
Engineering MECHANICS, Vol. 21, 2014, No. 5, p. 335–353 335

TWO-STAGE STOCHASTIC PROGRAMMING
FOR ENGINEERING PROBLEMS

Pavel Popela*, Jan Novotný*, Jan Roupec**, Dušan Hrabec*, Asmund Olstad***

The purpose of the paper is to present existing and discuss modified optimization
models and solution techniques which are suitable for engineering decision-making
problems containing random elements with emphasis on two decision stages. The
developed approach is called two-stage stochastic programming and the paper links
motivation, applicability, theoretical remarks, transformations, input data generation
techniques, and selected decomposition algorithms for generalized class of engineering
problems. The considered techniques have been found applicable by the experience
of the authors in various areas of engineering problems. They have been applied to
engineering design problems involving constraints based on differential equations to
achieve reliable solutions. They have served for technological process control e.g. in
melting, casting, and sustainable energy production. They have been used for indus-
trial production technologies involving related logistics, as e.g. fixed interval schedul-
ing under uncertainty. The paper originally introduces several recent improvements
in the linked parts and it focuses on the unified two-stage stochastic programming
approach to engineering problems in general. It utilizes authentic experience and
ideas obtained in certain application areas and advises their fruitful utilization for
other cases. The paper follows the paper published in 2010 which deals with the
applicability of static stochastic programs to engineering design problems. Therefore,
it refers to the basic concepts and notation introduced there and reviews only the
principal ideas in the beginning. Then, it focuses on motivation of recourse concepts
and two decision stages from engineering point of view. The principal models are
introduced and selected theoretical features are reviewed. They are also accompa-
nied by the discussion about difficulties caused by real-world cases. Scenario-based
approach is detailed as the important one for the solution of engineering problems,
discussion in data input generation is added together with model transformation re-
marks. Robust algorithms suitable for engineering problems involving nonlinearities
and integer variables are selected and scenario-based decomposition is preferred. An
original experience with using heuristics is shared. Several postprocessing remarks
are added at the end of the paper, which is followed by an extensive literature review.

Keywords : two-stage stochastic programming, modelling, scenarios, decomposition,
algorithms

1. Introduction

Underlying mathematical program. The important property of problems considered in
this paper is based on the fact that the decisions must be made under uncertainty. This

*RNDr.P.Popela, Ph.D., Ing. J. Novotný, Ing. D.Hrabec, Institute of Mathematics, Faculty of Mechanical
Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic

** Ing. J.Roupec, Ph.D., Institute of Automation and Computer Science, Faculty of Mechanical Engineer-
ing, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic

*** prof.A.Olstad, PhD, Department of Economics, Faculty of Economics, Informatics and Social Science,
Molde University College, Britvegen 2, 6402 Molde, Norway

336 Popela P. et al.: Two-Stage Stochastic Programming for Engineering Problems

represents a case when traditional optimization models are limited in practical applications
because their parameters are not completely known. Many real-world complex systems
include these uncertainties, and they can be modelled in different ways. One of them is
stochastic optimization. We will focus on the cases where the programs’ parameters are
influenced by random variables. In addition, we will assume that (two) subsequent decisions
can be considered. We will discuss related modelling approach in this paper that will be
noted as two-stage stochastic programming. Generalizing traditional mathematical program,
we have

? ∈ argmin
x

{f(x; ξ) | x ∈ C(ξ) = {x ∈ X | g(x; ξ) ◦ 0}} , (1)

where ◦ represents a column vector of symbols ◦i ∈ {≤,≥, =}, and the feasible set C(ξ)
may be rewritten as C(ξ) =

⋂m
i=1 Ci(ξ) =

⋂m
i=1{x ∈ X | gi(x, ξ) ◦i 0}, or C(ξ) = {x ∈ X |

gi(x, ξ) ≤ 0, 1 ≤ i ≤ l; gi(x, ξ) = 0, l +1 ≤ i ≤ m}. As the next step, we have to identify the
meaning of the given program (1). It is clear when observation ξs substitutes for ξ but what
happens to the program (1), when the realization of the randomness is not observed? So, it
is understood as a syntactically correct description useful for modelling purposes, for which
semantics will be given later by so called deterministic reformulations. Since the program (1)
is based on a mathematical program resulting from the substitution of selected constants by
random parameters, it is called an underlying mathematical program. There is ξ, a random
vector defined on the probability space (Ξ, Σ,P), and f : �n ×Ξ −→ �, g : �n × Ξ −→ �

m

are measurable functions for every x ∈ �
n. We can see that the main components of a sto-

chastic program are a decision vector x that must satisfy constraints x ∈ C(ξ), a decision
criterion f and a probability distribution P of the random variable ξ. Further details on
static (one-stage) stochastic programs can be found in the previous paper [22]. The paper
focuses on two-stage stochastic programs. More information and references on similar theme
can be found in [19], [20] and in [21]. However, the emphasize is put on modelling and a non-
linear case that is suitable for engineering applications (see [12], [29], [37] and [18]) and cases
with integer variables are also mentioned. It is important to notice that many introduced
modelling and algorithmic ideas come from application areas. Surprisingly, various financial
models involving utility functions may bring inspiration for nonlinear programs designed for
engineering problems, see [21]. In addition, various applications in logistics (see [17] or sche-
duling problems as a fixed interval scheduling problem) involve integer variables and might
be even nonlinear because of pricing related terms, and hence, they are inspiring design of
engineering models where some structural optimization has to be considered.

Wait-and-see and here-and-now approaches. The main question that should be answered
is when the decision will be made — before the random parameters ξ are observed or
after the observations ξs are known. When the decision x is made after the observing the
randomness ξ, this case is called the wait-and-see (WS) approach. Decision makers must
often make decisions before the observations of ξ are known. In this case, they are using
a so called here-and-now (HN) approach as the decision x must be the same for any future
realization of ξ.

Penalty for infeasibility, recourse constraints, and randomness in penalty. The important
modelling approach in stochastic programming we will further follow in the paper is based
on the idea that constraints may be relaxed, and hence, the discrepancies will be penalized.

Engineering MECHANICS 337

This idea leads to the program:

? ∈ argmin
x

{fRP(x) | x ∈ Cx} or min
x

{fEO(x) + Q(x) | x ∈ Cx} , (2)

where RP denotes Recourse Program, EO means Expected Objective and Cx is a feasible
set for the decision x and is defined only by deterministic constraints describing C. We left
out explicit constraints depending on a random parameter ξ. The chosen optimal decision x
is based on the objective fRP(x) composed of the expected cost part fEO(x) = Eξ{f(x; ξ)}
and the additional cost denoted Q : �n −→ � ∪ {+∞} where the infinite values of Q(x)
are assigned for ‘faraway decisions’ x. We suppose that the constraints g(x; ξ) ◦ 0 have
a soft form. It means that if a constraint is not satisfied then the WS recourse action y(ξ)
can be taken to get the feasibility back. Such a recourse action usually depends on the
random parameters ξ, because it follows after the observation of the infeasibility caused by
a random influence CRP = {x ∈ X | ∃y(ξ) ∈ Y : h(g(x; ξ),y(ξ)) ◦ 0, a.s.}. The function
h(., .) describes how recourse actions enter the set of constraints. It seems reasonable to
expect that the function Q(x) has to depend on the constraint functions that involve random
parameters. This results in the fact that the penalty function Q(x) must either ‘suppress’
the influence of a random parameter ξ or its definition is not complete and its value changes
with a varying value of ξ. Therefore, we extend a concept of the penalty Q(x) taking into
account ξ, and we define Q : �n × Ξ −→ � ∪ {+∞}, so called a recourse cost function.
It is assumed that this function is always measurable. This new penalty function Q(x; ξ)
changes, with the decision x and observation of ξ, so we need to assign the deterministic
reformulation to it. Then we return to Q(x) symbol and define an average recourse cost, as
Q(x) = Eξ{Q(x; ξ)}. This cost also represents an average penalty for repeated observations.
If Q(x; ξ) = +∞ with strictly positive probability, then Q(x) = +∞.

