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NONLINEAR VIBRATION OF 2D VISCOELASTIC PLATE
SUBJECTED TO TANGENTIAL FOLLOWER FORCE

Armand Robinson Mouafo Teifouet*

In this paper, the problem of nonlinear viscoelastic rectangular thin plate subjected
to tangential follower force is examined. The nonlinear strain-displacement relation is
used to express non-linearity. After obtaining the equilibrium equation of the system
in Laplace domain and performing the Laplace inverse transformation, the nonlinear
differential equation of plate constituted by Kelvin-Voigt model and subjected to
tangential follower force in time domain is obtained. Multi-scales method is firstly
used to solve the governing equation, and the influence of the initial amplitude on the
nonlinear to linear frequency ratio is studied. Secondly, the differential quadrature
method (DQM) is employed to confirm the obtained results.
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1. Introduction

In order to reduce the weight of structures, thin plates are currently used in many
industrial domains such as aeronautics, automotive design or offshore structures. These
structures are sometimes forced to vibrate with large amplitude when subjected to tangential
follower forces, creating significant geometric nonlinearities. These nonlinearities usually
create instability phenomenon. To reduce this instability, it is important to consider the
viscoelasticity behavior of the thin rectangular plate. The main difficulty of such problem is
firstly the nonlinearity consideration which creates the complex phenomenon as bifurcations
and secondly the damping which creates the complex eigenvalues.

It should be noted that, nonlinear oscillation of structure has been studied for many years
as observed in the work of Chu et al. [1], and Nayfey et al. [2]. Specifically, many papers have
been published in the domain of nonlinear vibration of plates such as in the work of Amabili
et al. [3] and Amabili [4]. Many numerical methods are sometimes used to confirm the results
given by the analytical method, like differential quadrature [5], as can be seen in the work
of Tang et al. [6], Yusheng et al. [7], Hu et al. [8], Chen et al. [9], Chen et al. [10] and Zhong
et al. [11]. Considering that the viscoelastic property of the material is very important, it
is desirable to investigate nonlinear vibration of viscoelastic plate. Amount of research in-
vestigation have been performed on the nonlinear vibration of viscoelastic rectangular plate
subjected to external forces. Kim et al. [12] studied the nonlinear vibration of viscoelastic
laminated composite plates. They investigated the geometric nonlinearity on the dissipative
effect of the material, by parameterizing the former as amplitude-thickness ratio and the
latter as relaxation parameters. Aboudi [13] did the postbuckling analysis of viscoelastic
laminated plates using higher-order theory. The results based on different theories of plates
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were compared. G. Cederbaum [14] studied the parametric excitation of viscoelastic plate.
The excitation considered was periodic in-plane load and the material behaviour was given
in terms of Boltzmann superposition principle. The influence of static and dynamic part of
loads on the stability region was investigated. Cederbaum et al. [15] examined the dynamic
instability of shear deformable viscoelastic laminated plates. The harmonic in-plane excita-
tion is used and the dynamic stability of viscoelastic plate is discussed using the Lyapunov
exponent concept. Touati et al. [16] employed the Liapunov exponent to study numerically
the influence of the various parameter involved on stability of nonlinear viscoelastic plates,
Aboudi et al. [17] studied the dynamic stability analysis of viscoelastic plates by Lyapunov
exponents. Recently in 2005, Chen et al. [18] studied the instability of nonlinear viscoelastic
plates, they used the Leadermann nonlinear constitutive relation of viscoelasticity, to derive
a nonlinear integro-differential equation by Galerkin method. They employed the averaging
method to establish the condition of instability. Numerical results were compared with the
analytical one. Esmailzadeh et al. [19] studied the nonlinear oscillation of viscoelastic rect-
angular plates by assuming the Kelvin-Voigt constitutive model. Daya et al. [20] used the
finite element method to study the nonlinear vibration of sandwich viscoelastic plate. They
used the industrial test and existing result to compare the obtained results. Touze et al. [21]
examined the nonlinear normal modes for damped geometrically nonlinear system and made
the application to reduced-order modeling of harmonically forced structures. Abdoum et
al. [22] examined the forced harmonic response of viscoelastic structures by an asymptotic
numerical method in 2009.

Although many papers have been published in the domain of viscoelastic plate subjected
to external excitation, the works which take into consideration 3D constitutive viscoelastic
relation are only few. The aim of this paper is to use the 3D constitutive relation and
the non-linear strain-displacement relation to establish the nonlinear differential equation of
viscoelastic rectangular plate subjected to tangential follower force. The multi-scale method
is firstly used to solve the obtained non-linear equation. Secondly we examine the effect
of time on nonlinear to linear frequency ratio. The effect of initial amplitude on frequency
ratio is also examined for different aspect ratio. Thirdly, the differential quadrature method
is used to confirm analytical results.

