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THE BOUNDARY CONDITIONS
FOR THE COMPRESSIBLE GAS FLOW

Martin Kyncl*, Jaroslav Pelant*

The paper deals with a special way of the construction of the boundary conditions
for the compressible gas flow. The solution of the Riemann problem is used at the
boundary. It can be shown, that the unknown one-side initial condition for this
problem can be partially replaced by the suitable complementary condition. Authors
work with such complementary conditions (by the preference of pressure, velocity,
total quantities, . . . ) in order to match the physically relevant data. Algorithms
were coded and used within the own developed code for the solution of the Euler,
NS, and the RANS equations, using the finite volume method. Numerical example
shows superior behavior of these boundary conditions in comparison with some other
boundary conditions.
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1. Introduction

The mathematical equations describing the fundamental conservation laws form a sys-
tem of partial differential equations (the Euler Equations, the Navier-Stokes Equations, the
Navier Stokes Equations with turbulent models). In this work we focus on the numerical
solution of these equations in the vicinity of the boundary, which plays an important role
in the computational fluid dynamics. We choose the well-known finite volume method to
discretize the analytical problem, represented by the system of the equations in generalized
(integral) form. The area of the interest is splitted into the elements, and the piecewise
constant solution in time is constructed on these elements. The crucial problem of this
method lies in the evaluation of the so-called fluxes through the edges/faces of the particu-
lar elements. Here we focus on the boundary edges, and we use the analysis of the Riemann
problem for the discretization of the fluxes through the boundary edges/faces. The right-
hand side initial condition for this local problem can be partially replaced by the suitable
complementary condition. We analyze such modified local problems, equipped with various
complementary conditions. The own algorithms are constructed and used in the numerical
example.

2. The Riemann problem for the split Euler equations

In order to approximate the state values at the particular edges/faces of the mesh (at
each time instant), we use the solution of the so-called Riemann problem for the split Euler
equations. Using the rotational invariance of the equations describing the fluid flow, the
system is expressed in a new Cartesian coordinate system x̃ = (x̃1, x̃2, x̃3) with the origin at
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the center of the gravity of the edge of interest Γij and with the new axis x̃1 in the direction
of the normal of the edge. Then the derivatives with respect to x̃2, x̃3 are neglected, and we
get the so-called split 3D Euler equations, see [3, page 138] :

∂q
∂t

+
∂f1(q)
∂x̃1

= 0. (1)

Here t denotes the time. q = q(x̃, t) = (�, � u, � v, � w, E)T is the state vector, f1 =
= (� u, � u u + p, � u v, � u w, (E + p) u)T are the inviscid fluxes, v = (u, v, w)T denotes the
velocity vector in the local coordinate system x̃1, x̃2, x̃3, � is the density, p the pressure,
θ the absolute temperature, E = � e + � v2/2 the total energy. For the specific internal
energy e = cv θ we assume the caloric equation of state e = p/(� (γ − 1)), cv is the specific
heat at constant volume, γ > 1 is called the Poisson adiabatic constant. The system (1) is
considered for (x̃1, t) in the set Q∞ = (−∞,∞) × (0, +∞).

Let us suppose, that the state values (density, velocity, pressure) are known in the close
vicinity of the edge Γij at the time instant tk. These two states form the initial condition
for the problem (1).

q(x̃1, 0) = qL = � wk
i , x̃1 < 0 , (2)

q(x̃1, 0) = qR = � wk
j , x̃1 > 0 . (3)

This problem (1), (2), (3) is the so-called Riemann problem for the split Euler equations.
The solution of this problem at time axis is the desired solution (density, velocity, pressure)
at the edge Γij , and can be later used within the finite volume method.

Fig.1: Structure of the solution of the Riemann problem (1), (2), (3)