Recourse action and recourse program. The further extension is related to the idea that the
recourse cost Q(x; ξ) is based on an additional recourse action y∗, correcting the result of
a realization of random parameters in such a way that constraints with random parameters
are satisfied after this action. The recourse action is made after the observations are known,
then it depends on ξ, and we have y∗(ξ) together with additional costs q(x,y∗(ξ); ξ). It
is reasonable to assume that the recourse action can be often realized in different ways, sa-
tisfying for the fixed x : y∗(ξ) ∈ CRP

y (x) = Cy(x; ξ) = {y(ξ) ∈ Y | h(g(x; ξ),y(ξ)) ◦ 0 a.s.}.
For various feasible recourse actions y(ξ), we may obtain different prices q(x,y(ξ); ξ),
and naturally, we will search the cheapest recourse action ymin(ξ). Hence, we will ob-
tain Q(x; ξ) = q(x,ymin(ξ); ξ). For each realization ξs of ξ and decision x, we have the
following recourse program (RP):

Q(x; ξs) = min
y(ξs)

{q(x,y(ξs); ξs) | h(g(x; ξs),y(ξs)) ◦ 0,y(ξs) ∈ Y } . (3)

This program (3) defines the recourse action ymin(ξ) implicitly. Using inf instead of min in
the recourse program assigns +∞ value to Q(x; ξ) for the infeasible solutions.

Two decision stages. Analysing ideas of previous paragraphs, we can see that we have
turned from static programs discussed in previous paper [22] to the programs having two
decision stages. So, the decision x, obtained as the solution of the first-stage program (master
program) (2), is followed by the decision y(ξ) that solves the second-stage program (sub

338 Popela P. et al.: Two-Stage Stochastic Programming for Engineering Problems

program) (3). Precisely, the first-stage decision x ∈ Cx is selected before the realization ξs

of a random parameter ξ is observed. After this information becomes available, the decision
process continues with the second-stage decision y(ξs) ∈ CRP

y (x) that depends on the first-
stage decision x and also uses the observed information ξs. Such a decision process can be
described by Figure 1.

Fig.1: The sequence decision — observation — decision

We must note here that it is not obvious to mark the dependence of y on the decision x
in the notation y(ξ) explicitly, in opposite to the dependence of y on ξ. Following Figure 1,
we may put together the first-stage program (2) and the second-stage program (3) to have
a complete mathematical description of the discussed decision situation. We may start with
underlying mathematical programs at the background of (2) and (3), and we have:

? ∈ argmin
x,y

{f(x; ξ) + q(x;y; ξ) | x ∈ Cx,h(g(x; ξ);y) ◦ 0,y ∈ Y } , (4)

which is an underlying mathematical program for stochastic programs with recourse. As
we have mentioned above it is only syntactical description, and hence, we denoted here
the action y without mentioning the dependence on ξ explicitly. Subsequently, we can
include (3) into (2), and this results in:

? ∈ argmin
x

{Eξ{f(x; ξ)+min
y(ξ)

q(x;y(ξ); ξ)} | x ∈ Cx,h(g(x; ξ);y(ξ))◦0,y(ξ) ∈ Y, a.s.} . (5)

We see that the second-stage objective was involved in the first-stage objective by substi-
tution, and constraints were simply applied together on variables of both stages. Formula-
tion (5), in comparison with (3), reflects the random nature of ξ, and it accepts decisions
that are almost surely feasible.

Two stages and recourse. The paper deals with two-stage programs that have been named
in various ways by different authors (e.g., two-stage programs, programs with recourse,
two-stage programs with recourse). We present our terminological viewpoint motivated by
modelling needs that tries to bring more clarity and better understanding of these concepts.
We have started with introducing the second-stage decision as a decision required only in
the case of recourse necessity. Therefore, this decision is interpreted as an updating activity,
which brings additional recourse costs. It may happen that for certain decision x, constraints
involving randomness are satisfied after getting an observation ξs of ξ without any need of
the recourse action. When no recourse action y(ξs) is required, no recourse cost Q(x; ξs)
is paid. It seems that the suitable model in this case can mix one-stage and two-stage
structures. Because we prefer a fixed decision structure, we model no recourse action as the
second-stage decision y(ξs) = 0, which is feasible (h(g(x; ξ);0) ◦ 0 a.s.), and we suppose
that the nonnegative penalty function q satisfies q(x;0; ξ) = 0. This modelling approach
will be called stochastic programming with recourse. If the second-stage decision cannot
be abandoned because it represents not only a recourse action related to the first-stage
constraints including randomness, but it is also the action required by the second-stage

Engineering MECHANICS 339

constraints themselves, we will talk about two-stage stochastic programming in general,
and we will analyse it in the following paragraphs. There are practical examples when the
second-stage decision is composed of two parts. The first one is a necessary stage-required
action, the next one is an occasional randomness-related recourse. Such programs will be
called two-stage stochastic programs with recourse.

2. General programs and basic concepts

Static and two-stage programs. At first, we return to formulas (2)–(5), and remember-
ing previously introduced two-stage structure, we discuss two-stage underlying program, as
follows:

? ∈ argmin
x

{f1(x; ξ) + Q1(x; ξ) | x ∈ Cx(ξ)} . (6)

In addition to (4), we accept that ξ may influence both Cx and f1. However, the
independence of ξ on the first-stage decision x is assumed. In comparison with (1),
we have f(x; ξ) = f1(x; ξ) + Q1(x; ξ) (index 1 emphasizes the first-stage relation) and
C(ξ) = Cx(ξ). Therefore, all choices of deterministic reformulations from the pa-
per [22] published in 2010 may also be used for (6), together with introduced abbre-
viations. Specifically, HN-programs with EO-objective function will be considered (see
minx{Eξ{f1(x; ξ) + Q1(x; ξ) | x ∈ Cx(ξ) a.s.}). We must add that the idea to use the ex-
pectation for the second stage is useful in the case when we deal with long series of similar
decisions, and we want to use the two-stage model repeatedly. When we have to work with
a unique decision, other modelling approaches used in paper [22] may be more suitable. We
stress that Q(x; ξ) values are defined implicitly as solutions of second-stage programs (3).
Hence, the structure of (3) has to affect the properties of Q(x; ξ), and this fact motivates
further investigation of Q(x; ξ) and Q(x) properties.