Fig.1: Schematic representation of viscoelastic plate
subjected to tangential follower force qt

2. Problem formulation

The system under investigation as presented in Fig. 1 consists of viscoelastic rectangular
plate, subjected to tangential follower force qt, in x direction. This plate has length a,
width b, and thickness h in the x, y, and z directions, respectively. The material density
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is ρ. The general 3D viscoelastic differential constitutive relation is as follows [23].

P ′ sij = Q′ eij ,

P ′′ σii = Q′′ εii .
(1)

The Laplace transformation of equation (1) is :

P̄ ′ sij = Q̄′ ēij ,

P̄ ′′ σii = Q̄′′ ε̄ii ,
(2)

where sij , and eij are deviatoric tensors of stress and strain, σii and εii are spherical tensors
of stress and strain, and the operators

P ′ =
l∑

k=0

p′k
dk

dtk
, Q′ =

r∑
k=0

q′k
dk

dtk
, P ′′ =

l1∑
k=0

p′k
dk

dtk
, Q′′ =

r1∑
k=0

q′k
dk

dtk
,

p′k , q′k , p′k , q′k

depending on the properties of the material, and the bar on every function denotes the
Laplace transformation. For the plane stress problem, the constitutive equations of linear
viscoelastic material in the Laplace domain [24] are

P̄ ′ (P̄ ′ Q̄′′ + 2 Q̄′ P̄ ′′) σ̄x = Q̄′ (2 P̄ ′ Q̄′′ + Q̄′ P̄ ′′) ε̄x + Q̄′ (P̄ ′ Q̄′′ − Q̄′ P̄ ′′) ε̄y ,

P̄ ′ (P̄ ′ Q̄′′ + 2 Q̄′ P̄ ′′) σ̄y = Q̄′ (P̄ ′ Q̄′′ − Q̄′ P̄ ′′) ε̄x + Q̄′ (2 P̄ ′ Q̄′′ + Q̄′ P̄ ′′) ε̄y ,

P̄ ′ τ̄xy = Q̄′ ε̄xy ,

(3)

where σ̄x, σ̄y, τ̄xy, ε̄x, ε̄y, ε̄xy are the Laplace transforms of σx, σy, τxy, εx, εy, εxy respectively,
P̄ ′, Q̄′, P̄ ′′, Q̄′′ are the Laplace transforms of differential operators of P ′, Q′, P ′′, Q′′,
respectively. Introducing operators

P̄0 = P̄ ′ (P̄ ′ Q̄′′ + 2 Q̄′ P̄ ′′) ,

Q̄0 = Q̄′ (2 P̄ ′ Q̄′′ + Q̄′ P̄ ′′) ,

Q̄1 = Q̄′ (P̄ ′ Q̄′′ − Q̄′ P̄ ′′) .

(4)

Equation (3) can be simplified as

P̄0 σ̄x = Q̄0 ε̄x + Q̄1 ε̄y ,

P̄0 σ̄y = Q̄1 ε̄x + Q̄0 ε̄y ,

P̄ ′ τ̄xy = Q̄′ ε̄xy .

(5)

The bending and Mx, My, twisting moment Mxy, Myx per unit length of the plate are

Mx =

h
2∫

−h
2

z σx dz , My =

h
2∫

−h
2

z σy dz ,

Mxy =

h
2∫

−h
2

z τxy dz , Myx =

h
2∫

−h
2

z τyx dz .

(6)
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The membrane stress resultants per unit length Nx, Ny and Nxy, are respectively

Nx =

h
2∫

−h
2

σx dz , Ny =

h
2∫

−h
2

σy dz ,

Nxy =

h
2∫

−h
2

τxy dz , Nyx =

h
2∫

−h
2

τyx dz .

(7)

Applying the operators P̄0 and P̄ ′ to the Laplace transformation results of equations (6)
and (7) we have respectively for moment and membrane stress per unit length

P̄0(M̄x) =

h
2∫

−h
2

z P̄0(σ̄x) dz , P̄0(M̄y) =

h
2∫

−h
2

z P̄0(σ̄y) dz ,

P̄ ′(M̄xy) =

h
2∫

−h
2

z P̄ ′(τ̄xy) dz

(8)

and

P̄0(N̄x) =

h
2∫

−h
2

P̄0(σ̄x) dz , P̄0(N̄y) =

h
2∫

−h
2

P̄0(σ̄y) dz ,

P̄ ′(N̄xy) =

h
2∫

−h
2

P̄ ′(τ̄xy) dz .