It is a characteristic feature of the hyperbolic equations, that there is a possible raise of
discontinuities in solutions, even in the case when the initial conditions are smooth, see [2,
page 390], therefore by solution we mean the so-called entropy weak solution to this problem.
The analysis to the solution of this problem can be found in many books, i.e. [3], [2], [1]. The
general theorem on the solvability of the Riemann problem can be found in [3, page 88].
Here we summarize, that the problem has a unique solution for certain choice of the initial
conditions. This solution can be written for t > 0 in the similarity form q(x̃1, t) = q̃(x̃1/t),
where q̃(x̃1/t) : � → �3 ([3, page 82]). The solution is piecewise smooth and its general form
can be seen in Fig. 1, where the system of half lines is drawn. These half lines define regions,
where q is either constant or given by a smooth function. Let us define the open sets called
wedges ΩL, ΩHTL, Ω�L, Ω�R, ΩHTR, ΩR, see Fig. 1. We will refer to the set ΩHTL as to the
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left wave, and the set ΩHTR will be called the right wave. The solution in ΩL, Ω�L, Ω�R, ΩR

is constant (see e.g. [3, page 128], while in ΩHTL and in ΩHTR it is continuous. Let us denote
q|ΩL = qL, q|Ω�L = q�L, q|Ω�R = q�R, q|ΩR = qR, q|ΩHTL = qHTL, q|ΩHTR = qHTR. The
exact solution of the Riemann problem has three waves in general, illustrated in Fig. 1. The
wedges ΩL and Ω�L are separated by the left wave (either 1-shock wave, or 1-rarefaction

wave). There is a contact discontinuity between the regions Ω�L and Ω�R. Wedges Ω�R

and ΩR are separated by the right wave (either 3-shock wave, or 3-rarefaction wave). The
solution for the primitive variables can be described as follows :

(�, u, v, w, p)|ΩL = (�L, uL, vL, wL, pL) ,

(�, u, v, w, p)|Ω�L = (��L, u�, vL, wL, p�) ,

(�, u, v, w, p)|Ω�R = (��R, u�, vR, wR, p�) ,

(�, u, v, w, p)|ΩR = (�R, uR, vR, wR, pR) .

The folowing relations for these variables hold :

u� = uL +

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−(p� − pL)

(
2

(γ+1)�L

p� + γ−1
γ+1 pL

)1
2

, p� > pL

2
γ − 1

aL

[
1 −

(
p�

pL

)γ−1
2γ

]
, p� ≤ pL

(4)

��L =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�L

γ−1
γ+1

pL
p�

+ 1
pL
p�

+ γ−1
γ+1

, p� > pL

�L

(
p�

pL

)1
γ

, p� ≤ pL

(5)

s1
TL =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uL − aL

√
γ + 1
2 γ

p�

pL
+

γ − 1
2 γ

, p� > pL

u� − aL

(
p�

pL

)γ−1
2γ

, p� ≤ pL

(6)

u� = uR +

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(p� − pR)

(
2

(γ+1)�R

p� + γ−1
γ+1pR

)1
2

, p� > pR,

− 2
γ − 1

aR

⎡
⎣1 −

(
p�

pR

)γ−)
2γ

⎤
⎦ , p� ≤ pR

(7)

��R =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�R

p�

pR
+ γ−1

γ+1
γ−1
γ+1

p�

pR
+ 1

, p� > pR

�R

(
p�

pR

)1
γ

, p� ≤ pR

(8)

s3
TR =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uR + aR

√
γ + 1
2 γ

p�

pR
+

γ − 1
2 γ

, p� > pR

u� + aR

(
p�

pR

)γ−1
2γ

, p� ≤ pR

(9)

Here aL =
√

γ pL/�L, aR =
√

γ pR/�R, and γ denotes the adiabatic constant. Further
s1
TL denotes ‘unknown left wave speed’, s3

TR ‘unknown right wave speed’. Note, that the
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system (4)–(9) is the system of 6 equations for 6 unknowns p�, u�, ��L , ��R, s1
TL,s3

TR. The
solution of this system leads to a nonlinear algebraic equation, and one cannot express the
analytical solution of this problem in a closed form. The problem has a solution only if the
pressure positivity condition is satisfied

uR − uL <
2

γ − 1
(aL + aR) . (10)

We will use some of these relations to construct and solve the initial-boundary value problem
which will be the original result of our work.

Remarks

– Once the pressure p� is known, the solution on the left-hand side of the contact discon-
tinuity depends only on the left-hand side initial condition (2). And similarily, with p�

known, only the right-hand side initial condition (3) is used to compute the solution on
the right-hand side of the contact discontinuity.

– The solution in ΩL ∪ ΩHTL ∪ Ω�L (across 1 wave)
There are three unknowns in the region Ω�L. It is the density ��L, the pressure p�,
and the velocity u�. Also the speed s1

TL of the left wave determining the position of
the region ΩHTL is not known. The solution components in ΩL ∪ ΩHTL ∪ Ω�L region
must satisfy the system of equations (4)–(6). It is a system of three equations for four
unknowns. We have to add another equation in order to get the uniquely solvable system
in ΩL ∪ ΩHTL ∪ Ω�L.