Deterministic reformulations and their properties. Answers to many theoretical questions
may help in model building with formulation of a suitable deterministic reformulation and
in model solving with a choice of a proper algorithm. We shortly revise several useful
theoretical properties, and they will be utilized with algorithms later. At first, measurability
is assumed for all considered functions depending on random elements, and questions about
measurability of derived functions must be studied. Usually, the assumption of existence
and finiteness of first and second moments of random elements is the initial step to ana-
lysis of existence and finiteness of the objective function value and optimal solution (see
Wets [34] for overview). The existence and type of optimum often depend on continuity
properties, and convexity properties either with respect to x or to ξ. Differentiability is
required when Karush-Kuhn-Tucker like optimality conditions are derived in [34], and it
also helps with acceleration of algorithm convergence, because gradient-based computations
may be involved. Program solvability is often tightly related to the properties as linearity,
separability, data sparsity, and presence of special structures. Results in theory of stability
are useful for program approximation and postprocessing. Therefore, the successful choice
of deterministic reformulation is related to the truthful description of the studied problem,
as well as, to discussed properties.

Generalized recourse. Two-stage stochastic programs may be formulated in a quite general
manner. For general modelling purposes, we may introduce recourse that is more general
than the additive recourse. In addition, a different characteristic in comparison with the

340 Popela P. et al.: Two-Stage Stochastic Programming for Engineering Problems

expectation may be also considered (cf. [34]):

? ∈ argmin
x

{Eξ{f(x; ξ)} | f(x; ξ) = f1(f11(x; ξ), Q1(x; ξ)) ,

x ∈ Cx(ξ) = {x ∈ �
n1 | g1(x; ξ) ◦ 0} a.s.}

where

Q1(x; ξ) = inf
y(ξ)

{q(x,y(ξ); ξ) | y(ξ) ∈ Cy(x; ξ) = {y(ξ) ∈ �
n2 | g2(x;y(ξ); ξ) ◦ 0 a.s.}} .

(7)

In (7), we use the rule that we add stage indicating indices (see f11) everytime it is necessary.
We accept that f(x; ξ) and Eξ{f(x; ξ)} may take the value +∞ (see inf in the second stage).
This assumes the presence of hidden (so called induced) constraints applied to x. Similarly
as in [34], we may denote the set of induced constraints as K = {x ∈ Cx | Q(x) < +∞}. If
K = �

n1 then we talk about complete recourse, and K ⊂ Cx identifies relatively complete

recourse (see Wets [34]). Simple recourse refers to the case when constraints of the second-
stage program uniquely determine the recourse decision y(ξ) for all x and ξ (see Wets [34]).

Deterministic reformulation with explicit nonlinear recourse. Kall and Wallace [11] discuss
properties of the following deterministic reformulation with nonlinear recourse :

? ∈ argmin
x

{Eξ{f(x; ξ)} | x ∈ Cx} ,

f(x; ξ) = f1(x; ξ) + min
y(ξ)

{q(y(ξ)) | h2(y(ξ)) ≥ g+
2 (x; ξ),y(ξ) ∈ Y a.s.} ,

(8)

where h2 : �n2 −→ �
m2 , g2 : �n1 × Ξ −→ �

m2 . If g2(x; ξ) ≤ 0 then g+
2 (x; ξ) = 0,

otherwise g+
2 (x; ξ) = g2(x; ξ). Convexity and differentiability conditions for (8) are given

in [11]. Birge and Louveaux [1] summarize theoretical results for similar two-stage stochastic
nonlinear programs with additive form of the recourse :

? ∈ argmin
x

{f(x) + Q(x) | x ∈ Cx} ,

Q(x) = Eξ{Q(x; ξ)} = Eξ

{
min
y(ξ)

{f2(y(ξ); ξ) | h2(y(ξ); ξ) ◦ g2(x; ξ),y(ξ) ∈ Y a.s.}
}

.
(9)

They introduce measurability conditions for Q(x; ξ) and discuss convexity of Q(x; ξ)
and Q(x), together with continuity and differentiability conditions.

3. Scenario-based programs

Discrete random variable. If ξ is a random element with a finite discrete distribution
(|Ξ| = S < ℵ0), we denote ∀s ∈ S : ys = y(ξs), ps = P (ξ = ξs) ≥ 0,

∑S
s=1 ps = 1. In this

case, the expectation E is expressed explicitly Eξ{Q(x; ξ)} =
∑S

s=1 psQ(x; ξs), and we can
easily delete scenarios with zero probability. So, by computational purposes, we prefer to
deal with the case of discrete random variable ξ with a finite support. This case is also called
a scenario-based (SB) approach to two-stage stochastic programs. For nonlinear underlying
program (4), we receive :

? ∈ argmin
x

{
f(x) +

S∑
s=1

psQ(x; ξs) | x ∈ Cx

}
,

Q(x; ξs) = min
ys

{q(x;ys; ξs) | ys ∈ Cy(x; ξs)} .

(10)

Engineering MECHANICS 341

Scenario tree. Structure of program (10) may be graphically represented with a so called
scenario tree, as Figure 2 shows.

The node 1 in the top level represents the first-stage program, arcs denote realizations ξs,
and nodes in the bottom level correspond to the second-stage programs.

Fig.2: Scenario tree for two-stage program

Large-scale programs. We may write (10) as nested programs. Because of discrete distri-
bution, we may exchange the order of Eξ and minys in (10). Then, we have for nonlinear
case:

? ∈ argmin
x,ys:s∈S

{
f(x) +

S∑
s=1

psq(x;ys; ξs) | x ∈ Cx,ys ∈ Cy(x; ξs), s ∈ S
}

. (11)

The programs like (11) are specifically structured large-scale deterministic programs. They
are frequently employed, because they may also be obtained by discretization or sampling in
the case of continuous random variable. The size of program (11) can be very large. It grows
exponentially with the size of support. As usual, we denote the support set for hi(ξ) as Ξi,
and m2 is a number of second-stage constraints in the underlying mathematical program.
The first-stage program has m1 constraints, the second-stage problem has m =

∏m2
i=1 |Ξi|

constraints for independent random components of h(ξ).

Scenarios. For solution of (11), we need to know scenarios ξs with their probabilities ps.
They may be found in different ways and we list several possibilities here : (1) If we know
a distribution of ξ : (a) and Ξ is finite and small, we take all ξs as scenarios for (11). (b) and
Ξ is large, we choose several scenarios: (I) by an expert opinion about their importance, or
(II) by a representative discretization, or (III) by sampling. (2) If we do not have complete
information about distribution of ξ : (a) then we may utilize the worst-case analysis; (b) then
we may try to find out more information. There are following possibilities : (I) analysis of
observations and historical data (usually rare events cannot be discovered), (II) hypothesis
verification by experiments and statistical methods, (III) consultation of an expert’s opinion.
Solvability of scenario-based (SB) programs is related to their size, and so, to the number
of scenarios. Such SB program is then either formulated directly in this SB form, or it is
obtained by discretization, or discrete values are received by sampling. If the manageable
size of scenario set was defined by Wets in 1988 (see [34]) as less then 10 000 scenarios
(for a small program corresponding each considered scenario), during the last 25 years this
number increased to tens of millions.

