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PROBABILISTIC EVALUATION OF CRACK BRIDGE
PERFORMANCE IN FIBER REINFORCED COMPOSITES

Miroslav Vořechovský*, Václav Sad́ılek*, Rostislav Rypl**

The pullout response of a short fiber embedded in matrix depends on both the bond
between the two materials and on the inclination angle and embedded length of the
fiber. Fibers placed and oriented randomly in 3D space bridge matrix cracks with
certain inclination angles and embedded lengths. With a pullout law available in ana-
lytical form, a statistical description of the force per fiber depending on crack opening
can be evaluated for a uniformly loaded crack bridge in a short fiber reinforced com-
posite by integrating the powers of all possible fiber responses multiplied by their
probabilities of occurrence. This information is utilized to probabilistically evaluate
the crack bridging force by computing the sum of a random number of random contri-
butions; the random number of contributions to be summed is the number of bridging
fibers, and the independent random contributions are the single fiber responses.

Keywords : crack bridge, short fiber reinforced composite, ECC and random sum of
random variables

1. Introduction

Short fiber reinforced composite (FRC) is a relatively new material that extends the
variety of applications for cementitious composites. At present, FRC is used e.g. for load-
bearing structural elements in combination with continuous reinforcement. A common re-
quirement placed on these composite materials is that in later loading stages they exhibit
a ductile response which announces the total failure of a structural element. The fibers
modify the macroscopic behavior of the composite and increase its compressive strength,
tensile strength, stiffness, fracture toughness, impact resistance, etc. This behavior can be
achieved by adding a certain proportion of short fibers to the matrix mixture, mostly in an
amount ranging between 0.5–3 vol. %. Experience has shown that such an amount of fibers
effectively bridges cracks in the matrix and forces it to develop fine crack patterns rather
than a few widely opened cracks. Therefore, a large amount of energy can be dissipated prior
to reaching the peak load. The reason is that the occurrence of macro cracks is postponed
until later loading stages and the response is ductile as the fibers need a high amount of
energy for debonding and pullout [6]. The most common materials used for short fibers are:
steel, polyvinyl alcohol (PVA), alkali-resistant glass (AR-glass), aramid, carbon and various
other materials.

In previous studies, homogenization approaches were developed [4, 5] after deriving the
distribution functions for random orientation and position, of fibers bridging a discrete
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planar crack. These approaches, however, do not take into account the variability of crack
bridge performance, which is caused by both the scatter in the response of a single fiber and
the scatter in the total number of bridging fibers. Furthermore, the statistical dependency
between the distribution of the position and the inclination angle of short fibers was omitted
in these works. The randomness of these quantities introduces variability to the crack bridge
response and has a significant influence on the reliability of short fiber composites.

In order to statistically evaluate the random force transmitted by fibers bridging a discrete
crack in a composite loaded in uniaxial tension, all sources of scatter have to be taken into
account. In the following, two groups of sources of scatter in the response are distinguished :
(i) the random response of a single fiber caused by the random inclination angle and random
fiber position with respect to the crack plane; (ii) the random number of fibers bridging the
crack plane. This is the focus of the present paper. The authors derive the statistical
moments of force carried by fibers in a crack based on : (a) natural assumptions regarding
the distribution of the random positions and orientations of fibers inside the volume of the
FRC specimen; (b) the available information about the shape of the composite specimen and
the shapes of the fibers and also the volume fraction of the fibers; and (c) the information
on the dependence of the pullout force of a single fiber on its position and inclination with
respect to the crack plane.

The assumptions in the present work are : (i) possible fiber collisions in the specimen
volume are ignored due to the small volume fraction of the fibers, and therefore the position
and inclination of the fibers are considered to be unaffected by other fibers; (ii) the fiber
orientation is statistically homogeneous within the specimen volume, i.e. it does not depend
on the flow direction of the casting process as described e.g. in [8] and [12]; (iii) local fiber
clusters, which can appear during the specimen’s production, are not taken into account.

