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NUMERICAL SIMULATION OF TRANSITIONAL
FLOWS WITH LAMINAR KINETIC ENERGY

Jǐŕı Fürst*

The article deals with the numerical solution of transitional flows. The single-point
k-kL-ω model of [7] based on the use of a laminar kinetic energy transport equation is
considered. The model doesn’t require to evaluate integral boundary layer parameters
(e.g. boundary layer thickness) and is therefore suitable for implementation into codes
working with general unstructured meshes. The performance of the model has been
tested for the case of flows over a flat plate with zero and non-zero pressure gradients.
The results obtained with our implementation of the model are compared to the
experimental data of ERCOFTAC.
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1. Introduction

The laminar-turbulent transition plays very important role in many flows of engineering
interest. It has big impact on the heat transfer and losses. Unfortunately most of the state
of the art turbulence models (e.g. Menters SST k-ω model, EARSM model of Hellsten)
completely fail with the prediction of transition. However there are some attempts to mo-
dify basic models (e.g. low-Reynolds model of [12], the k-ω model with total stress limiter
proposed by [13]) with promising results, the experience shows that this approach is not
capable of reliably capturing all factors that affect transition, see [6].

The algebraic models based on empirical correlations (see e.g. [8]) offers simple approach
with sufficient accuracy. On the other hand their implementation into a general unstructured
code is quite difficult due to necessity of some non-local information (momentum boundary
layer thickness, etc.). Therefore the applicability of these models is more-less limited to
research or academic codes using structured meshes.

This article deals with the RANS-based transitional model developed by [9]. The
three-equation model is based on the low-Reynolds k-ω model with an equation for the
so called laminar kinetic energy kL expressing the energy of stream-wise fluctuations in
pre-transitional region.

The concept of laminar kinetic energy proposed by Mayle and Schulz [5] follows from the
physical description of the transition process, see e.g. [7]. During the transition the laminar
boundary layer becomes unstable at certain Ryenolds number and the primary instabilities
(the Tollmien-Schlichting waves) occur. Due to secondary instabilities the three-dimensional
disturbances are superimposed further downstream. These lead to the so called Λ-vortices
which are later replaced by the turbulent spots, which initiate the transition. Turbulent
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spots grow until the the flow is fully turbulent. It is important to note that the fluctuations
in the pre-transitional part of the boundary layer (i.e. the part starting with the primary
instabilities and ending with to the formation of turbulent spots) are not turbulence in the
usual sense of that word. Therefore Mayle and Schulz [5] proposed the adoption of the
laminar kinetic energy equation to describe the evolution of these fluctuations. For more
detailed description of the model including other modes of transition please see [10] or [9].

The main advantage of the model is its local formulation, it means that it can be easily
implemented into unstructured solvers. Moreover it can (at least in principle) handle flows
in complex geometry. Unfortunately the description of the model in [9] contains some
errors (probably typos) which lead to strong underestimation of the friction in turbulent
region. The aim of the article is to describe the correct version of the model and to test the
performance of the model for simple flows over flat plate.

2. Mathematical model

2.1. Navier-Stokes equations

The viscous compressible flows are described by the set of Favre-averaged Navier-Stokes
equations :

∂ρ
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+

∂(ρ uj)
∂xj

= 0 , (1)

∂(ρui)
∂t

+
∂(ρ ui uj)

∂xj
+

∂p

∂xi
=

∂(tij + τij)
∂xj

, (2)

∂(ρE)
∂t

+
∂[(ρ E + p)uj]

∂xj
=

∂

∂xj

[
ui (tij + τij) +

( μ

Pr
+ ρ αθ

) ∂h

∂xj

]
, (3)

where ρ is the density, ui are the components of the velocity vector, p is the static pressure,
E is the specific total energy, h = E + p − ui ui/2 is the specific enthalpy, tij is the mean
viscous stress tensor, τij = −ρ u′

i u′
j is the Reynolds stress tensor, μ is the viscosity, Pr is

the Prandtl number, and αθ is the turbulent thermal diffusivity.

