 − η2

λ2 β11) + ω2
u (1 − η2

λ2 β12) ;
−λh q(1 − η2

λ2 β13) − p (1 − η2

λ2 β14)
λ q (1 − η2

λ2 β21) + g p (1 − η2

λ2 β22) ;
λ2 + λ bI (1 − η2

λ2 β23) + ω2
ϕ (1 − η2

λ2 β24)

⎤⎥⎥⎥⎦ ·
⎡⎣U

Φ

⎤⎦ =

⎡⎣ 0

0

⎤⎦ , (8)

where for instance bm = bm,c (1 + a11), β11 = b11/(1 + a11), etc.

In order to inspect the primary form of the differential system, let us make an inverse
transform of Eqs (8) back to the time domain. After tedious manipulation, the differential
system including the influence of the flutter derivatives can be written as follows :

ü+ bm

(
u̇− η2 β11

t∫
−∞

u(τ) dτ
)
− h q

(
ϕ̇− η2 β13

t∫
−∞

ϕ(τ) dτ
)

+

+ ω2
u

(
u− η2 β12

t∫
−∞

(t− τ)u(τ) dτ
)
− p

(
−η2 β14

t∫
−∞

(t− τ)ϕ(τ) dτ
)

= 0 ,

ϕ̈+ q

(
u̇− η2 β21

t∫
−∞

u(τ) dτ
)

+ bI

(
ϕ̇− η2 β23

t∫
−∞

ϕ(τ) dτ
)

+

+ g p

(
u̇− η2 β22

t∫
−∞

(t− τ)ϕ(τ) dτ
)

+ ω2
ϕ

(
ϕ− η2 β24

t∫
−∞

(t− τ)ϕ(τ) dτ
)

= 0

(9)
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Both of the systems (8), (9) can be immediately used for further investigation. The sys-
tem (9) is an expansion of (1). It demonstrates memory properties due to convolution
integrals. In principle the integrals could be avoided differentiating twice both equations
of the system. However resulting equations of the fourth order are less suitable for further
analysis than the form of Eqs (9). Especially stability of the numerical solution of Eqs (9)
is far better.

The main tool of dynamic stability analysis follows from the system (8) representing
a condition of its zero determinant. This condition determines an existence of non-trivial
unknowns U , Φ. The condition has a form of the characteristic equation of the eight degree
of the parameter λ :

λ4 ·
[
λ4 + λ3 (bI + bm) + λ2 (ω2

u + ω2
ϕ + bI bm + h q2) +

+ λ(bIω2
u + bmω

2
ϕ + (1 + hg)qp) + (ω2

uω
2
ϕ + gp2)

]
−

−λ2 η2 ·
[
λ3 (bI β23 + bm β11) +

+ λ2
(
ω2

u β12 + ω2
ϕ β24 + bm bI (β23 + β11) + h q2 (β13 + β21)

)
+

+ λ
(
bI ω

2
u (β23 + β12) + bm ω

2
ϕ (β24 + β11) +

+ q p
(
β14 + β21 + h g (β13 + β22)

))
+

+
(
ω2

u ω
2
ϕ (β12 + β24) + g p2 (β22 + β14)

)]
+

+ η4 ·
[
λ2 (bm bI β11 β23 + h q2 β21 β13) +

+ λ
(
bI ω

2
u β12 β23 + bm ω

2
ϕ β11 β24 + q p (β21 β14 + h g β22 β13)

)
+

+ (ω2
u ω

2
ϕ β12 β24 + g p2 β22 β14)

]
= 0 .

(10)

Equation (10) consists of three parts being formulated with respect to degrees of η2 or
degrees of stream velocity V 2. It represents a generalization of Eq. (3). The term in the first
brackets (zero degree of η2) corresponds with the left hand side of Eq. (3). The first part
interacts with the first two terms of the second part on the level of λ5 and λ4.