342 Popela P. et al.: Two-Stage Stochastic Programming for Engineering Problems

Fig.3: Scenarios with nonanticipativity constraints

Explicit nonanticipativity constraints. As we know, programs of type (10) also embrace the
requirement of nonanticipativity. The following formulation is the reformulation to (10),
and it expresses the requirement of nonanticipativity explicitly with nonanticipativity con-
straints. They are often used in algorithm development, see the PHA in the next sections.
For nonlinear case, we have:

? ∈ argmin
xs,ys:s∈S

{
S∑

s=1

ps(f(xs) + q(xs;ys; ξs)) |

xs ∈ Cx,ys ∈ Cy(xs; ξs), s ∈ S, ∀r, u ∈ S : xr = xu

}
.

(12)

There are many redundant nonanticipativity constraints ∀r, u ∈ S : xr = xu in (12). We
may reduce their number in different ways. Very often r is fixed to 1, and u ∈ S (‘star
form’). Another possibility is to use only circular references: ∀s ∈ S \ {S} : xs = xs+1.
General suggestions of how to use permutations and matrix U composed of zeroes and ones
may be found, e.g., in [19]. This larger (instead of one x variable, we have S variables xs)
but easy decomposable formulation is used in the algorithms based on the constraints relax-
ation. We may describe this situation graphically with Figure 3, where dash lines identify
nonanticipativity constraints.

4. Special cases

The first-stage randomness. We already noticed in (6) that randomness may also influence
the first-stage program. We may deal with this first-stage randomness in various ways. If
its realization cannot be observed before taking decision x, we add randomness to ξ and
use HN approach. The situation is more complicated when random parameters are also
involved in the first-stage constraints. Then, a suitable deterministic reformulation from
paper published in 2010 [22] has to be selected. If realizations of the first-stage randomness
are at least partly observed, then we may apply the combined objective. If our observations
are complete, we use WS approach. It is typical for certain metallurgical problems that
observed information is incomplete or available later.

Combined constraints and objectives. Although it is not typical, two-stage programs can
also be enriched with probabilistic terms. First analytical attempts were realized by Charnes
and Kirby. The influence of probabilistic constraints on two-stage stochastic program prop-
erties and solution techniques was analysed by Wets. An interesting idea was presented

Engineering MECHANICS 343

by Prekopa [23] who discussed the possibilities of Cx modification with relaxed induced
constraints : {x ∈ �

n1 | P (Q(x; ξ) < +∞) ≥ α}.
Quadratic recourse. Many program changes are algorithmically motivated. For example,
Birge, Pollock, and Qi present a quadratic recourse representation of the two-stage stochastic
linear program. They show how their differentiable (with respect to x) quadratic recourse
function approximates the linear recourse function, and they solve this approximation of the
original program with high convergence rate algorithm.

Partial information available. Sometimes, only partial information about realized random-
ness is available. For instance, this situation occurs when randomness also influences a mo-
delled problem after taking a second-stage decision. Working with melt control problems,
we can expect that after the last alloying, a small influence of random losses may change
the final composition of the melt. Among approaches presented in this paragraph, the dis-
cussed situation inspires the question of whether we may add another recourse action after
this new observation. This question motivates further multistage stochastic program use.
Various combinations of HN and WS approaches (or adaptive and anticipative models) can
be utilized in this situation. Wets [34] developed a general approach. He represents the
available information by a subfield B of field of all events Σ for static case as follows:

? ∈ argmin
x(ξ)

{Eξ{f(x(ξ); ξ) | B} | Eξ{g(x(ξ); ξ) | B} ◦ 0,x(ξ) ∈ X a.s.} . (13)

Decisions x(ξ) are B measurable, and Eξ{. | B} is a conditional expectation with respect
to B. The decision x(ξ) is WS for B = Σ and HN for B = {∅, Ξ}. The choice in between
these extremal possibilities models partial information availability. Because computations
are complicated even for simple B, Wets suggests the parametric approach in [34]. Then,
two-stage stochastic programs with only partial information about ξ after the first-stage
decision may use the idea of (13) for the second-stage program formulation.

Decision dependent randomness. In the previous paragraph, we discussed the case of partial
information available about realizations of ξ. A more general situation arises when infor-
mation about distribution is also incomplete. Related problems were studied, especially by
Dupačová. In certain situations, information about distribution is incomplete, because dis-
tribution of ξ (or B, see Varaiya and Wets [31]) may change with decision x. This situation
may occur, e.g., when the first-stage big investment decision changes market expectations,
or when certain input alloy properties qualitatively influence melt losses. These examples
show that the usual requirement to have independent x and ξ may be quite restrictive in
practical applications. This decision dependent randomness can be described in many ways:
by verbal description, by distribution selection rule, by special constraints, by mapping con-
necting x values with distributions P ∈ Π, by change of distribution parameters with change
of x, and by functional dependence ξ on x. A similar situation also arises in (13) when B
depends nonlinearly on x, as was discussed in [31]. Discussion about decision dependent
randomness started with the Varaiya and Wets article [31] when they classified two main
problems with two-stage programs (distribution and information availability dependence).
Jonsbr̊aten, Wets, and Woodruff [9] present new research results. They identify class of pro-
grams that are manageable by their approach, propose an algorithm, and discuss relations
to stochastic integer programming. They concentrated on programs where distributions and
variables controlling information availability are discrete. There is also area of stochastic

344 Popela P. et al.: Two-Stage Stochastic Programming for Engineering Problems

programs designed for logistics involving pricing mechanisms (cf. [17] and [8] for the re-
cent development) that can inspire modelling of various structural features of engineering
problems when the design variables influence the probability distribution.

The integer first stage. Two-stage stochastic linear programs with integer variables is
usually much harder to solve. An overview of recent research results is presented by Klein
Haneveld, Stougie, and van der Vlerk in [6]. Complexity of integer programs was initially
studied by Stougie [30]. For fixed recourse and integer variables only in the first stage, we
obtain an integer program having a convex objective term Q(x). In this case, a combination
of the L-shaped method with branch-and-bound algorithm was developed. However, for
the large scale problems (see [8] and [7]) based on real world data, heuristics can help,
see [26] and [13].

The integer second stage. Even more difficult problems arise when integer variables are

contained in the second stage program. Especially, Q(x) convexity is lost. Theoretical
results about complete mixed-integer recourse were derived by Schultz, e.g., [28]. Carõe and
Tind [2] consider the L-shaped decomposition for two-stage stochastic integer programs in
general. A challenge is to find a substitute for the recourse problem that would not require
the second stage variables to be integer. More specifically, we want to replace Q(x) by other
function using a convex hull. There are promising results by Stougie, Klein Haneveld and
Van der Vlerk for stochastic programs with simple recourse.

Network structure. The case of two-stage stochastic program involving a network struc-
ture has been studied by Wallace and his collaborators. Feasibility conditions are stu-
died, together with bounds, and special algorithms. A reader will find the explanatory
description and insightful discussion of related problems in the textbook written by Kall
and Wallace [11].

5. Solution techniques

Models and solutions. Up to now, we have discussed modelling questions related to two-stage
programs. We noticed classical theoretical results that were achieved in the initial research
period when high performance computers could not help with algorithmic computations.
They bring important insights and prepare conditions for an algorithm use. However, built
models, often motivated by practical problems, are necessary to solve. Therefore, solution
approaches are considered in the rest of this text. Anticipating possible questions related to
solution approaches, we may list following problems:

– description of input/output data structures,
– development of the formal language for algorithm description,
– a choice of stopping criteria,
– analysis of algorithm convergence conditions (necessary and sufficient) and properties

(degeneracy, cycling, stalling, etc.),
– derivation of theoretical convergence rate and its comparison with practical experi-

ence,
– estimation of memory and operational requirements subject to program size.