We assume perfect gas (the air) with p = (κ − 1)(ρ E − ρ ui ui/2) where κ = 1.4 is
the constant specific heat ratio. The flow is Newtonian with constant viscosity μ, hence
tij = 2 μ (Sij − Sll δij/3) where Sij = (∂ui/∂xj + ∂uj/∂xi)/2.

2.2. Turbulence model

The turbulence model is based on the Boussinesq hypothesis

τij = 2 ρ νT

(
Sij − 1

3
Sll δij

)
− 1

3
ρ k δij , (4)

where νT is the turbulent kinematic viscosity and k is the turbulent kinetic energy.

We assume a three equation model of [9] with the transport equations for the turbulent
kinetic energy kT, the laminar kinetic energy kL, and the specific dissipation rate ω. The
equations are
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The various terms in the equations represents production, destruction, transport, and diffu-
sion. However the structure of the model is more-less clear, there is a confusion in the defini-
tion of individual terms in the literature. The original Walters and Leylek’s model (see [10])
uses kT-kL-ε formulation. The model was later re-formulated using kT-kL-ω (see [11] or [4])
and the current version was published in [9]. Unfortunately it seems that the last article
contains some errors. Therefore we will write here all individual terms and we will comment
the differences of our version with respect to the original article.

The production of turbulent and laminar kinetic energy is

PkT = νT,s S2 , (8)

PkL = νT,l S
2 , (9)

where S =
√

2 Sij Sij . The ‘small-scale’ eddy viscosity is defined as

νT,s = fν fINT Cμ

√
kT,s λeff , (10)

where kT,s is the effective small-scale turbulence

kT,s = fSS fW kT . (11)

The wall-limited turbulence length scale λeff and damping function fW is

λeff = min(Cλ d, λT) , (12)
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√

kT

ω
, (13)
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(
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λT

) 2
3

, (14)

here d is the wall distance. Note that the article [9] does not include the exponent 2/3 in
the definition of fW. The original model [10] as well as the [11] do include the exponent.
The origins of the 2/3 exponent come from the k-ε formulation where the turbulent length
scale is

λT =
k

3
2
T

ε
, (15)

therefore fW actually limits the length scale to λeff.

The following terms are according to [9]
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(
−
√

ReT
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)
, (16)
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The intermittency factor fINT is

fINT = min
(

kT

CINT (kT + kL)
, 1
)

. (20)

Note that the factor fINT is defined with kL in nominator in [9], but the article [11] gives
correct form with kT.

The production of laminar kinetic energy kL is assumed to be given by large-scale near
wall turbulence

kT,l = kT − kT,s . (21)

The production term is then given by the equation (9) where
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The dissipation rate εTot is divided to an isotropic (kT ω) and anisotropic (DT/L) part
(similarly as in the low-Reynolds Launder and Sharma k-ε model) with
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∂
√

kT

∂xi

∂
√
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, (26)
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∂
√
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However the the balance between the dissipation rate εTot and diffusion ∂(ν ∂kT/L/∂y)/∂y

in the laminar sublayer suggests the same formula multiplied by 2 (see e.g. Launder-Sharma
k-ε model or the older versions of k-kL-ε and k-kl-ω) model, the above mentioned form was
proposed in the new model and used in our calculations.

The turbulent diffusivity αT is

αT = fν Cμ,std

√
kT,s λeff , (28)
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and the damping function fω is

fω = 1 − exp

[
−0.41

(
λeff

λT

)4
]

. (29)

The remaining terms RBP and RNAT express the laminar-turbulent transition in terms
of the energy transfer from kL to kT. They are of the form

RBP =
CR βBP kL ω

fW
, (30)

RNAT = CR,NAT βNAT kL Ω . (31)

The bypass transition is driven by the βBP function

βBP = 1 − exp
(
− φBP
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)
, (32)

φBP = max
(
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)
, (33)

and the natural transition by the βNAT function

βNAT = 1 − exp
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)
, (34)
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, 0
)