Assessing values of βij as they follow from the particular graphs in Fig. 2, we can adopt
approximately : β11 = β12 = β21 = β22 = 0. This assumption simplifies Eq. (10) significantly
reducing its degree in λ from eight to six :

λ2 ·
[
λ4 + λ3 (bI + bm) + λ2 (ω2

u + ω2
ϕ + bI bm+ h q2) +

+ λ
(
bI ω

2
u + bm ω

2
ϕ + (1 + h g) q p

)
+ (ω2

u ω
2
ϕ + g p2)

]
−

− η2 ·
[
λ3 · bI β23 + λ2 (ω2

ϕ β24 + bm bI β23 + h q2 β13) +

+ λ
(
bI ω

2
u β23 + bm ω

2
ϕ β24 + q p (β14 + h g β13)

)
+ (ω2

u ω
2
ϕ β24 + g p2 β14)

]
= 0 .

(11)

Although Eq. (11) is approximate only, it is obvious that higher degree of the stream velocity
influence on the stability diagram is focused on the rotating component and its velocity : ϕ,
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ϕ̇, while influence of heaving component and its velocity corresponds rather with the neutral
model in Eqs (1) except multiplicative constants αij modifying basic system parameters.

4. Models with indicial functions

Another way of modeling being built up in a time domain is based on a strategy of
indicial functions. They have been introduced many years ago in the subject area of a wing
aero-elasticity, see for instance [10], [11]. Applicability of this tool in a bluff bridge deck
aero-elasticity has been demonstrated in several papers, e.g. [12], [13].

Indicial function can be roughly interpreted as function representing a generalized force
at time t induced by a generalized unit displacement at time with the delay Δt = t− τ .
Consequently, the total force should be expressed in a form of a convolution integral. Ac-
cording to this definition the model is linear similarly like the previous one dealing with
flutter derivatives.

Let us recall the system Eq. (6) and try to perform the inverse Laplace transform sup-
posing the homogeneous initial conditions. At first a moderate modification respecting that
κ = −iλ/η should be done :[

λ2 + λ bm,c + ω2
u,c − λ2

(
i
bm,c

η
A11(λ) +

ω2
u,c

η2
A12(λ)

)]
· U(λ) +

+
[
−λh qc − pc + λ2

(
i
h qc
η

A13(λ) +
pc

η2
A14(λ)

)]
· Φ(λ) = 0 ,[

λ qc + g pc − λ2

(
i
qc
η
A21(λ) +

g pc

η2
A22(λ)

)]
· U(λ) +

+

[
λ2 + λ bI,c + ω2

ϕ,c − λ2

(
bI,c
η
A23(λ) +

ω2
ϕ,c

η2
A24(λ)

)]
· Φ(λ) = 0 .

(12)

With reference to properties of convolution integrals and their integral transform, we can
express en equivalent of the system (6) in the time domain :

ü(t) + bm,c u̇(t) + ω2
u,c u(t) −

t∫
−∞

[Ψ11(t− τ)] · ü(τ) · dτ −

− h qcϕ̇(t) − pc ϕ(t) +

t∫
−∞

[Ψ12(t− τ)] · ϕ̈(τ) · dτ = 0 ,

qc u̇(t) + g pc u(t) −
t∫

−∞
[Ψ21(t− τ)] · ü(τ) · dτ+

+ ϕ̈(t) + bI,c ϕ̇(t) + ω2
ϕ,c ϕ(t) −

t∫
−∞

[Ψ22(t− τ)] · ϕ̈(τ) · dτ = 0 .

(13)

where following denomination has been introduced :

Ψ11(t) = i
bm,c

η
A∗

11(t) +
ω2

u,c

η2
A∗

12(t) ,

Ψ21(t) = i
qc
η
A∗

21(t) +
g pc

η2
A∗

22(t) ,

Ψ12(t) = i
h qc
η

A∗
13(t) +

pc

η2
A∗

14(t) ,

Ψ22(t) = i
bI,c
η
A∗

23(t) +
ω2

ϕ,c

η2
A∗

24(t) .
(14)
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Symbols A∗
ij(t) in Eqs (14) mean Laplace originals corresponding with their transforms

Aij(λ). It should be stressed that the system (13) is valid only for steady state processes,
when the initial conditions regarding components u(t), ϕ(t) as well as functions A∗

ij(t) can
be considered vanishing or not influencing stationary part of processes under study.

