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ANALYTICAL VELOCITY PROFILE
IN TUBE FOR LAMINAR AND TURBULENT FLOW

Jaroslav Štigler*

A new analytical formula of the velocity profile for both the laminar and turbulent
flow in a tube with a circular cross-section will be introduced in this article. This
formula is rather simple and easy to use. The advantage of this velocity profile is
that one formula can be used for laminar and turbulent flow. This new formula will
be compared with power law velocity profile and with the law of the wall also called
as the log-law.

Keywords : power-law, analytical velocity profile, vorticity, law of the wall, log-law,
turbulent shear stress

1. Introduction

The author is dealing with a fluid flow in a straight tube with a circular cross-section
governed by the pressure gradient in this paper. Some fundamental ideas of the new ana-
lytical velocity profile derivation and its comparison with the power law velocity profile and
with the log-law will be presented and discussed here.

The formula for the laminar velocity profile has to be mentioned first. The derivation of
it is possible to find in every book dedicated to the fluid mechanics. The laminar velocity
profile of the fluid flow governed by the pressure gradient is parabolic.

v = v(max)

[
1 −

( r
R

)2
]

(1)

where R is the tube radius, v(max) is the maximal velocity or the centerline velocity of the
velocity profile. It is assumed that there is only one velocity component in the tube axis
direction. This velocity profile expression can be also rewritten as a function of average
velocity v(av).

v = 2 v(av)

[
1 −

( r
R

)2
]
. (2)

This expression is more suitable for the practical use because the average velocity can be
easy expressed from the flow rate and the radius of tube. Both these expressions can be
rewritten to the dimensionless form.

v

v(max)
= 1 −

( r
R

)2

, (3)

* doc. Ing. J. Štigler, Ph.D., Brno University of Technology, Faculty of Mechanical Engineering, Energy
Institute, Victor Kaplan Department of Fluid Engineering, Technická 2896/2, Brno
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v

v(av)
= 2

[
1 −

( r
R

)2
]
. (4)

The expressions with the average velocity will be preferred in this paper.

In case of the turbulent flow it is more complicated to find some analytical solution.
Many researches have been trying to find it. One of the well-known expressions of the
turbulent velocity profile is the power law velocity profile. The power law velocity profile is
for example mentioned in [3] and it is expressed this way.

v = v(max)

[
1 − r

R

] 1
n

. (5)

It is also possible to rewrite this formula as a function of the average velocity v(av) instead
of the maximal velocity v(max).

v =
v(av)

2

(
1
n

+ 1
)(

1
n

+ 2
)[

1 − r

R

] 1
n

(6)

where n is a coefficient which is a function of the Reynolds number. It has to be determined
on the basis of the experimental data. It is possible to find this dependence on a Reynolds’
number in [3]. Some other expressions are mentioned in [2]. For example

n = 1 + 6

√
Re
50

(7)

or n can be also expressed by this formula.

n = 1.03 ln(Re) − 3.6 . (8)

The value n = 7 is reasonable for many practical flow approximations as it is mentioned by
Munson in [3].

This power law velocity profile has two fundamental discrepancies. First of them appears
near the tube wall. It consists in the infinite derivative value on the wall which means that
there is the infinite shear stress on the wall what represents infinite friction losses in the
tube.

Second discrepancy is related to the velocity profile smoothness at the tube center. The
first derivative of this formula is not smooth in the tube center. The utilizing of these
formulas is then restricted because of these fundamental discrepancies.

The problem near the wall has to be solved a different way by using other empirical
formulas which are valid only near the wall. The near wall region of the flow is called the
boundary layer or the shear layer. The boundary layer is an area of the flow near the wall
where magnitude of the friction (viscous) forces and dynamic forces are comparable. It can
be also defined as the area near the wall with the not zero vorticity. It means that curl v is
not zero. This boundary layer can be divided into three layers. The first of them is the one
which is nearest to the wall. It is called viscous sub-layer. The second one is the transition
area and the third one is the turbulent boundary layer.

It is necessary to define some quantities in order to be able to describe the velocity profile
in the boundary layer.

v∗ =
√
τw
�

(9)
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where v∗ is the shear velocity, τw is shear stress on the wall, � is fluid density. Then it is
possible to define the dimensionless velocity (v+) and the dimensionless distance from the
wall (y+).

v+ =
v

v∗
, (10)

y+ =
v∗ y
ν

(11)

where y is the distance from the wall.

The dimensionless velocity profile in viscous sublayer can be then expressed this way

v+ = y+ . (12)

The dimensionless velocity profile in the turbulent boundary layer can be expressed by
the log-law.

v+ =
1
κ

log(y+) +B . (13)

Different authors are using different values of the constants κ and B. For example the
used coefficients are : κ = 0.41 and B = 5.2 in the book [1], κ = 0.4 and B = 5 in the
book [2].

2. Introduction of a new velocity profile

The new velocity profile will be introduced after the previous brief overview of velocity
profiles in a tube with circular cross-section. It is based on the vorticity density γ distribution
over the tube cross-section. This vorticity induces the velocity. The vorticity density is
closely related with vorticity vector Ωi. The relationship between the induced velocity and
the vorticity density is through the Biot-Sawart law. Biot-Sawart law is derived for a vortex
filament element dsj . Vortex filament is represented by curve ‘s’ with the circulation Γ
around it. The situation is depicted in fig. 1. The Einstein summation convection will be
used in all mathematical expressions.

dvi =
Γ

4π r3
εijk dsj rk =

Γ
4π r3

εijk dsj (x′k − xk) . (14)

For instance the Biot-Sawart law can be applied on the infinite straight vortex filament
parallel to the x3 axis with the constant circulation Γ. This situation is depicted in fig. 2.