3. Boundary Conditions

At the boundary edges/faces we work with the problem (1) equipped with only one-side
initial condition (2). The problem of the boundary condition is to choose the boundary

state

q(0, t) = qB , t > 0 . (11)

such a way that the system (1), (2), (11) is well-posed, i.e. it has a unique solution (entropy
weak) in the considered set ΩB = {(x̃1, t); x̃1 ≤ 0, t > 0}. It is possible to show, that by
adding properly chosen equations into the system (1), (2) it is possible to reconstruct the
boundary state qB such that the system (1), (2), (11) has a unique solution in ΩB, see [5].
We will refer to these added equations as to complementary conditions. Several choices of
the complementary conditions will be discussed further.

Preference of pressure

Let us, for example, prefer the given value for the pressure pGIVEN > 0. This would
correspond to the real-world problem, when we deal with the experimentally obtained pres-
sure distribution at the boundary. We add the following complementary conditions into the
system (1), (2)

p� := pGIVEN , pR = p� , ��R := �GIVEN , vR := vGIVEN , wR := wGIVEN . (12)

Here p� is the pressure in Ω�L ∪ Ω�R, see Section 2. The conditions (12) prescribe the
given pressure wherever it is possible, solution in ΩL is governed by the condition (2). We
seek the boundary state qB as the unique solution of the problem (1), (2), (12) at the half line
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SB = {(0, t); t > 0}. The system (4)–(9), (12) is uniquely solvable. The complete analysis of
this problem is shown [5].

Preference of velocity

Let us prefer the given value for the velocity uGIVEN at the boundary. We add the
following complementary conditions into the system (1), (2)

u� := uGIVEN , uR = u� , ��R := �GIVEN , vR := vGIVEN , wR := wGIVEN . (13)

We seek the boundary state qB as the unique solution of the problem (1), (2), (13) at the half
line SB = {(0, t); t > 0}. The system (4)–(9), (13) is uniquely solvable. The algorithm for
the construction of the primitive variables �B, uB, vB, wB, pB at the half-line SB is shown in
Fig. 2. The complete analysis of this problem is shown in [5]. This boundary condition can
be used for the simulation of the impermeable wall, with uGIVEN = 0 (zero normal velocity
of the boundary).

Fig.2: Algorithm for the solution of the problem (1), (2), (13) at the
half line SB = {(0, t); t > 0}; possible situations are illustrated
by the pictures showing the region ΩL ∪ ΩHTL ∪ Ω�L with the
sought boundary state located at the time axis

4. Example

Here we present a computational result of the 2D non-stationary inviscid channel flow at
Mach number M = 0.67. A body immersed in the flowing fluid establishes a certain wave
pattern which evolves in time and eventually exits the channel. At Figure 1. we show, that
the fixed (values are fixed at the boundary) and linearized (as described in [3]) boundary
conditions do not give the expected result in time. The inlet is located left, outlet right, other
boundaries are considered as wall. The fixed boundary conditions give incorrect results near
boundaries. The linearized boundary condition reflects the waves into the domain, leading
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Fig.3: Incompressible flow, body in the channel; comparison
of the various boundary conditions

to the oscillations in the solution. The new suggested boundary conditions do not suffer
from these drawbacks. The residual behavior (shown right) demonstrates this result.

5. Conclusions

We worked with the system of equations describing the compressible fluid flow. In order
to discretize the values at the boundary we solved the modification of the local Riemann
problem, with the right-hand side initial-value replaced by the suitable conditions. The
algorithms for the solution of the boundary problems were coded and implemented into
own-developed software for the solution of the compressible (laminar or turbulent) gas flow
(the Euler equations, the Navier-Stokes equations, the Reynolds-Averaged Navier-Stokes
equations) in 2D and 3D. The presented numerical example shows superior behaviour of
these boundary conditions.

Acknowledgment

This result originated with the support of Ministry of Industry and Trade of Czech
Republic for the long-term strategic development of the research organisation. The authors
acknowledge this support.

References
[1] Toro E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin,

1997
[2] Feistauer M.: Mathematical Methods in Fluid Dynamics, Longman Scientific & Technical,

Harlow, 1993



Engineering MECHANICS 127
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