(9)

The strain-displacement relation in this paper is for classical thin plate including the non-
linearity due to the midline strething. This relation is:

εx = −z
∂2w

∂x2
+

1
2

(
∂w

∂x

)2
, εy = −z

∂2w

∂y2
+

1
2

(
∂w

∂y

)2
,

εxy =
γxy

2
= −z

∂2w

∂x∂y
+

1
2

∂w

∂x

∂w

∂y
.

(10)

After substituting equation (5) into equation (8) and using the strain-displacement re-
lation (10) we obtain the relations between moment and the Laplace transformation of
deflection :

P̄0(M̄x) = −h3

12

[
Q̄0

∂2w̄

∂x2
+ Q̄1

∂2w̄

∂y2

]
,

P̄0(M̄y) = −h3

12

[
Q̄0

∂2w̄

∂y2
+ Q̄1

∂2w̄

∂x2

]
,

P̄ ′(M̄xy) = −h3

12
Q̄′ ∂2w̄

∂x ∂y
.

(11)

After substituting equation (7) into equation (9) and using The strain-displacement rela-
tion (11), we obtain the relations between membrane stress and the Laplace transformation
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of deflection :

P̄0(N̄x) =
h

2

[
Q̄0

(
∂w̄

∂x

)2
+ Q̄1

(
∂w̄

∂y

)2]
,

P̄0(N̄y) =
h

2

[
Q̄1

(
∂w̄

∂y

)2
+ Q̄0

(
∂w̄

∂x

)2]
,

P̄ ′(N̄xy) =
h

2
Q̄′ ∂w̄

∂x

∂w̄

∂y
.

(12)

The equilibrium equation of thin plate, subjected to tangential follower force qt is :
∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
+ Nx

∂2w

∂x2
+ 2 Nxy

∂2w

∂x∂y
+ Ny

∂2w

∂x2
−

− qt (a − x)
∂2w

∂x2
− ρ h

∂2w

∂t2
= 0 .

(13)

Applying P̄0 P̄ ′ to Laplace transformation of equation (13), and assuming that the partial
derivative is continuous, the resulting equation can be rewritten as :

P̄ ′ ∂2
(
P̄0 M̄x

)
∂x2

+ 2 P̄0

∂2
(
P̄ ′M̄xy

)
∂x ∂y

+ P̄ ′ ∂2
(
P̄0 M̄y

)
∂y2

+ P̄ ′(P̄0 N̄x)
∂2w̄

∂x2
+

+ 2 P̄0(P̄ ′N̄xy)
∂2w̄

∂x ∂y
+ P̄ ′(P̄0 N̄y)

∂2w̄

∂y2
− P̄0 P̄ ′qt (a − x)

∂2w

∂x2
− P̄0 P̄ ′ρ h

∂2w̄

∂t2
= 0 .

(14)

Assuming that the material of the plate obeys elastic behavior in dilatation and Kelvin-Voigt
law of distortion, the constitutive equations are :

sij = 2 Geij + 2 η ėij ,

σii = 3 K εii ,
(15)

where K, η, G are bulk elastic modulus, viscoelastic coefficient, and shear elastic modulus
respectively. sij and σij are respectively deviatoric tensor of stress and strain. sii and σii

are spherical tensor of strain and stress respectively. Performing the Laplace transformation
on equation (15) and comparing the result with equation (2) we get

P̄ ′ = 1 , Q̄′ = 2 G + 2 η
∂

∂t
,

P̄ ′′ = 1 , Q̄′′ = 3 K .
(16)

After substituting equations (11) and (12) into equation (15), considering equation (16),
and carrying out the inverse Laplace transformation, a nonlinear differential equation of
viscoelastic rectangular plate subjected to tangential follower force in time domain is :

h3

12

(
A3 + A4

∂

∂t
+ A5

∂2

∂t2

)
∇4w −

− h

2

(
A3 + A4

∂

∂t
+ A5

∂2

∂t2

)[(
∂w

∂x

)2
∂2w

∂x2
+
(

∂w

∂y

)2
∂2w

∂y2

]
−

− h

2

(
A6 + A7

∂

∂t
+ A8

∂2

∂t2

)[(
∂w

∂y

)2
∂2w

∂x2
+
(

∂w

∂x

)2
∂2w

∂y2

]
−

− h

(
A9 + A10

∂

∂t
+ A11

∂2

∂t2

)
∂w

∂x

∂w

∂y

∂2w

∂x∂y
+

+ qt (a − x)
(

A1 + A2
∂

∂t

)
∂2w

∂x2
+
(

A1 + A2
∂

∂t

)
∂2w

∂t2
= 0

(17)



64 Mouafo Teifouet A.R.: Nonlinear Vibration of 2D Viscoelastic Plate Subjected to Tangential . . .

with

A1 = 3 K + 4 G , A2 = 4 η , A3 = 3 G (6 K + 2 G) , A4 = 8 Gη + 12 K η ,

A5 = 4 η2 , A6 = 2 G (3 K − 2 G) , A7 = 6 K η − 8 Gη , A8 = −4 η2 ,

A9 = 2 G (3 K + 4 G) , A10 = 6 K η + 16 Gη , A11 = 8 η2 ,

G =
E

2 (1 + ν)
, K =

E

3 (1 − 2ν)
, ∇4w =

∂4w

∂x4
+ 2 λ2 ∂4w

∂x2 ∂y2
+ λ4 ∂4w

∂y4
.