The geometry of fibers (all having length �) in a three-dimensional composite specimen
(a solid rectangular block of volume LxLyLz) can be described by five variables (see Fig. 1a)
that uniquely define the fiber center coordinates x, y and z and orientations ϕx and ϕy

(i.e. the angles between the fiber longitudinal axis and x-axis and y-axis respectively; see
Fig. 1c). These five geometrical descriptors are treated as basic random variables [10, 11].

Fig.1: a) position of the coordinate system inside a specimen;
b) and c) fiber orientation and position

2. Statistics for the number of fibers intersecting a plane

The overall force transmitted in a discrete crack in FRC by fibers depends significantly
on the number of bridging fibers. This number, k, is a random variable. The statistical
distribution describing the number of fibers bridging a crack can be calculated as follows :
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The probability, p, of one fiber, randomly placed and oriented inside the specimen domain,
being intersected by a (planar) crack plane is evaluated. The total number of fibers, n,
inside the specimen and the probability p are used as entries for the Binomial distribution
that gives the random number k of intersected fibers.

The probability p of a fiber intersecting a plane is obtained as a portion of the total unit
probability of all possible fiber positions. This portion is calculated as an integral over all
possible configurations with a suitable indicator function that signals the presence of a fiber
within the intersecting plane. The derivation of the formulas for the probability p ∈ 〈0, 1〉
has been presented in [10, 11]. For example, in the simple case of fibers’ center positions
homogeneously distributed throughout the whole specimen volume, and with all possible
fiber orientations being equally probable, the probability of a fiber being intersected by a
crack plane placed in the center of a specimen of length L equals :

p (�, L) =
1
2

�

L
. (1)

The above-mentioned papers also consider the case when the fibers must be wholly inside
the specimen volume. This assumption modifies the joint distribution function of the five
basic random variables.

The total number of fibers inside the composite, n, can be calculated from the fiber
volume fraction vf, the volume of a single fiber Vf and the total specimen volume Vt:

vf =
n Vf

Vt
=

n Af �

Ac L
⇒ n = vf

Ac L

Af �
(2)

where Af is the cross-sectional area of a single fiber and Ac is the cross-sectional area of the
specimen, Ly × Lz.

The process of fibers being intersected by a plane in a specimen containing n fibers can
be modeled as n independent Bernoulli trials with one fiber, each trial having a probability
of success equal to p. The number of successes, k, follows the binomial distribution Bi(n, p).
Therefore, the probability mass function for the random number k reads :

pk =
(

n

k

)
pk (1 − p)(n−k) . (3)

The mean value and variance of the number of fibers intersecting a crack plane reads:

E[k] = μk = n p ,

D[k] = σ2
k = n p (1 − p) .

(4)

The binomial distribution can be approximated by the Poisson distribution with the parame-
ter λ = n p. Asymptotically, the distribution of k converges by means of the Moivre-Laplace
limit theorem to the Gaussian distribution with the mean and variance given by Eq. (4) as
the number of Bernoulli trials grows larger.

3. Random force of a fiber pulled out from a matrix

Assume a composite with a single fiber, randomly placed and oriented. This section shows
how to calculate the random force carried by such a fiber when a planar crack occurs in the
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matrix. To demonstrate the application of the proposed probabilistic approach, a simple
analytical model for the bridging force is formulated in this section. The statistical analysis
of the force carried by a bridging fiber must be performed over all fibers that cross the crack
plane, such as the one illustrated in Fig. 2 left. In other words, the embedded length �e must
be positive. The embedded length is the shorter length of a bridging fiber found either to
the left or right of the crack plane. The embedded length is calculated, given the fiber center
coordinate x (normal distance from the crack plane) and orientation ϕx, as :

�e = max
(

0,
�

2
− |x|

cos ϕx

)
. (5)

Fig.2: Left : one fiber bridging a crack plane; Right : multiple fibers bridging
a crack plane (w – crack width, �e – embedded length, P1 – pullout
force of a single fiber, Pk – pullout force of k fibers)