However, we will concentrate on ideas and common aspects, so all these questions will
not be systematically presented. An interested reader will find complete information in
references.

Engineering MECHANICS 345

Transformations and algorithms. Algorithm use is often preceded by certain transformation
of the original program. This transformation changes the original program into a reformu-
lation transformed one, easily solvable. The program transformation is often based on syn-
tactical manipulations. Hence, consideration of possible transformation errors is not usually
needed. Different algorithms have been proposed for solving stochastic programs of various
types. At first, we may obtain an explicit mathematical program when Q(x) is computed
explicitly. The resulting program is either a nonlinear program having special properties or
a large-scale nonlinear program. So, modified traditional algorithms are employed. Mathe-
matical programming algorithms were successfully used in special cases (see Nazareth and
Wets [16]). If dual block-angular structure of a linear program is detected then decompo-
sition algorithms as the L-shaped method and regularized decomposition may be utilized.
Other decomposition approaches allowing nonlinearities are related to the augmented La-
grangian use. As usual, there is a difference between algorithms developed for deterministic
reformulations, which can be transformed in the explicit mathematical programs, and algo-
rithms working with the original implicit formulation of deterministic reformulations. The
latter method frequently calls for internal sampling procedures (see a stochastic quasigradi-
ent method).

Approximations and modifications. If any suitable transformation was not found and al-
gorithms cannot be directly used, then a program approximation may help. Theoretical
basement for approximation techniques is derived from the idea that under certain assump-
tions any approximation of the objective function Eξ{f(x; ξ)} that is tight enough ∀x ∈ Cx

guarantees the similar quality for the approximation of the optimal value zEO
min and the opti-

mal solution xEO
min. We may consider approximations of two types. They are based, at first,

on the external sampling of ξ. A small-enough scenario tree is constructed and the approxi-
mating program is solved with one of the aforementioned algorithms. Error estimates can
be obtained by statistical procedures. Deterministic approximation schemes were developed
as the alternative to external sampling methods. They build a framework for iterative appli-
cation of previous algorithms to an updated program. As with approximations in numerical
mathematics, convergence is studied. Errors of approximations are constructed with special
bounds. Sometimes, subjective (robusting) or additional (preprocessing, postprocessing)
techniques may be utilized to obtain the original problem solution. Although they have
various origins, contents, and purposes, we will call them together modifications.

Mathematical programming algorithms. Nazareth and Wets present a broad overview [16]
of mathematical programming methods in stochastic programming. The main disadvantage
of many mathematical programming algorithms is related to the assumption that gradients
of all functions describing programs are easily available, because this is not the general case
in stochastic programming. So, these algorithms are frequently used for the solution of
specific programs (as aforementioned programs with simple recourse).

Basic Lagrangian-based algorithms. One unpleasant difficulty with discrete random param-
eters ξ is that Q(x) loses differentiability. Therefore, the L-shaped related methods are
useful, because they require only cutting planes – the subgradient based information. How-
ever, these methods were motivated by linear programs, and they were extended to cover
certain nonlinear problems. In contrast, Lagrangian-based algorithms are motivated by non-
linear programming theory and may be more flexible. The basic idea of these algorithms

346 Popela P. et al.: Two-Stage Stochastic Programming for Engineering Problems

is that scenario-related programs are linked only by nonanticipativity constraints. If these
constraints are relaxed, then the solution algorithm is reduced to the solution of separate
programs for each scenario. For the scenario-based nonlinear program (10), we may write
the dual program:

? argmax
π

ϑ(π) (14)

ϑ(π) = inf
xs,ys:s∈S

{
S∑

s=1

ps

(
f(xs) + q(xs;ys; ξs) + πT

s

(
xs −

S∑
l=1

plxl

))
|

xs ∈ Cx,ys ∈ Cy(xs; ξs), s ∈ S
}

.
(15)

Gradient method for this dual (Lagrangian Dual Ascent Method (LDAM)) can be formed
as follows (see [1]) :

Algorithm 1 (LDAM) :

1. Set π[0] := (π1[0]T, . . . , πS [0]T)T and n := 0.

2. Fix π := π[n] in (15) and find the optimal solution (x[n]T,y[n]T)T.

3. If ∀s ∈ S : xs[n] =
∑S

l=1 pl xl[n], then STOP, and the overall optimal solution is found.
Otherwise, set π̂s[n] := xs[n] −∑S

l=1 xl[n] and form π̂[n].

4. Let λ[n] ∈ argminλ{ϑ(π[n] + λ π̂[n]) | π[n] + λ π̂[n] ≥ 0, λ ≥ 0}.
Then, π[n + 1] := π[n] + λ[n]π̂[n], n := n + 1, and GOTO 2 .

At first, we must notice that nonanticipativity constraints have the form of x(ξs) =
= Eξ{x(ξ)}. Under convexity assumptions, this algorithm converges to an optimal solu-
tion. It may require less iterations than the primal algorithm. Although nonanticipativity
constraints are included as ‘soft constraints’, actual experience has shown that the practical
convergence is slow. Other techniques to achieve faster convergence are based on adding a
quadratic term to the objective. In this way, we obtain the augmented Lagrangian methods
that utilize convexity properties and nonsingular Hessian to achieve superlinear convergence.
There are reports on the computational experience with the reformulation of ϑ:

ϑ(π) = inf
x,y

{
f(x0) +

S∑
s=1

ps

(
q(xs,ys; ξs) + πT

s (xs − x0) +
ρ

2
||xs − x0||2

)}
.

The algorithm switches between solution spaces of x0, π and separate spaces xs,ys.

Progressive hedging algorithm. Wets presents [35] a comparison of the scenario aggregation
with scenario analysis often used by practitioners (we recall that scenario analysis utilizes
Eξ{x(ξ)} as the HN-decision). The ideas of scenario aggregation are included into the algo-
rithm. The progressive hedging algorithm (PHA) is proposed by Rockafellar and Wets [25].
It is aimed at solving scenario-based two-stage stochastic linear and nonlinear programs.
This algorithm is also useful in cases when certain important scenarios must be taken into
account and we need a hedging optimal solution. During the iteration, all scenario pro-
grams are solved, and obtained solutions are averaged to have the outer approximation of
found solution. The objective of each scenario is updated using the input information about
nonanticipativity constraints and new information about iterations’ results. The sequence

Engineering MECHANICS 347

of x̂[n] converges to the optimal solution for the convex case, and its authors report al-
gorithm convergence also for certain nonconvex cases. The convergence of this method is
based on Rockafellar’s proximal point method. The progressive hedging algorithm has the
following form :

Algorithm 2 (PHA) :

1. Initialization: n := 1, ∀s ∈ S : ws[0] := 0, and choose x̂[0], ρ > 0.

2. ∀s ∈ S find the solution xs[n],ys[n] of the program:

? ∈ argmin
xs,ys

{
f(xs) + q(xs,ys; ξs) + ws[n − 1]Txs +

ρ

2
||xs − x̂[n − 1]||2 |

xs ∈ Cx,ys ∈ C(xs; ξs)
}

.

