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NONLINEAR VIBRATION OF INITIALLY STRESSED
BEAMS WITH ELASTIC END RESTRAINTS

ON TWO-PARAMETER FOUNDATION

M. H. Taha*

An analytical solution for nonlinear vibration of an initially stressed beam with elastic
end restraints resting on two-parameter foundation is obtained. The mode functions
for linear vibration of a beam with elastic end restraints resting on a linear elastic
foundation are obtained first and used to solve the nonlinear vibration equation re-
calling elliptic integrals. The results obtained from the present solution are compared
against those obtained from finite element method and found in close agreement.
The effects of elastic supports stiffnesses at the beam ends, foundation stiffness, ini-
tial axial load and vibration amplitude on the natural frequency are studied.

Keywords : nonlinear beam vibration, elliptic integrals, two-parameter foundation,
mode functions and natural frequencies

1. Introduction

Many practical engineering applications are modeled as beams resting on elastic foun-
dations and need criteria to be rationally designed. Few analytical solutions limited to
special cases for vibrations of such models can be found in the literature due to the
complicated mathematical nature of the problem. Numerical methods such as finite ele-
ment method [1–2], transfer matrix method [3], differential quadrature element method
(DQEM) [4–6], perturbation techniques [7–8] are used to obtain the vibration behavior of
different types of linear or nonlinear beams resting on linear or nonlinear foundations.

Semi-analytical methods such as series solutions are suggested to obtain analytic ex-
pressions for natural frequencies and mode shapes of nonuniform beams resting on elastic
foundation [9, 10]. Taha M.H. and Abohadima S. [11] studied the vibration of nonuniform
shear beam resting on elastic foundation.

In the present work, the mode functions of linear vibration of axially loaded beam with
elastic end supports resting on two- parameter foundation are obtained and employed to
solve the nonlinear vibration equation using elliptic integrals. To verify the present solution,

Fig.1: Initially stressed beam with elastic end restraints on two-parameter foundation
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the obtained results are compared against those obtained from FEM and found in close
agreement. The effects of different parameters related to beam and foundation on the
natural frequency are studied.

2. Analysis

2.1. Nonlinear vibration equation

The nonlinear vibration equation of an initially stressed beam by an axial force P0 and
resting on two-parameter elastic foundation shown in Fig. 1, is given as :
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where E I is the flexural stiffness of the beam, L is the length of the beam, μ is the mass of
the beam per unit length, k1 and k2 are the linear and shear foundation stiffnesses per unit
length of the beam, E is the modulus of elasticity of the beam material, A is the area of
the beam cross section, Y (X, t) is the lateral displacement of the beam, X is the coordinate
along the beam and t is time.

Using dimensionless parameters x = X/L and y = Y/L, eqn. (1) may be rewritten as :
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The solution of nonlinear partial differential eqn. (2) is obtained by employing the linear
mode functions and integrating over the domain of the dimensionless spatial variable x to
separate the variation with respect to time. However, the solution of the linear version of
eqn. (2) depends on the end conditions.

2.2. Boundary conditions

The boundary conditions of elastic restraints control the lateral displacement and rotation
at x = 0 can be expressed as :
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, (3a)
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and at x = 1 are :
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where kT0 and kTL are the stiffnesses of elastic lateral supports at x = 0, 1 respectively and
kR0 and kRL are the stiffnesses of elastic rotational support at x = 0, 1 respectively.
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2.3. Solution of linear vibration equation

A linear version of eqn. (2) may be assumed as :
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Following the separation of variables analogy, the solution of eqn. (4) may be assumed as :

y(x, t) = y0 φ(x)ψ(t) , (5)

where y0 is the dimensionless vibration amplitude (obtained from initial conditions), φ(x)
is the linear mode function and ψ(t) is a function representing the variation of the lateral
displacement along the beam with time. Substituting eqn. (5) into eqn. (4), the partial
differential eqn. (4) is separated into the following two ordinary differential equations :
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where ω is the separation constant (which represents the natural frequency) and λf is called
the frequency parameter which is given as :
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The general solution of eqn. (6) is given as :

φ(x) = C1 cos(λf x) + C2 sin(λf x) + C3 cosh(λf x) + C4 sinh(λf x) (9)

and the solution of eqn. (7), assuming at t = 0, ψ = 1 and dψ/dt = 0 is given as :

ψ(t) = cos(ω t) . (10)

Substitution eqn. (9) into boundary conditions; eqns. (3), yields a system of homogeneous
algebraic equations in unknown constants Ci, i = 1, 2, 3, 4. However, the condition of
nontrivial solution for such a system leads to the frequency equation as :
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Solving the frequency equation (11) using any proper iterative technique one obtains the
frequency parameters λfm, m = 1, 2, . . . , hence the natural frequency ωm can be calculated
by means of eqn. (8).