The boundary condition of viscoelastic plate subjected to tangential follower force is four
edges simply supported given by :

x = 0, a : w =
∂2w

∂x2
= 0 ,

y = 0, b : w =
∂2w

∂y2
= 0 .

(18)

Introducing the dimensionless variables

X =
x

a
, Y =

y

b
, W̄ =

w√
k ε h

, λ =
a

b
, q =

12 qt a3 (1 − ν2)
E h3

,

τ =
t h

a2

√
E

12 ρ (1 − ν2)
, H =

h

a2

√
E

12 ρ (1 − ν2)
η

E
.

(19)

Equation (17) can be rewritten with dimensionless variables as:(
1 + α43 H

∂

∂τ
+ α53 H2 ∂2

∂τ2

)
∇4W̄ +

(
1 + α21 H

∂

∂τ

){
q (1 − X)

∂2W̄

∂X2
+

∂2W̄

∂τ2

}
−

− 6 k ε

(
1 + α43 H

∂

∂τ
+ α53 H2 ∂2

∂τ2

)[(
∂W̄

∂X

)2
∂2W̄

∂X2
+ λ4

(
∂W̄

∂Y

)2
∂2W̄

∂Y 2

]
−

− 6 ν λ2 k ε

(
1 + α76 H

∂

∂τ
+ α86 H2 ∂2

∂τ2

)[(
∂W̄

∂Y

)2
∂2W̄

∂X2
+
(

∂W̄

∂X

)2
∂2W̄

∂Y 2

]
−

− 12 (1 − ν) λ2 k ε

(
1 + α109 H

∂

∂τ
+ α119 H2 ∂2

∂τ2

)
∂W̄

∂X

∂W̄

∂Y

∂2W̄

∂X∂Y
= 0 ,

(20)

where

α21 =
4 (1 − 2 ν) (1 + ν)

3 (1 − ν)
, α43 =

4 (2 − ν) (1 + ν)
3

, α53 =
4 (1 − 2 ν) (1 + ν)2

3
,

α76 =
2 (1 + ν) (5 ν − 1)

3 ν
, α86 = −4 (1 − 2 ν) (1 + ν)2

3 ν
,

α109 =
2 (5 − 7 ν) (1 + ν)

3 (1 − ν)
, α119 =

8 (1 − 2 ν) (1 + ν)2

3 (1 − ν)
.

with the dimensionless boundary condition :

X = 0, 1 : W =
∂2W

∂X2
= 0 ,

Y = 0, 1 : W =
∂2W

∂Y 2
= 0 .

(21)
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3. Multi-scale analysis and analytical investigations

3.1. Multi-scale analysis

The solutions to Eq. (20) can be assumed as :

W̄ = W̄0(X, Y, T0, T1) + ε W̄1(X, Y, T0, T1) + 0(ε2) , (22)

where T0 = τ and T1 = ε τ are respectively, the fast and slow time scales in the method of
multiple scales. Substitution of Eq. (22) and the following relationship :

d
dt

=
∂

∂T0
+ ε

∂

∂T1
+ 0(ε2) ,

d2

dt2
=

∂2

∂T 2
0

+ 2 ε
∂2

∂T0∂T1
+ 0(ε2) , (23)

into Eq. (20) and then equalization of coefficients of ε0 and ε1 in the resulting Equation
leads to :

ε0 : (
1 + α43 H

∂

∂T0
+ α53 H2 ∂2

∂T 2
0

)
∇4W̄0 +

+
(

1 + α21 H
∂

∂T0

){
q (1 − X)

∂2W̄0

∂X2
+

∂2W̄0

∂T 2
0

}
= 0 ,

(24)

X = 0, 1 : W̄0(X, Y ) =
∂2W̄0

∂X2
= 0 ,

Y = 0, 1 : W̄0(X, Y ) =
∂2W̄0

∂Y 2
= 0 ;

(25)

ε1 :(
1 + α43 H

∂

∂T0
+ α53 H2 ∂2

∂T 2
0

)
∇4W̄1 +

+
(

1 + α21 H
∂

∂T0

){
q (1 − X)