(16)

3. Compute the new average solution: x̂[n] :=
∑

s∈S ps xs[n]. Update perturbation terms
∀s ∈ S : ws[n] := ws[n − 1] + ρ(xs[n] − x̂[n]). If

∑
s∈S ps ws[n] = 0, then STOP,

otherwise n := n + 1 and GOTO 2 .

The main advantage for programming purposes is that PHA uses locally convergent
nonlinear programming algorithms having many available well-tested implementations. The
updating step is then quite simple to be realized. In addition, solution averages guarantee
robustness of computational process, but the convergence is slow. Helgason and Wallace [32]
discuss PHA properties and conclude that it is not necessary to solve the scenario programs
to optimality at early steps of the progressive hedging algorithm, because solving each
scenario program to optimality can be very inefficient.

Diagonal quadratic approximation algorithm. Mulvey and Ruszczyński [15] have developed
a variant of the augmented Lagrangian method called Diagonal Quadratic Approximation

(DQA). Their approach is based on writing the nonanticipativity constraints with a permu-
tation cyclic order (the bijection σ : S −→ S defines a permutation, the inverse relation is
denoted σ−1). Then, they approximate the objective augmented terms ||xs − xσ(s)||2 with
substitution of the current x̂σ(s)[n]. Then the original augmented Lagrangian program is
decomposed into S sub programs :

? ∈ argmin
xs,ys

{
f(xs) + q(xs,ys, ξ

s) + (πs − πσ−1(s))Tx +

+
ρ

2
(||xs − x̂σ(s)||2 + ||xs − x̂σ−1(s)||2) | xs ∈ Cx,ys ∈ Cy(xs, ξ

s)
}

.

(17)

The DQA method is completely generalizable to nonlinear problems, and it may be imple-
mented in parallel.

6. Sampling algorithms

Motivation. Until now, presented algorithms were designed for scenario-based stochastic
programs and for programs with explicitly computed expectations. If a distribution of ξ is
continuous or discrete with a large support, then some approximation technique must be em-
ployed. At first, we may utilize an internal sampling. This is based on the random sampling
within a deterministic optimization algorithm. A general purpose stochastic quasigradient

348 Popela P. et al.: Two-Stage Stochastic Programming for Engineering Problems

technique may be found in [4], [11] and [23]. However, there are also other stochastic al-
gorithms that may take advantages from the special structure of stochastic program. We
may involve sampling into various algorithms. At the beginning of this section, we mention
the algorithm SSMO (Successive Sample Mean Optimization) that is a common ancestor of
several proposed methods, because it optimizes a sample mean instead of the expectation.

Algorithm 3 (SSMO) :

1. n := 0 and Q(x)[0] := 0.

2. n := n + 1, randomly generate an observation ξ[n] := ξn independent of any previously
generated observations.

3. Update Q(x)[n] := n−1
n Q(x)[n − 1] + 1

nQ(x; ξ[n]).

4. Solve ? ∈ argminx{cT x + Q(x)[n] | x ∈ Cx} to obtain x[n], and GOTO 2 .

We should notice that the termination criterion is not included.

Stochastic quasigradient. Stochastic quasigradient methods (SQG) may be also used for
solution of two-stage programs (5). The SQG method is based on the repeated choice of

search directions, so the observations of Q(x; ξ) are used in each iteration. Although SQG
algorithms are useful for general convex programs, the choice of step-length and their termi-
nation is often solved problem dependent. The convergence of the algorithm is usually slow,
the improvements were suggested by several authors. The whole class of these algorithms
were developed by Ermoliev [3] and Gaivoronski [5].

Estimate. When we are faced with a large two-stage stochastic program, it is common to
approximate it. We recall the notation that also covers two-stage programs (cf. (6)):

zEO
min = Eξ{f(xEO

min; ξ)} = min
x

{Eξ{f(x; ξ)} | x ∈ Cx} . (18)

There are different ways to approximate two-stage program (18). The first one, discussed
in this section is to reduce a program size with random sampling. We denote a ran-
dom sample from ξ as ξ[.] = (ξ[1], . . . , ξ[ν])T. There are ξ[s] random variables identically
distributed as ξ and they are independent. The realization of this random sample is usu-
ally denoted ξs

[.] = (ξs
[1], . . . , ξs

[ν])
T. If it is contextually clear, then we simplify our no-

tation as follows ξs
[.] = (ξ1, . . . , ξν). For computational purposes, we may easily replace

Eξ{f(x; ξ)} (and hence Eξ{Q(x; ξ)} for two-stage programs) by the realization of a sample

mean 1
n

∑ν
s=1 f(x; ξs) (and 1

n

∑ν
s=1 Q(x; ξs) for two-stage programs) :

zν
min =

1
ν

ν∑
s=1

f(xν
min; ξs) = min

x

{
1
ν

ν∑
s=1

f(x; ξs) | x ∈ Cx

}
. (19)

Randomly generated observations of ξ may then serve to compute the estimate of the ob-
jective (and recourse) function.

Estimate quality. Therefore, scenarios are not selected by any expert, but by a random
procedure. Then, the scenarios ξs are used to build a scenario tree, and this reduced
program is solved instead of the original one. However, its blindfold and exaggerated use
can lead to misleading results. So, in addition, Monte Carlo techniques may be necessary to
obtain an estimate of how good is such a simplification. Then, repeated computations for

Engineering MECHANICS 349

different random samples of scenarios will inform us about the stability and sensitivity of the
original results. More precisely, we see that the most obvious way how to approximate (18)
with sampling is to use a sample mean as the estimate of the expected value. Then, we
obtain for sample ξ[.]:

ζν
min = zν

min(ξ[.]) =
1
ν

ν∑
s=1

f(xν
min(ξ[.]); ξ[s]) =

= min
x(�[.])

{
1
ν

ν∑
s=1

f(x(ξ[.]); ξ[s]) | x(ξ[.]) ∈ Cx a.s.

}
,

(20)

and the quality of replacing the unknown zEO
min and xEO

min (18) with zν
min and xν

min may be
evaluated by analysis of statistical properties of the random elements ζν

min = zν
min(ξ[.]) and

xν
min(ξ[.]).

Estimate consistency and asymptotic behaviour. The natural question rises of what we may
say about the estimates (e.g., ζν

min) and their quality when ν → ∞. Basic description of this
statistical framework for stochastic programs can show that under certain assumptions ζν

min

and xν
min(ξ[.]) are consistent estimates of zEO

min and xEO
min. However, the asymptotic normality

is achieved only under strong assumptions.