The normalized mode function is obtained assuming C1 = 1 then, the values of the other
three constants can be obtained in terms of α1 and α2. The m-mode function is obtained
as :

φm(x) = sin(λfm x) + (α2 α0 − α1) cos(λfm x) −
− α0 sinh(λfm x) + (α2 − α1 α0) cosh(λfm x) ,

(18)

where α0 = A11/A12.

Using eqn. (18), then the general solution for eqn. (4) may be expressed as :

y(x, t) =
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(19)

where constants Cm and Dm can be obtained from initial conditions and orthogonality
properties of mode functions.

2.4. Solution of nonlinear vibration equation

The linear m-mode function which satisfies the end conditions is substituted in the non-
linear vibration equation (eqn. (20)) to obtain the solution of nonlinear case. The nonlinear
vibration is assumed as :

y(x, t) = y0 φm(λfm x)ψ(t) , (20)



Engineering MECHANICS 411

where y0 is the dimensionless vibration amplitude. Substitution of eqn. (20) into eqn. (2)
and integrating over the x-domain leads to :
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where ωm is the natural frequency of the linear m-mode. Integration eqn. (21) once with
respect to time, with the initial conditions at t = 0, ψ = 1 and dψ/dt = 0, one obtains :
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where c is the integration constant. Obtaining c and regrouping coefficients of terms in the
right hand side of eqn. (23), one obtains :
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Substituting ψ(t) = cos(ϕ), where ϕ = ϕ(t) into equation (23b), one gets :
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The integration in eqn. (25) is the elliptic integral of the first kind, the inversion of which
yields the Jacobi elliptic function cn[
m t, km].

Then, the variation in the lateral displacement of the beam at any location with time
can be expressed as :

ψm(t) = cn[
m t, km] . (26)

The period of the Jacobi elliptic function is defined by the complete elliptic integral :
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Then, the natural frequency for m-mode in nonlinear vibration is :

Ωm =
2π
Tm

. (28)

3. Numerical results

To verify the obtained solutions, values of the frequency parameter calculated using the
present solution are graphed against those obtained from FEM [1] for different values of load
ratio γ in Fig. 2. It is obvious that the obtained results are in close agreement with FEM
results. The load ratio γ is defined as :

γ =
P0

Pc
and (0 ≤ γ ≤ 1) , (29)

where Pc is the critical (buckling) load.

Fig.2: Present results against FEM results

The derived expressions are used to investigate the influence of different parameters on
the natural frequency of the beam-foundation system shown in Fig. 1. However, the natural
frequency of such a system increases as the overall stiffness of the system increases. The
overall stiffness of the beam-foundation system is the resultant of the flexural stiffness of
the beam, the stiffness of the foundations and the stiffness of elastic supports at ends. In
deformed configuration, the lateral component of the axial load P0 in case of compression is
in the opposite direction of the overall system stiffness lateral restoring force, while in the
same direction in the case of axial tension load. In other words, the axial load decreases
the overall stiffness of the beam-foundation system in case of compression and increases it
in case of tension. In the light of these facts, the behavior of the beam-foundation system
can be qualitatively expected.

The m-frequency parameter λfm for nonlinear case is defined as :

λ4
fm =

μL4 Ω2
m

E I
, (30)

where Ωm is the natural frequency of nonlinear vibration of the system calculated using
eqn. (28) and m = 1, 2, . . . is the mode number. The fundamental frequency parameter
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(m = 1) is defined as λf. The dimensionless load parameter and foundation stiffness param-
eters are introduced as :

P̄0 =
P0 L
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π2E I
, (31)
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2
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The usage of dimensionless parameters defined in eqn. (30), eqn. (31) and eqn. (32) with
respect to beam length and flexural stiffness separates the effects of geometric properties of
the beam on the frequency parameter.

The effect of lateral vibration amplitude on the fundamental frequency parameter λf

(simply called as the frequency parameter hereinafter) of the beam-foundation system for
different values of load parameter P̄0 and foundation parameters (k̄1 and k̄2) is shown in
Fig. 3. Fig. 3a represents the case of a beam with Pinned-Pinned (P-P) end conditions
and Fig. 3b represents the case of a beam with Clamped-Clamped (C-C) end conditions.

Fig.3: Influence of vibration amplitude y0 and load
parameter P̄0 on frequency parameter λf
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Actually, the lateral vibration of the beam causes stretching in the beam length which
produce axial tension load. As the amplitude of the lateral vibration increases, the tension
axial load resulting from stretching increases, leading to increase in the frequency parameter.