, (35)
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(
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√
kL d
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)
. (36)

The turbulent kinematic viscosity used in the momentum equations is then

νT = νT,s + νT,l . (37)

The turbulent thermal diffusivity αθ is then

αθ = fW
kT

kT + kL

νT,s

Pr
+ (1 − fW)Cα,θ

√
kT λeff . (38)

The coefficient Cω2 = 0.92 is constant in the original article. Nevertheless the correct
form is

Cω2 = 0.92 f2
W . (39)

The other constants are
A0 = 4.04 , CINT = 0.75 , Cω1 = 0.44 ,

AS = 2.12 , CTS,crit = 1000 , Cω3 = 0.3 ,

Aν = 6.75 , CR,NAT = 0.02 , CωR = 1.5 ,

ABP = 0.6 , Cl1 = 3.4×10−6 , Cλ = 2.495 ,

ANAT = 200 , Cl2 = 10−10 , Cμ,std = 0.09 ,

ATS = 200 , CR = 0.12 , P r = 0.85 .

CBP,crit = 1.2 , Cα,θ = 0.035 , σk = 1 ,

CNC = 0.1 , CSS = 1.5 , σω = 1.17 ,

CNAT,crit = 1250 , Cτ ,l = 4360 .
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3. Simulation of flows over a flat plate

The model has been validated using T3 series of experimental flat-plate test cases of
ERCOFTAC. The T3A, T3B, and T3A- test cases had zero stream-wise pressure gradients
with free-stream turbulence of 3%, 6%, and 1% respectively, see [1]. The T3C2 has favourable
pressure gradient in the first part of the plate followed by the adverse pressure gradient in
the second part, see [2].

The calculation was carried out with OpenFOAM package with our implementation of
the k-kL-ω model. The numerical solution was obtained with finite volume method using
SIMPLEC scheme for compressible flows (see eg. [3]).

The zero-pressure gradient cases (i.e. T3A, T3A-, and T3B) were calculated using a rec-
tangular domain Ω = [−0.05, 2.9]× [0, 0.175]m where the flat plate starts at x = 0 m. The
mesh consists of 635 × 105 cells where 600 cells were at the plate and 35 cells in the inlet
region. The mesh was refined in the vicinity of the inlet edge (see fig. 1) and in the wall
normal direction with y1 ≈ 10−5 m i.e. y+ ≤ 1.

The following boundary conditions were prescribed :

inlet : at the inlet plane (x = −0.05m) we prescribe the velocity vector ui, the tem-
perature (T = 293.15K), the turbulent kinetic energy kT, the laminar kinetic energy
kL = 0m2 s−2, and the specific dissipation rate ω. The pressure is calculated with the
homogeneous Neumann condition ∂p/∂n = 0.

wall : at the wall (x = 0m to 2.9m and y = 0 m) we prescribe non-slip condition for
velocity (ui = 0m/s), the homogeneous Neumann condition for pressure ∂p/∂n = 0,
zero turbulent and laminar kinetic energy kT = kL = 0 m2 s−2, and the homogeneous
Neumann condition for the specific dissipation rate ∂ω/∂n = 0.

outlet : at the outlet (x = 2.9m) we prescribe the static pressure p = 101 kPa and we use
homogeneous Neumann conditions for all remaining quantities.

symmetry : at the rest of the boundary (the upper boundary at y = 0.175m and the lower
boundary in front of the plate) we assume symmetry condition for all variables (i.e. the
slip condition).