In order to consider only fibers that contribute to the force in a crack bridge, it is
convenient to find the joint density function of a pair of new random variables : the angle ϕc

of fibers intersecting the crack plane and the corresponding embedded length �e (note that
�e ≤ �/2). For a statistically homogeneous distribution of fibers inside a specimen this joint
density is just a product of the marginal densities of the two newly introduced random
variables as derived in [11]:

f�e,ϕc(�e, ϕc) =

{ 2
�

sin(2 ϕc) for �e = 〈0, �
2 〉 , ϕc = 〈0, π

2 〉 ,

0 otherwise .
(6)

The simplified model for the pullout force used here assumes an ideally plastic constant
bond law in all material points of the fiber-matrix interface. For a detailed derivation see [3].
Here, only the resulting formulas are given. In addition to [3], the parameter ϕx = ϕc, which
stands for the inclination angle between the fiber’s longitudinal axis and the crack plane
normal, is included in the formula. The force P1(w) projected on the normal to the crack
plane within the debonding stage (the ascending branch in Fig. 3 center) in terms of a pair
of random variables, �e and ϕc, reads :

P deb
1 (w, ϕc) =

√
E Af τ w exp(f ϕc) for 0 < w < wpul (7)

and the pullout stage is approximated by a constant force

P pul
1 (w, �e, ϕc) = τ �e exp(f ϕc) for w ≥ wpul . (8)

In terms of random variables x and ϕx, the debonding force reads :

P deb
1 (w, ϕx) =

√
E Af τ w exp(f ϕx) for 0 < w < wpul (9)
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and the pullout force is

P pul
1 (w, x, ϕx) = τ �e(x, ϕx) exp(f ϕx) for w ≥ wpul (10)

where E and Af are the fiber’s modulus of elasticity and cross-sectional area, respectively,
τ = 2 π r τfr is the constant frictional force per unit length defined as the frictional stress
per unit area τfr multiplied by the fiber’s perimeter, f is the snubbing coefficient, w is the
crack width and r is fiber radius. The two branches of P1 intersect at the crack width
wpul = τ �2

e/(EAf).

The term exp(f ϕ) summarizes all influences of the inclination angle on the pullout
force [5]. Figure 3 shows the bond law (on the left hand side) and the corresponding pullout
response (center) of a short steel fiber with diameter d = 0.3 mm and length � = 17 mm; it
is embedded in a cementitious matrix with �e = �/2 = 8.5 mm and ϕ = 0 rad.

For a random inclination angle and fiber position, the mean bridging force of a single
fiber and its corresponding variance, respectively, read (function of crack opening w) :

E[P1(w)] = μP1 =

π/2∫
ϕc=0

�/2∫
�e=0

P1(w; �e, ϕc) f�e,ϕc(�e, ϕc) d�e dϕc (11)

D[P1(w)] = σ2
P1

=

π/2∫
ϕc=0

�/2∫
�e=0

[P1(w; �e, ϕc) − μP1 ]2 f�e,ϕc(�e, ϕc) d�e dϕc . (12)

The same results can be obtained by integrating over the domain of the original random
variables x and ϕx, which have the joint distribution function fxϕx(x, ϕx) derived in [11], and
by using the conditional probability density (dividing the joint probability density function
by the probability p of a fiber intersecting the crack plane as shown above). The integration
region exhausts all possible fiber coordinates x and orientations ϕx :

E[P1(w)] = μP1 =

π/2∫
ϕx=0

Lx/2∫
x=−Lx/2

P1(w; x, ϕx)
fxϕx(x, ϕx)

p
1A(x) dx dϕx , (13)

D[P1(w)] = σ2
P1

=

π/2∫
ϕx=0

Lx/2∫
x=−Lx/2

[P1(w; x, ϕx) − μP1 ]2
fxϕx(x, ϕx)

p
1A(x) dx dϕx ,

(14)

where 1A(x) is the indicator function (defined in [10, 11]) that indicates the membership of
an element in a subset A of X , which has the value 1 for all elements of A (intersection) and
the value 0 for all elements of X not in A. The following indicator function can be used :