∂2W̄1

∂X2
+

∂2W̄1

∂T 2
0

}
−

− 6 k

(
1 + α43 H

∂

∂T0
+ α53 H2 ∂2

∂T 2
0

)[(
∂W̄0

∂X

)2
∂2W̄0

∂X2
+ λ4

(
∂W̄0

∂Y

)2
∂2W̄0

∂Y 2

]
−

− 6 ν λ2 k

(
1 + α76 H

∂

∂T0
+ α86 H2 ∂2

∂T 2
0

)[(
∂W̄0

∂Y

)2
∂2W̄0

∂X2
+
(

∂W̄0

∂X

)2
∂2W̄0

∂Y 2

]
−

− 12 (1 − ν) λ2 k

(
1 + α109 H

∂

∂T0
+ α119 H2 ∂2

∂T 2
0

)
∂W̄0

∂X

∂W̄0

∂Y

∂2W̄0

∂X ∂Y
+

+ α43 H
∂(∇4W̄0)

∂T1
+ 2 α53 H2 ∂2(∇4W̄0)

∂T0 ∂T1
+

+ α21 H q (1 − X)
∂3W̄0

∂T1 ∂X2
+ 3

∂2W̄0

∂T 2
0

+ 2
∂2W̄0

∂T1 ∂T0
= 0 ,

(26)

X = 0, 1 : W̄1(X, Y ) =
∂2W̄1

∂X2
= 0 ,

Y = 0, 1 : W̄1(X, Y ) =
∂2W̄1

∂Y 2
= 0 ;

(27)
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To investigate nonlinear free transverse vibration of plate subjected to follower force, the
solution of Eq. (24) is assumed to be expressed by :

W0(X, Y, T0, T1) = Wsl(X, Y ) Asl(T1) e j Ω0sl T0 + CC , (28)

where Ω0sl is the slth frequency of ε0-order system calculated in [24]. j2 = −1. Substitution
of Eq. (28) into Eq. (24) yields :(

1 + α43 H
∂

∂T0
+ α53 H2 ∂2

∂T 2
0

)
∇4W̄1 +

+
(

1 + α21 H
∂

∂T0

){
q (1 − X)

∂2W̄1

∂X2
+

∂2W̄1

∂T 2
0

}
=

= −
[
E1

∂Asl

∂T1
+ k G1 A2

sl Āsl

]
e j Ω0sl T0 + CC + NST ,

(29)

where NST stands for non-secular terms,

E1 = 2 j Wsl Ω0sl+(α43 H+2 jα53 H2 Ω0sl)∇4Wsl+α21 H q (1−X)
∂2Wsl

∂X2
+3 Wsl Ω2

0sl (30)

and

G1 = −6
[
1 + j α43 H Ω0sl − α53 H2 Ω2

0sl

] [
λ4 ∂Wsl

∂Y

(
∂Wsl

∂Y

∂2W̄sl

∂Y 2
+ 2

∂W̄sl

∂Y

∂2Wsl

∂Y 2

)
+

+
∂Wsl

∂X

(
∂Wsl

∂X

∂2W̄sl

∂X2
+ 2

∂W̄sl

∂X

∂2Wsl

∂X2

)]
−

− 6 ν λ2
[
1 + j α76 H Ω0sl − α86 H2 Ω2

0sl

] [∂Wsl

∂Y

(
∂Wsl

∂Y

∂2W̄sl

∂X2
+ 2

∂W̄sl

∂Y

∂2Wsl

∂X2

)
+

+
∂Wsl

∂X

(
∂Wsl

∂X

∂2W̄sl

∂Y 2
+ 2

∂W̄sl

∂X

∂2Wsl

∂Y 2

)]
−

− 12 (1 − ν) λ2
(
1 + j α109 H Ω0sl − α119 H2 Ω2

0sl

)(∂Wsl

∂X

∂Wsl

∂Y

∂2W̄sl

∂X ∂Y
+

+
∂Wsl

∂X

∂W̄sl

∂Y

∂2Wsl

∂X ∂Y
+

∂W̄sl

∂X

∂Wsl

∂Y

∂2Wsl

∂X ∂Y

)
.

(31)

It should be noted that, the solvability condition presented by You-Qi Tang and al. [6]
demands the orthogonal relationship.〈

E1
∂Asl

∂T1
+ k G1 A2

sl Āsl , Wsl

〉
= 0 , (32)

where the the inner product is defined for complex functions f and g on [0, 1] as

〈f, g〉 =

1∫
0

f ḡ dx . (33)

Application of the distributive law of the inner product to Eq. (32) leads to

∂Asl

∂T1
+ k g11 A2

sl Āsl = 0 , (34)



Engineering MECHANICS 67

where

g11 =

1∫
0

1∫
0

G11 W̄sl dx dy

1∫
0

1∫
0

E1 W̄sl dx dy

. (35)

It can be numerically demonstrated that g11 is complex number.