We use constant dynamic viscosity μ = 1.8×10−5 Pa s and the ideal gas constant
R = 287J kg−1 K−1. The parameters of inlet flows are are given in the table 1.

case U [m s−1] kT [m2 s−2] ω [s−1] Tu [%] μT,std/μ [–]

T3A 5.4 0.04763 23.8 3.30 12

T3B 9.2 1.12827 56.8 9.43 120

T3A- 19.8 0.04857 23.8 0.91 12

T3C2 5.5 0.05558 35.0 3.50 10

Tab.1: Inlet conditions for flat plate calculations at
x = −0.05 m, here μT,std = Cμ,std ρ kT/ω

The figure 1 shows comparison of computed skin friction for T3A, T3B and T3A- cases
with the experimental data of ERCOFTAC. One can see that the ready-made implemen-
tation of the model (labeled by OF 2.1.0 at the figure) fails even with T3A case. On the
other hand our implementation of corrected model gives quite good agreement with experi-
mental data from ERCOFTAC database. The results show that the transition onset is very
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Fig.1: Friction coefficient for zero-pressure gradient flows over
a flat plate (ERCOFTAC T3A, T3B, T3A- cases)

Fig.2: Velocity profiles at x = 0.295 m, 0.695 m, and 1.295 m
for T3A case; comparison with ERCOFTAC data [1]

well captured in T3A and T3A- cases. In the T3B case with high turbulence intensity the
transition seems to be shifted little bit upstream.

The figure 2 shows the comparison of velocity profiles at x = 0.295m, 0.695m, and
1.295m (i.e. Rex ≈ 100 000, 250 000 and 466 000). The comparison with experimental
data [1] shows very good agreement of the computed velocity profile in laminar part of
boundary layer (x = 0.295m) and quite good agreement in turbulent part (x = 0.295m).
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The velocity profile is not very well captured in transitional part (x = 0.695m). The figure 2
shows that the measured velocity at x = 0.695m obeys more-less standard logarithmic wall
law for 40 < y+ < 200 whereas the calculated profile does not contain log-law profile at
all. However we would like to note that it is very difficult to compare experimental data
with numerical simulations in this case. The profiles in transitional part depend strongly on
stream-wise position, free-stream turbulence intensity, and dissipation and therefore even
relatively small error in each of these parameters can cause qualitative changes in velocity
profiles.

The figure 3 (left) shows the profiles of kinetic energy kTot= kT+kL and the figure 3 (right)
shows the evolution of maximum kT,max(x) = maxy k(x, y) and kL,max(x) = maxy kL(x, y)
along the wall. The latest figure confirms the behaviour of the model :
– the laminar kinetic energy kL grows almost linearly in the laminar part of the boundary

layer,
– the laminar fluctuations change to turbulent one in the transitional part of the boundary

layer (growth of kT and diminution of kL),
– the turbulent kinetic energy becomes dominant over kL in turbulent part of the boundary

layer (kmax 
 kL,max).

Fig.3: Profiles of turbulent kinetic energy at x = 0.295 m, 0.595 m,
and 1.195 m (left) and the evolution of maximum of kT and
kL along the wall (right) for T3A case

Fig.4: Domain, the velocity at y = 0.05 m and the friction
coefficient for T3C2 ERCOFTAC case
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For the flow with pressure gradient (T3C2 case) we assume a domain with shaped upper
boundary (see fig. 4). The shape was constructed in order to match the velocity distribution
in the ERCOFTAC experiment. Fig. 4 shows the comparison of experimental data with the
calculated velocity distribution at y = 0.05m. The calculated skin friction coefficient* shows
that the model predicts the transition onset to late. On the other hand the transition length
is underpredicted, so the position of transition end is captured at right position.

4. Conclusion

Our results indicate that the model of [9] is able (after all necessary corrections with
respect to the original article) to predict the laminar-turbulent transition for simple flows
over flat plate. The model predicts very well the distribution of friction coefficient cf as well
as the velocity profiles in laminar and turbulent parts of the boundary layer (at least for
the zero pressure gradient case). On the other hand it delays the transition onset for T3C2
case (flows with adverse pressure gradient).

Despite of the difficult correlations and many constants the model is compatible with
modern unstructured CFD codes (e.g. with OpenFOAM) and it should be (at least in prin-
ciple) able to calculate transitional flows in complex geometry.

Future work will be oriented to the implementation of the model to our in-house code
and to its applications for flows in turbine cascades.
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