Per partes operation applied on integrals leads due to zero initial conditions to modified
version of Eqs. (13) :

ü(t) + bm,c u̇(t) + ω2
u,c u(t) −

t∫
−∞

[Ψ̇11(t− τ)] · u̇(τ) · dτ −

− h qc ϕ̇(t) − pc ϕ(t) +

t∫
−∞

[Ψ̇12(t− τ)] · ϕ̇(τ) · dτ = 0 ,

qc u̇(t) + g pc u(t) −
t∫

−∞
[Ψ̇21(t− τ)] · u̇(τ) · dτ +

+ ϕ̈(t) + bI,c ϕ̇(t) + ω2
ϕ,c ϕ(t) −

t∫
−∞

[Ψ̇22(t− τ)] · ϕ̇(τ) · dτ = 0 .

(15)

With reference to the literature, functions Ψij(t), see Eqs (14) or Ψ̇ij(t) can be considered as
indicial functions. They are four independent complex functions in time domain representing
a counterpart of eight real flutter derivatives Aij(κ) outlined in the previous part, see table
in (5).

System (9) as well as system (13) or (15) includes integral terms of the convolution type.
Structure of the integrands in these systems implicates memory effects in the flow-structure
interaction. Memory effects observed originate from inertia effects of surrounding streaming
air, which react with a certain delay on a movement of the body. Nevertheless, the occur-
rence of the memory terms in the above integro-differential systems comes in principal from
experimental measurements. Indeed, their essentials are either in experimentally determined
flutter derivatives or in indicial functions.

Effects of aero-elastic interaction cannot be explicitly expressed in models we are dealing
with, unless continuous air streaming field is taken into account. Nevertheless such ap-
proaches are formulated as FEM models and intended for pure numerical analysis. The aim
of models discussed in this paper is different. They are focused on a qualitative analysis of
important aero-elastic effects in particular on an investigation of individual stability limit
shapes and their interaction considering a large variety of mechanical system and air stream
parameters.

Let us compare systems (9) and (13) or (15). System (9) is suitable for a numerical inte-
gration and verification of results carried out in the frequency domain. Basically it represents
an extension of the neutral model (1). When the flutter derivatives are known for a par-
ticular section, shape of respective functions, see Fig. 2, is usually simple. Therefore Taylor
coefficients aij , bij or βij can be easily evaluated and immediately used. Frequency interval
of the flutter derivatives examined in a wind tunnel is mostly rather limited and particular
function values cannot be considered as very exact. So a simple operation preceding the
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solution itself reveals to be more stable and transparent than other more sophisticated pro-
cedures. On the other hand thorough qualitative (analytical) investigation using system (9)
is not possible for obvious drawbacks in mathematics.

Regarding systems (13) or (15) indicial functions (14) could be evaluated using Laplace
transformation of Aij(κ). Nevertheless the integral transformation of Aij(κ) on an actual
level of knowledge would be unreliable and unstable. However, indicial functions can be
identified experimentally in the time domain on a quite a long interval. Then either of the
systems in question can be used without hesitation. Subsequent frequency analysis of results
obtained can be compared with those obtained using the direct frequency analysis based on
the flutter derivatives application.

5. Conclusions

Various types of double degree of freedom (DDOF) linear systems interacting with aero-
elastic forces have been investigated and compared. The DDOF system under study de-
scribes inherent dynamic features of a slender prismatic beam attacked by a cross wind
stream of a constant velocity (long bridge decks, guyed masts, towers, etc.). Relevant math-
ematical models of aero-elastic forces appearing in literature differ in principle by way of
composition of aero-elastic forces. From this point of view following groups have been in-
vestigated : (i) neutral models – aero-elastic forces are introduced as suitable constants
independent from excitation frequency and time; (ii) flutter derivatives – they respect the
frequency dependence of aero-elastic forces; (iii) indicial functions – they are defined as ker-
nels of convolution integrals formulating aero-elastic forces as functions of time. It succeeded
to put all three groups together on one common basis to demonstrate their linkage. The
platform of qualitative investigation of aero-elastic critical states in a frequency plain has
been significantly expanded with respect to the stream velocity. Memory effects ruling in
aero-elastic DDOF system have been substantiated and compared in frequency and time
domains. The approach presented allows formulate more flexible models combining main
aspects of all groups in question keeping the DDOF basis.
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