Express the solution of Eq. (34) in polar form

Asl = αsl(T1) e j βsl(T1) , (36)

and substituting Eq. (36) into Eq. (34) yields

∂αsl

∂T1
= 0 ,

αsl
∂βsl

∂T1
= −k g j

11 α3
sl ,

(37)

where g j
11 is imaginary part of g11. The physical solution of Eq. (37) is when αsl �= 0, which

gives the following solutions after integration :

αsl = αsl0 , βsl = −k g j
11 α2

sl0 T1 + βsl0 , (38)

where the initial amplitude αsl0 and the phase βsl0 are constants. Inserting Eq. (37) into
Eq. (36) and then inserting the resulting equation into Eq. (28) gives the slth nonlinear
frequency

Ωsl = Ω0sl − ε k g j
11 α2

sl0 . (39)

3.2. Analytical investigations

Fig. 2 shows us the effect of delay time H on the lateral deflexion in the center of vis-
coelastic plate versus time for first and for second mode. The observation in this figure is
that, the amplitude of the vibration decreases with time. For the first mode, the ampli-
tude of vibration vanishes earlier than the second mode: The first mode amplitude, initially
� 0.035 needs t � 15 to become � 0. For second mode of vibration, the initial amplitude
is � 5×10−18 negligible comparing to the first mode amplitude, and vanishes lately when
t � 250. This curves, plotted at a given values of system’s parameters give two informations :
the system looses energy with time and the first mode of vibration is the most affected mode.

Fig. 3 presents the evolution with time t of first mode deflexion for two values delay-time
H . The solid line denotes H = 10−5 and the dashed line denotes H = 10−3. The solid
line evolution is with constant amplitude because the viscoelastic plate’s behaviour is no far
than elastic one. In the dashed line, the effect of viscoelasticity is more perceptible as the
amplitude diminishes with a time, due to the energy loss of the system.

In Fig. 4 the curve explains how the nonlinear to linear frequency ratio of nonlinear vis-
coelastic plate decreases with time while Fig. 5 shows the relationship of the viscoelastic plate
subjected to follower force between nonlinear to linear frequency ratio and the initial am-
plitude of first mode, at different nonlinear coefficients (a) : H = 10−5 and (b) : H = 10−3.
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Fig.2: Response at central point of the plate with k = 1, ε = 1; (a) first
mode : α110 = 0.04, q = 10; (b) second mode : α210 = 0.04

Fig.3: Response at central point of the plate for first mode with k = 1, ε = 1,
α110 = 0.04, λ = 1, q = 10, (—) : H = 10−5, (−−) : H = 10−3

Fig.4: Nonlinear frequency to Linear frequency ratio vs time
with k = 1, ε = 1, α110 = 0.04, λ = 1, q = 10, H = 10−3



Engineering MECHANICS 69

Fig.5: Nonlinear frequency to Linear frequency ratio vs initial amplitude
at different nonlinear coefficients for first mode with ε = 1, λ = 1,
H = 10−3, q = 10; (a) H = 10−5 and (b) H = 10−3

Fig.6: Nonlinear frequency to Linear frequency ratio vs initial amplitude
at different nonlinear coefficients for second mode with ε = 1, λ = 1,
H = 10−3, q = 10; (a) H = 10−5 and (b) H = 10−3

The larger nonlinear coefficient results in rapid increase of the nonlinear to linear frequency
ratio with the initial amplitude. Beside, the effect is less significant with the increase of
delay-time. Fig. 6 presents the same relation as in Fig. 5 but for second mode. Here the
effect of nonlinear coefficient is less significant than in first mode but when the delay-time
increases, we note decreasing of the frequency ratio.

4. Numerical results

4.1. Differential quadrature method

Although many numerical schemes can be used to solve the differential equation (20)
with boundary conditions (21), the DQ scheme is one of the most accurate method. Its
essence is that, a partial derivative of the function W (X, Y ) at any sample point (Xi, Yj), is
considered as a weighted linear sum of the function W (Xi, Yj) ≡ Wi,j chosen on the defined
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domain of the spacial variables [25]. More precisely, taking the 2D rectangular plate under
consideration for which the XY variables is delimited as follows : 0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1,
N and M the total number of discrete points along X and Y directions, respectively. The
rth order partial derivative of W (X, Y ) with respect to X , sth order partial derivative of
W (X, Y ) with respect to Y and (r + s)th order mixed partial derivative of W (X, Y ) with
respect to both X and Y , are respectively written at a given point (Xi, Yj) as [25]:

∂rW (Xi, Yj)
∂Xr

=
N∑

k=1

A
(r)
ik Wkj , (i = 1, 2, . . . , N , k = 1, 2, . . . , N − 1) , (40)

∂sW (Xi, Yj)
∂Y s

=
M∑

k=1

B
(s)
jl Wil , (j = 1, 2, . . . , M , l = 1, 2, . . . , M − 1) , (41)

∂r+sW (Xi, Yj)
∂Xr ∂Y s

=
N∑

k=1

A
(r)
ik

M∑
k=1

B
(s)
jl Wkl , (42)

where A
(r)
ik , and B

(s)
jl are the weighting coefficients with [6] :

A
(1)
ik =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∏N
μ=1, μ�=i(Xi − Xμ)

(Xi − Xk)
∏N

μ=1, μ�=k(Xk − Xμ)
, (i, k = 1, 2, . . . , N , i �= k) ,

N∑
μ=1, μ�=i

1
(Xi − Xμ)

, (i = 1, 2, . . . , N , i = k) .

(43)

B
(1)
jl =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∏M
μ=1, μ�=j(Yj − Yμ)

(Yj − Yl)
∏N

μ=1, μ�=l(Yl − Yμ)
, (j, l = 1, 2, . . . , M , j �= l) ,

M∑
μ=1, μ�=j

1
(Yj − Yμ)

, (j = 1, 2, . . . , M , j = l) .

(44)

for r = s = 1 and

A
(r)
ik =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r

(
A

(r−1)
ii A

(1)
ik − A

(r−1)
ik

Xi − Xk

)
, (i, k = 1, 2, . . . , N , i �= k) ,

−
N∑

μ=1, μ�=i

A
(r)
iμ , (i = 1, 2, . . . , N , i = k) .

(45)

B
(s)
jl =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s

(
B

(s−1)
jj B

(1)
jl − B

(s−1)
jl

Yj − Yl

)
, (j, l = 1, 2, . . . , M , j �= l) ,

−
M∑

μ=1, μ�=j

B
(s)
jμ , (j = 1, 2, . . . , M , j = l) .

(46)

for r = 2, 3, . . . , N − 1, and s = 2, 3, . . . , M − 1.

The distribution forms of the grid point are taken following the approach developed
in [26] and we use the Coupling Boundary Conditions with General Equation (CBCGE)
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technic to implement boundary conditions. Accordingly, The form of grid point of SSSS
plate is given by :

Xi =
1
2

[
1 − cos

(
i − 1
N − 1

π

)]
, (i = 1, 2, . . . , N) ,

Y j =
1
2

[
1 − cos

(
j − 1
M − 1

π

)]
, (j = 1, 2, . . . , M) .

(47)

With the above considerations, the Eq. (20) is transformed into a following discretized form :