Confidence intervals and bounds. As in the previous paragraphs, we denote ξ[.] a sample
from ξ and we obtain the following 1 − α confidence interval for given x ∈ Cx and the
HN-objective function value:

P

(
1
ν

ν∑
s=1

f(x; ξ[s]) −
t1−α/2 s(x; ν)√

ν
≤

≤ Eξ{f(x; ξ)} ≤ 1
ν

ν∑
s=1

f(x; ξ[s]) +
t1−α/2 s(x; ν)√

ν

)
≈ 1 − α ,

(21)

where t1−α/2 denotes the 1−α/2 quantile of N(0; 1) (for small sample size ν, 1−α/2 quantile
of Student’s distribution with ν−1 degrees of freedom may be utilized), and s(x; ν) denotes
a usual estimate of the standard deviation

√
var f(x; ξ) using a sample ξ[.]. Similarly, the

1 − α confidence interval for the WS-program can be formulated:

P

(
1
ν

ν∑
s=1

min
x(�[s])

{f(x(ξ[s]); ξ[s]) | x(ξ[s]) ∈ Cx a.s.} − t1−α/2 sWS(ν)√
ν

≤

≤ Eξ

{
min
x(ξ)

{f(x(ξ); ξ) | x(ξ) ∈ Cx a.s.}
}

≤

≤ 1
ν

ν∑
s=1

min
x(�[s])

{f(x(ξ[s]); ξ[s]) | x(ξ[s]) ∈ Cx a.s.} +
t1−α/2 sWS(ν)√

ν

)
≈ 1 − α ,

(22)

where sWS(ν) denotes the usual estimate of the standard deviation
√

var zWS
min(ξ). Then, the

350 Popela P. et al.: Two-Stage Stochastic Programming for Engineering Problems

following sample-based lower bound and approximate probabilistic upper bound are derived:

1
ν

ν∑
s=1

min
x(�[s])

{f(x(ξ[s]); ξ[s]) | x(ξ[s]) ∈ Cx a.s.} − t1−α/2 sWS(ν)√
ν

≤

≤ min
x

{Eξ{f(x; ξ)} | x ∈ Cx} ≤

≤ min
x(�[.])

{
1
ν

ν∑
s=1

f(x(ξ[.]); ξ[s]) | x(ξ[.]) ∈ Cx

}
+

t1−α/2 s(xν
min(ξ[.]); ν)√
ν

.

(23)

Morton, Mak, and Wood prove under quite general assumptions [14] the following inequali-
ties :

Eξ{ζν
min} ≤ Eξ{ζν+1

min } ≤ zEO
min ≤ z = Eξ{f(x; ξ)} , (24)

where x is any feasible solution from Cx. They assume that a random sample from ξ denoted
as ξ[.] = (ξ[1], . . . , ξ[νu])T is available. They have νl random samples, each having size ν,
therefore ∀i = 1, . . . , νl :ξ[i.] = (ξ[i1], . . . , ξ[iν])T. They use inequalities (24) and the central
limit theorem to derive the following bounds :

P

(
1
νl

νl∑
i=1

min
x(�[i.])

{
1
ν

ν∑
s=1

f(x(ξ[i.]); ξ[is]) | x(ξ[i.]) ∈ Cx a.s.

}
− t1−α/2 sl(νl)√

νl
≤

≤ Eξ{ζν
min} ≤ zEO

min ≤ Eξ{f(x; ξ)} ≤

≤ 1
νu

νu∑
s=1

f(x; ξ[s]) +
t1−α/2 su(νu)√

νu

)
≈ 1 − α .

(25)

The symbol t1−α/2 denotes the 1−α/2 quantile of N(0; 1) distribution. Symbols sl(νl) and
su(νu) denote usual estimates of standard deviations

√
var ζν

min and
√

var f(x; ξ). Hence,
we may set α, then substitute observations ξs

[.] and ξs
[i.] in the formula (25), and we obtain

reliable bounds on the optimal value zEO
min.

We can summarize advantages and disadvantages of sampling based approximations :
the main advantages are that approximate confidence intervals are distribution free, and
no assumptions about convexity of the objective function are needed. The main difficulties
are that the precision of the bounds depends on the precision of the approximation by the
central limit theorem and on the sample size.

7. Conclusions

Approximation schemes. Hitherto, we are able to solve two-stage stochastic programs,
because we usually deal with one of the following situations :

– We are able to compute the expectation explicitly, and we transform a two-stage
program into the compact solvable mathematical program.

– Having a finite support of the random variable ξ, we use the effective algorithm
designed for specially structured large-scale programs.

– In other cases, we may employ a random sample either internally or externally with
respect to the optimization algorithm.

So, the important solution step is the program approximation motivated by the original
program complexity, and solvability. There are other approximating techniques of how to

Engineering MECHANICS 351

replace the original program to obtain a solution of newly introduced program that is good
enough also for the approximated program. We may try to find other solution possibilities
returning to the approximated program. Up to now, we have dealt with the approximation
of Eξ by the sample mean. There are also other types of the approximation in stochastic
programming. We see that the program may be approximated by the approximation of :
(1) the feasible set Cx, (2) the objective f , and (3) the distribution of ξ.

Approximation of the feasible set. The idea of modifying the feasible set Cx is very simple.
If we relax certain constraints (e.g., nonanticipativity constraints in PHA), we may solve
the program more easily, however, we obtain a lower bound of zEO

min. In an opposite way,
we may add several constraints, and the optimal value of modified program gives the upper
bound for zEO

min.

Approximation of the objective. The approximation of the objective is often based on the
replacement of Eξ{f(x; ξ)} with Eξ{

∑
i fi(x; ξi)}. Then, this continuous approximation re-

places the original high-dimensional integral with a combination of low-dimensional integrals
to obtain the upper bound for the convex recourse program. Usefulness of this technique
depends on the structure of f(x; ξ). Mainly, the interactions between various components

ξi of ξ may have only limited influence in the determination of the cost Eξ{f(x; ξ)} (cf.
separable simple recourse).

Approximation of the distribution. The majority of approximation methods involve dis-

cretization of an underlying probability measure. The discretization may be chosen to
provide upper or lower bounds on the objective function value. Both cases with a known
probability measure or unknown distribution with certain known characteristics (such as
mean and variance ranges) are considered. We may discretize ξ, and we approximate the
original distribution with a discrete one. It can be realized : (1) with numerical rules to
achieve good approximation, (2) by the expert selection of scenarios, and (3) by random
sampling. If the model size is also still quite large for discretized random parameters, then
the next reduction step may be based on the deletion of some ‘unimportant’ scenarios.

Preprocessing. Preprocessing is any technique that is utilized before use of the algorithm. It
often serves for model evaluation and simplification, see [11]. With preprocessing techniques,
we will notice deleting and aggregation of matrix rows and constraints. We will add remarks
about generating relatively complete recourse. The most important task for the modeller
utilizing stochastic programs is the reduction of the model size. This may be realized in
different ways.

Postprocessing. When a stochastic program is successfully solved, new questions usually
appear. Traditional questions are inherited from deterministic programming (sensitivity
analysis, stability with respect to constant parameters), and other questions are specific
for stochastic programs (stability with respect to distribution change, scenario probability
update, unimportant scenario deleting, and important scenario adding). All these techniques
realized after the program solution belong to postprocessing.

352 Popela P. et al.: Two-Stage Stochastic Programming for Engineering Problems

Acknowledgements

The present work has been supported by the Molde University College’s project NRF
Power Up Project – WP3 and by European Regional Development Fund in the framework
of the research project NETME Center under the Operational Program Research and De-
velopment for Innovation. Reg. No.CZ.1.05/2.1.00/01.0002, id code: ED0002/01/01.