1A(x) = H

(
1
2

� cos(ϕx) − |x|
)

(15)

where H is the Heaviside (unit step) function. Fig. 3 right shows the mean force P1(w) and
the minus and plus one standard deviation bands for it. The term ‘double-sided pullout’
means that until the fiber completely debonds along the shorter of its embedded lengths,
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Fig.3: Left : bond law; Center: double-sided pullout of a short fiber �e = �/2 = 8.5 mm
and ϕ = 0 rad; Right: mean response of a single fiber bridging a crack with �e
and ϕc as random variables; computed with the following parameters : d =
= 0.3 mm, E = 200 GPa, τfr = 1.76 MPa, τ = 1.659 kN/m, f = 0.03

debonding is assumed to propagate symmetrically at both sides of the crack bridge. After
that, only the shorter embedded length is pulled out of the matrix.

4. The mean value and variance of a crack-bridging force

The expression for a random bridging force carried by a single fiber will now be exploited
for the calculation of the total force, Pk, carried by all fibers within a single crack bridge.
Both the number k of fibers bridging a crack and the contributions P1 of single fibers are
random variables. Due to the parallel coupling of the fibers in a crack, the total force Pk

carried by all bridging fibers is the sum of k contributions of independent random forces P1 :

Pk(w) =
k∑

i=1

P1,i(w) . (16)

In other words, to calculate the total force, a random number of random contributions,
which are independent and identically distributed, have to be summed. Note that it would
be a mistake to calculate the total force as a product of the random variables k and P1. By
virtue of the central limit theorem, the distribution of the sum Pk tends to the Gaussian
distribution [7, 1]. The only parameters to be determined are the mean value and the
variance of Pk. To obtain these, the law of total expectation (the tower rule) and the law
of total variance (variance decomposition formula) must be applied:

E[X ] = E[E(X |Y )] ,

D[X ] = E[D(X |Y )] + D[E(X |Y )] .
(17)

In the present application of the theorems, X = Pk and Y = k :

E

[
k∑

i=1

P1,i

]
= E

[
E

(
k∑

i=1

P1,i|k
)]

= E

[
k∑

i=1

P1,i

]
= E[k · E(P1)] , (18)

D

[
k∑

i=1

P1,i

]
= E

[
D

(
k∑

i=1

P1,i|k
)]

+ D

[
E

(
k∑

i=1

P1,i|k
)]

= (19)

= E

[
k · D

(
k∑

i=1

P1,i

)]
+ D[k · E(P1)] .
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By exploiting the independence of k from P1, the final result can be written as :

E[Pk(w)] = E[k] E[P1(w)] ,

D[Pk(w)] = E[k] D[P1(w)] + D[k] [E[P1(w)]]2 .
(20)

The coefficient of variation of the total force reads :

CoVPk
=

√
D[Pk]

E[Pk]
. (21)

The authors note that it would not be correct to evaluate the composite performance as
the homogenized (average) response of a single crack bridge because the variability of Pk

cannot be neglected. This variance has influence especially when multiple cracking occurs,
which is the desired case e.g. for ECC. The overall composite strength is determined by
the weakest crack bridge in the series of cracks. By using the weakest-link model and the
associated extreme value theory of independent identically distributed variables Pk, the
composite with N parallel cracks (serially couplet crack bridges) has a random strength
equal to :

P = F−1
k

(
1 − N

√
1 − pf

)
(22)

where pf is the probability and Fk is the cumulative distribution function of the strength of
one crack bridge (normal distribution with the mean and variance in Eq. (20)). To obtain the
median strength of the whole composite, for example, pf would be equal to 0.5. The authors
remark that the variability of the force in a single crack bridge is completely disregarded
in previous works [4, 5], the authors of which consider the total force Pk deterministically
as a k-multiple of P1, where k is the average number of fibers intersected by a crack plane
and P1 is considered in terms of its mean value. The following section illustrates that the
variability in k and also the variability in P1 and Pk cannot be ignored.