Fig.4: Influence of support rotational stiffness KRL and foundation parameters
(k̄1 and k̄2) on frequency parameter λf (KT0 = KTL = KR0 = 1E5,
P̄0 = 1 and y0 = 0.001)

Fig.5: Influence of support rotational stiffness KRL and load parameter P̄0 on
frequency parameter λf (KT0 = KTL = KR0 = 1E5 and y0 = 0.001)

Figure 4 shows the influence of elastic rotational stiffness parameter KRL at one end on
frequency parameter λf for different values of foundation parameters (k̄1 and k̄2) for beam
loaded by axial compression load P0 = E I (π2/L2). It is clear that the frequency parameter
increases as foundation parameters increase and as the rotational stiffness increases. The
effect of foundation stiffness parameters is more significant for small values of rotational
stiffness than for large values of rotational stiffness.

In Fig. 5, the effect of rotational stiffness parameter at one end on the frequency parameter
is depicted for different values of load parameter and foundation stiffnesses parameters. The
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frequency parameter increases as rotational stiffness increases, the foundation parameters
increase and as the load parameter decreases. The effects of both the foundation parameters
and the load parameter are more noticeable for flexible rotational restrains.

Fig.6: Influence of support rotational stiffness KRL and vibration amplitude y0

on frequency parameter λf. (KT0 = KTL = KR0 = 1E5 and k̄1 = k̄2 = 0)

Fig.7: Influence of support lateral stiffness KTL and vibration amplitude y0 on
frequency parameter λf (KT0 = KTL = KR0 = 1E10 and k̄1 = k̄2 = 0)

In Fig. 6, the effect of elastic rotational stiffness parameter at one end KRL on the fre-
quency parameter is shown for different values of load parameter and vibration amplitude.
However, the other three elastic end restraints are assumed very rigid. It is obvious that
the frequency parameter increases as the lateral vibration amplitude increases and as the
rotational stiffness increases. Figure 7 is similar to Fig. 6, but for lateral elastic restraint
parameter KTL. It is concluded that the increase in the restraint stiffness increases the
overall stiffness of the system and leads to increase in the frequency parameter. Also, Fig. 8
is another version of Fig. 4, but the rotational stiffness parameter KRL in Fig. 4 is replaced
by the lateral displacement stiffness parameter KTL and P̄0 = 0 in Fig. 8.
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Fig.8: Influence of support lateral stiffness KTL and foundation parameters
(k̄1 and k̄2) on frequency parameter λf (KT0 = KTL = KR0 = 1E10,
P̄0 = 0 and y0 = 0.001)

Fig.9: Influence of load parameter P̄0 and support rotation stiffness KRL on
frequency parameter λf (KT0 = KTL = KR0 = 1E5 and y0 = 0.001)

The influences of load parameter on the frequency parameter are presented in Figu-
res 9–11 for different values of elastic restraints stiffness at one end and foundation stiffness
parameters. It is obvious in all cases that as the load parameter increases, the frequency
parameter decreases. However, as the value of the compression axial load approaches a crit-
ical load Pcr for certain configuration, the beam-foundation system reaches aperiodic case
and approaches equilibrium position asymptotically. The graphs predict both the frequency
parameter and the critical load for wide range of beam-foundation system characteristics.

4. Conclusions

Analytical solution for the nonlinear vibration of an initially stressed beam with elastic
end restraints resting on a two-parameter elastic foundation is obtained.
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Fig.10: Influence of load parameter P̄0 and support rotation KRL on frequency
parameter λf (KT0 = KTL = 1E5, KR0 = 0 and y0 = 0.001)

Fig.11: Influence of load parameter P̄0 and support lateral stiffness KTL on
frequency parameter λf (KT0 = KTL = KR0 = 1E5 and y0 = 0.001)

The influences of both lateral translational and rotational elastic restraints at ends are
studied in the present analyses. It is found that the natural frequency of the beam-foundation
system increases as the overall stiffness of the system increases. The overall stiffness of the
beam-foundation system increases with the increase of the beam flexural stiffness, the end
restraints stiffness and the foundation stiffness. In case of compression axial load, as the
axial load increases, the natural frequency of the system decreases. Furthermore, as the
axial load approaches a critical (buckling) value, the system reaches aperiodic conditions
and approaches the equilibrium deformed configuration asymptotically. Also, the natural
frequency increases as the vibration amplitude increases due to stretching resulting in the
beam length, which induces axial tension load. All effects are more significant in flexible
configurations than for stiff configurations of the beam-foundation system.
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