α21 H Wij j3 Ω3 +

+

[
α53 H2

(
N∑

k=1

A
(4)
ik Wkj + 2 λ2

M∑
l=1

A
(2)
jl

N∑
i=1

A
(2)
ik Wkl + λ4

M∑
l=1

A
(4)
jl Wil

)
+ j2 Wij

]
j2 Ω2 +

+

[
α43 H j

(
N∑

k=1

A
(4)
ik Wkj + 2 λ2

M∑
l=1

A
(2)
jl

N∑
i=1

A
(2)
ik Wkl + λ4

M∑
l=1

B
(4)
jl Wil

)
+

+ α21 H q

N∑
k=1

A
(2)
ik Wkj

]
j Ω +

+

(
N∑

k=1

A
(4)
ik Wkj + 2 λ2

M∑
l=1

A
(2)
jl

N∑
i=1

A
(2)
ik Wkl + λ4

M∑
l=1

A
(4)
jl Wil

)
+

+ q (1 − X)
N∑

i=1

A
(2)
ik Wkj −

− 6 k H2 ε

⎧⎨
⎩α53

⎡
⎣( N∑

i=1

A
(1)
ik Wkj

)2 N∑
i=1

A
(2)
ik Wkj + λ4

(
M∑
l=1

B
(1)
jl Wil

)2 M∑
l=1

B
(2)
jl Wil

⎤
⎦+

+ ν λ2 α86

⎡
⎣( M∑

l=1

B
(1)
jl Wil

)2 N∑
i=1

A
(2)
ik Wkj +

(
N∑

i=1

A
(1)
ik Wkj

)2 M∑
l=1

B
(2)
jl Wil

⎤
⎦+

+ 2 (1 − ν) λ2 α119

(
N∑

i=1

A
(1)
ik Wkj

)(
M∑
l=1

B
(1)
jl Wil

)(
M∑
l=1

B
(1)
jl

N∑
i=1

A
(1)
ik Wkl

)}
j2 Ω2 −

− 6 k H ε

⎧⎨
⎩α43

⎡
⎣
(

N∑
i=1

A
(1)
ik Wkj

)2 N∑
i=1

A
(2)
ik Wkj + λ4

(
M∑
l=1

B
(1)
jl Wil

)2 M∑
l=1

B
(2)
jl Wil

⎤
⎦+

+ ν λ2 α76

⎡
⎣
(

M∑
l=1

B
(1)
jl Wil

)2 N∑
i=1

A
(2)
ik Wkj +

(
N∑

i=1

A
(1)
ik Wkj

)2 M∑
l=1

B
(2)
jl Wil

⎤
⎦+

+ 2 (1 − ν) λ2 α109

(
N∑

i=1

A
(1)
ik Wkj

)(
M∑
l=1

B
(1)
jl Wil

)(
M∑
l=1

B
(1)
jl

N∑
i=1

A
(1)
ik Wkl

)}
j Ω −

− 6 k ε

⎧⎨
⎩
⎡
⎣( N∑

i=1

A
(1)
ik Wkj

)2 N∑
i=1

A
(2)
ik Wkj + λ4

(
M∑
l=1

B
(1)
jl Wil

)2 M∑
l=1

B
(2)
jl Wil

⎤
⎦+
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+ ν λ2

⎡
⎣( M∑

l=1

B
(1)
jl Wil

)2 N∑
i=1

A
(2)
ik Wkj +

(
N∑

i=1

A
(1)
ik Wkj

)2 M∑
l=1

B
(2)
jl Wil

⎤
⎦+

+ 2 (1 − ν) λ2

(
N∑

i=1

A
(1)
ik Wkj

)(
M∑
l=1

B
(1)
jl Wil

)(
M∑
l=1

B
(1)
jl

N∑
i=1

A
(1)
ik Wkl

)}
= 0 . (48)

The differential quadrature form of boundary conditions (21) is :

W1,j = 0 , WN,j = 0 , Wi,1 = 0 , Wi,M = 0 , i = 1, 2, . . . , N , j = 1, 2, . . . , M ,

N∑
k=1

A
(2)
ik Wkj = 0 , i = 1, N , j = 1, 2, . . . , M ,

M∑
k=1

B
(2)
jk Wik = 0 , j = 1, M , i = 1, 2, . . . , N .

(49)

Fig.7: Linear frequency ((a)Real part, (b) Imaginary part) for first three modes
vs dimensionless follower force with λ = 1, H = 10−5 and k = 0

Fig.8: Comparison of analytical and numerical nonlinear to Linear frequency ratio
vs initial amplitude for first mode with ε = 1, λ = 1, q = 5, H = 10−5
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4.2. Numerical results and discussion

In order to verify the results obtained by multi-scale method, we used the differential
quadrature method as our numerical scheme. Before applying this method to calculate
the nonlinear eigenfrequencies of Equation (20) with boundary conditions (21), we firstly
apply this method to calculate the linear eigenfrequencies (k = 0) and plot the evolution
of first three eigenfrequencies versus the follower force as you can see in Fig. 7. This curve
shows the evolution of real and imaginary part of eigenfrequency with follower force when
H = 10−5, N = M = 12. These curves are the same as curves plotted in [24]. The nonlinear
eigenfrequency is then calculated, using the nonlinear implementation of DQ method as we
can see in [5] and [10], and the iterative scheme developed in [7].

Fig. 8 shows the evolution of nonlinear to linear frequency ratio versus initial amplitude.
The comparison of the two curves shows us that, when the initial amplitude increases, we
observe a small quantity difference between analytical and DQ results, which means that
the two approaches give very similar results.

5. Conclusions

The present paper investigated the nonlinear vibration of 2D rectangular viscoelastic
plate subjected to tangential follower force. Based on nonlinear strain-displacement relation,
the 3D constitutive viscoelastic relation, the Laplace transformation and Inverse Laplace
Transformation, the equation of motion of nonlinear viscoelastic plate subjected to tangential
follower force in time domain is obtained. The fully simply-supported plate is considered.
Firstly The multi-scale method is used to solve analytically the obtained equation and
secondly the differential quadrature method is used to compare the multi-scale results. The
main results are as follows : When initial amplitude increases, the nonlinear eigenfrequency
increases too dependently on nonlinear coefficient. The damping effect reduce slightly the
speed of increase. For the higher mode of vibration, the nonlinear frequency decreases
when the delay time becomes high contrarily to the fundamental mode of vibration. The
differential quadrature calculation of the nonlinear eigenfrequency is a very accurate, because
the obtained results are very close to multi-scale results. The differential quadrature method
can then be used to investigate nonlinear vibration of viscoelastic plate.
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