5. Numerical example

In order to demonstrate the above results on real-world data, a numerical example is
presented. We consider a 10 × 4 × 4 cm composite specimen, cut from a larger volume of
FRC. This manner of specimen preparation allows the assumption of a uniform distribution
of fibers to be satisfied. For specimens manufactured in such a way that one can expect
some wall effects, the distributions of angles and fiber centers would have to be modified
accordingly. The specimen is loaded in uniaxial tension along the length of Lx = 0.1 m. The
cross-sectional area equals Ac = 1.6×10−3 m2. The specimen is reinforced by steel fibers
of length � = 0.017 m and diameter d = 0.3 mm. The cross-sectional area of a single fiber
equals Af = 7.069×10−8 m2. The considered volume fraction of fibers (Eq. 2) is vf = 1.5 %.
The modulus of elasticity of the fibers is E = 200 GPa and τfr = 1.76 MPa, see Fig. 3.

For these input parameters, the total number of fibers in the composite specimen is
n = 1997 (Eq. 2) and the probability that one fiber intersects a plane perpendicular to
the longitudinal axis is p = p(�; L) = 0.085 (Eq. 1). The mean value of the number k

of fibers intersecting a crack plane is E[k] = 169.745 and the variance is D[k] = 155.32
(Eq. 4). Hence, the standard deviation equals Std(k) = 12.46 and the coefficient of variation
CoV(k) = 7.34 %.
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The mean value of the peak force (pull out stage) carried by one fiber crossing a crack
plane is E[P1] = 7.218 N and the variance is D[P1] = 17.375 N2 (Eq. 11). The standard
deviation then equals Std(P1) = 4.16 N and the coefficient of variation CoV(P1) = 57.7 %.
Note that no consideration is given to the fact that a certain proportion of the fibers that
are close to the contour of the cross section may not contribute fully to the pullout force.

By the application of Eq. (20), the mean value of the total force carried by fibers in
one crack bridge is E[Pk] = 1225.25N; the variance is D[Pk] = 11041.63N2. There-
fore, the standard deviation equals Std(Pk) = 105.08 N and the coefficient of variation
is CoV(Pk) = 8.58 %.

The authors remark that it would also be erroneous to ignore the variance originating
from the randomness in the number of bridging fibers k (yet still considering the variance
of P1). To illustrate that error, we will now show how the standard deviation (and coefficient
of variation) is underestimated by such a simplification. The standard deviation of Pk would
be calculated as Std(P1)

√
k = 54.31 N [2, 9] and the coefficient of variation would then drop

to 4.43 %, which is approximately one half of the correct value.

Fig.4: a) fibers randomly distributed inside a 3D volume and
cut by a plane; b) view of the cutting plane (crack)

6. Conclusions

This paper studies the random strength of composites reinforced by randomly oriented
short fibers. It is assumed that the position and orientation of fibers are random and
homogeneous in the composite specimens. By exploiting the information about the volume
fraction of fibers, the geometry of the fibers and the specimen, and the material (interface)
properties, an evaluation of (i) the random force in one fiber bridging a crack, and (ii) the
random total force of the crack bridge is obtained. These data are further used in the
estimation of the tensile strength of the whole composite with multiple cracks in series.
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[7] Rényi A.: On the central limit theorem for the sum of a random number of independent random
variables, Acta Mathematica Academiae Scientiarum Hungaricae 11 (1–2), 97–102, 1960

[8] Stähli P., Custer R., van Mier J.G.M.: On flow properties, fibre distribution, fibre orientation
and flexural behaviour of FRC, Materials and Structures 41 (1), 189–196, 2007
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tonu, In: Ledererová J., Svoboda M., Drotterová J. (Eds.), Ecology and new building materials
and products, XV. International Conference of the Research Institute of Building Materials,
held in Telč, Czech Republic, Research Institute of Building Materials, Telč, Czech Republic,
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