References
[1] Birge J.R., Louveaux F.: Introduction to Stochastic Programming, Springer Series in Opera-

tions Research, Springer Verlag, Berlin, 1997
[2] Caroe C.C.: The L-shaped method in stochastic integer programming, 7th International Con-

ference on Stochastic Programming, June 26–29, 1995
[3] Ermoliev Y.M.: Stochastic quasigradient methods and their application to systems optimiza-

tion, Stochastics, 9:1–36, 1983
[4] Ermoliev Y.M., Wets R.J.-B., editors: Numerical Techniques for Stochastic Optimization Prob-

lems, Springer Series in Computational Mathematics, 10, Springer Verlag, Berlin, 1988
[5] Gaivoronski A.: Implementation of stochastic quasigradient methods, In Y.M. Ermoliev and

R.J.-B. Wets, editors, Numerical Techniques for Stochastic Optimization, pages 313–352,
Springer Verlag, Berlin, 1988, Chapter 16

[6] Haneveld W.K.K., Stougie L., van der Vlerk M.H.: Stochastic integer programming: State of
the art, Technical report, SOM, May 1998

[7] Holešovský J., Popela P., Roupec J.: On a disruption in congested networks, In Proceedings
of the 18th International Conference of Soft Computing MENDEL 2013, accepted

[8] Hrabec D., Popela P., Novotný J., Haugen K.K., Olstad A.: The stochastic network design
problem with pricing, In Proceedings of the 18th International Conference of Soft Computing
MENDEL 2012, pp. 416–421, 2012

[9] Jonsbr̊aten T.W., Woodruff D.L., Wets R.J.-B.: A class of stochastic programs with decision
dependent random elements, University of California Davis, April 14 1997

[10] Kall P.: Stochastic Linear Programming, Springer, Berlin, 1976
[11] Kall P., Wallace S.W.: Stochastic Programming, John Wiley and Sons, Chichester, 1994
[12] Lániková I., Štěpánek P., Šimůnek P.: The fully probabilistic design of concrete structures,

In Proceedings of the 16th International Conference on Soft Computing MENDEL 2010,
pp. 426–433, 2010

[13] Matoušek R., Žampachová E.: Promising GAHC and HC12 algorithms in global optimization
tasks, Optimization Methods & Software, vol. 26, no. 3, pp. 405–419, 2011

[14] Mak W.K., Morton D.P., Wood R.K.: Monte carlo bounding techniques for deterministic
solution quality in stochastic programs, The University of Texas at Austin, 1997

[15] Mulvey J.M., Ruszczyński A.: A diagonal quadratic approximation method for linear multi-
stage stochastic programming problems, In P. Kall, editor, System Modelling and Optimiza-
tion, pages 588–597, Springer, Berlin, 1992 Lecture Notes in Control and Information Sciences
180

[16] Nazareth J.L., Wets R.J.-B.: Nonlinear programming techniques applied to stochastic pro-
grams with recourse, In Y.M. Ermoliev and R.J.-B. Wets, editors, Numerical Techniques for
Stochastic Optimization, pages 95–122, Springer Verlag, Berlin, 1988, Chapter 4

[17] Olstad A., Haugen K.K., et al.: Omya Hustadmarmor: Optimizing the supply chain of calcium
carbonate slurry to the European paper making industry, INTERFACES fnalist in the Franz
Edelemann competition, Vol. 37, No. 1 : 1–13

[18] Pavlas M., Touš M., Bébar L., Stehĺık P.: Waste to energy? An evaluation of the environmental
impact, Applied Thermal Engineering, vol. 30, no. 16, pp. 2326–2332, 2010

[19] Popela P.: An Objected-Oriented Approach to Multistage Stochastic Programming, PhD The-
sis, Prague: Charles University, 1998

[20] Popela P.: Stochastic Programming Models and Methods for Technical Applications, Folia Fac-
ultatis Scientarum Naturalium Universitatis Masarykianae Brunensis, 11, pp. 181–206, (2002)

Engineering MECHANICS 353

[21] Popela P.: Numerical Techniques and Available Software, Chapter 8 in Part II, In J. Dupacova,
J. Hurt, J. Stepan: Stochastic Modeling in Economics and Finance, Applied Optimization,
Dordrecht/Boston/London: Kluwer Academic Publishers, 2002, s. 206–227

[22] Popela P.: Stochastic Programming Models for Engineering Design Problems, Engineering
Mechanics, Vol. 17, 2010, No. 5/6, p. 351–362

[23] Prékopa A.: Stochastic Programming, Kluwer Academic Publishers, 1995
[24] Rockafellar R.T., Wets R.J.-B.: A Lagrangian finite generation technique for solving linear-

quadratic problems in stochastic programming, Mathematical Programming Study, 28:63–93,
1986, Stochastic Programming 84, Part II, A. Prékopa and R.J.-B. Wets (eds.)

[25] Rockafellar R.T., Wets R.J.-B.: Scenarios and policy aggregation in optimization under un-
certainty, Mathematics of Operations Research, 16(1):119–147, 1991

[26] Roupec J.: Advanced genetic algorithms for engineering design problems, Engineering Me-
chanics, vol. 17, no. 5-6, pp. 407–417, 2011

[27] Ruszczyński A.: Parallel decomposition of multistage stochastic problems, Mathematical Pro-
gramming, 58(2):201–228, 1993

[28] Schultz R.: Continuity and stability in two-stage stochastic integer programming. In K. Marti,
editor, Stochastic Optimization: Numerical Methods and Technical Applications, pages 81–92,
Springer Verlag, Berlin, 1992, Lecture Notes in Economics and Mathematical Systems 379

[29] Štětina J., Klimeš L., Mauder T., Kavička F.: Final-structure prediction of continuously cast
billets, Materiali in tehnologije, vol. 46, no. 2, pp. 155–160, 2012

[30] Stougie L.: Design and analysis of algorithms for stochastic integer programming, PhD thesis,
Centrum for Wiskunde en Informatica, Amsterdam, 1985

[31] Varaiya P., Wets R.J.-B.: Stochastic dynamic optimization approaches and computation, In
Mathematical Programming, Recent Developments and Applications, pages 309–332, Kluwer
Academic Publishers, Dordrecht, 1989

[32] Wallace S.W., Helgason T.: Structural properties of the progressive hedging algorithm, Annals
of Operations Research, 30–31:445–456, 1991, John R. Birge and Roger J.-B. Wets (eds.)

[33] Wallace S.W.: Decision making under uncertainty: Is sensitivity analysis of any use? Opera-
tions Research, To appear in, 1998

[34] Wets R.J.-B.: Stochastic programming, In G.L. Nemhauser et al., editors, Handbook on OR
and MS, Vol. 1, pages 573–629, North-Holland, Amsterdam, 1989

[35] Wets R.J.-B.: The aggregation principle in scenario analysis and stochastic optimization, In
S.W. Wallace, editor, Algorithms and Model Formulations in Mathematical Programming,
pages 91–113, Springer, Berlin, 1989

[36] Wets R.J.-B.: Challenges in stochastic programming, Mathematical Programming, 75:115–135,
1996

[37] Žampachová E., Popela P., Mrázek M.: Optimum beam design via stochastic programming,
Kybernetika, vol. 46, pp. 575–586, 2010

Received in editor’s office : March 11, 2014
Approved for publishing : July 25, 2014