Fig.1: Biot-Sawart law Fig.2: Biot-Sawart law – the infinite straight vortex
filament parallel with the axis x3
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The velocity induced by such vortex filament at the point x′k can be expressed by the
term.

vi =
Γ

4π r2(0)
εi3k r(0)k =

Γ
4π r2(0)

εi3k (x′k − x(0)k) . (15)

Now the aim is to solve the velocity induced by the single circular vortex filament with the
constant circulation around it. Unfortunately there is no analytical solution of this problem.
The solution of it leads to the elliptical integrals. But the analytical solution exists for the
case of infinite straight pipe.

It is necessary to introduce the linear vorticity density in the case of the flow inside the
infinite straight pipe. The linear vorticity density is defined along the pipe axis, it means in
direction x1. The situation is depicted in fig. 3.

Fig.3: Circular vortex filaments aligned in the infinite length vortex tube

The relation between the linear vorticity density and the circulation is as follows.

dΓ = γ dx1 . (16)

Element of the circular vortex filament can be expressed this way

dsj = τj ds = τj R dα . (17)

It is possible to apply all the previous ideas into the Biot-Savart law.

dvi =
dΓ

4π r3
εijk dsj (x′k − xk) =

γ dx1

4π r3
ds εijk τj (x′k − xk) . (18)

Now it is possible to express the infinitesimal area of cylinder dS.

dS = dx1 ds = dx1 R dα . (19)

The velocity induced by a vorticity closed inside the infinite tube with radius R consists of
circular vortex filaments can be then expressed.

vi =
∫
S

εijk γj (x′k − xk) dS
2π r3

. (20)

The meaning of the quantities in the expression (10) is as follows; γ is the vorticity density
vector, x′k are the location coordinates of the induced velocity, xk are location coordinates



Engineering MECHANICS 375

of the vortex filament element, dS is an infinitesimal area with constant vorticity density
and constant tangential vector τj , r is the distance between the points x′k and xk. The area
of integration S is an infinite cylindrical surface.

It is possible to find the analytical solution of this integral. The velocity induced by this
vortex tube can be then expressed.

vi = γ εijk τj n(r)k (21)

where the τj is a unit vector tangential to the vortex filament, n(r)k is the unit vector in r

direction. The solution of a vector product εijk τj n(r)k is the unit vector in the tube axis
direction.

Now it is necessary to express the velocity for the case that the vorticity density γ varies
over cross-section it means that it is a function of radius inside of the tube. The variable
radius will be marked as r (radius of the vortex tube). The radius of the tube will be
marked R. It means that there will be a continuous distribution of the vorticity density
over the cross-section. It will be assumed, that the vorticity density distribution will be
a polynomial function of variable r.

γ =
N∑
n=0

A(n) r
n . (22)

The coefficients A(n) will be determined from the boundary conditions (slip condition on the
wall), from the given flow rate through tube, and from the condition of smoothness. The
velocity profile in a tube can be then expressed.

v = v(av)
N + 3
N + 1

[
1 −

( r
R

)N+1
]
. (23)

It is possible to compare this expression with the (1), (2) and (3). When N = 1 then it is
the expression for the laminar velocity profile, for N > 1 it is turbulent velocity profile and
for N → ∞ it is a piston profile, it is the case of the infinite Reynolds number. The value
of the power N can be expressed from the known pressure drop and flow rate in the tube.

N =
R2

2μ v(av)

p(1) − p(2)

L
− 3 . (24)

3. Discusion

It is possible to compare the power-law velocity profile (6) with different expressions for
the coefficient n and new velocity profile (23). The comparison is depicted in fig. 4. The
comparison is done for Re = 10 186. The value of the coefficient n is expressed from the
empirical formula (7) or (8). The power N in the case of new analytical velocity profile is
evaluated from expression (24). The pressure drop is calculated for the case of the hydraulic
smooth pipe. The friction coefficient λ can be then expressed by the formula.

λ =
0.3164

4
√

Re
. (25)
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Consequently the pressure drop can be then expressed by the formula.

p(1) − p(2)

L
= λ

�

2R

v2
(av)

2
. (26)

The comparison of the different analytical velocity profiles is depicted in the fig. 4. The
velocity profiles are normalized by the average velocity v(av). The power-law velocity profile
is drawn for the different values of the coefficient n. The case n = 7 is a most common value.
The value n = 3.48 is evaluated from expression (7) and the value n = 5.91 is evaluated from
the expression (8). The previous mentioned value of Reynolds number is used for evaluating
of coefficient n. The radius R of the tube is 0.025m. The laminar velocity profile is added
to this set of velocity profiles for the comparison.

Fig.4: The comparison of velocity profiles

Fig.5: The Comparison of velocity profile near the wall with the log-law

It is apparent that all these turbulent velocity profiles are different. The power-law
velocity profiles for different n have a problem near the wall, where the derivative is infinite.
Next problem of it is in the tube center. First derivative is not smooth in the tube center.
Probably most problematic discrepancy is the first one. The infinite derivative does not
allow the study of the velocity profile near the wall because of the infinite shear stress at the
wall. This means that the shear velocity is also infinite, in accordance with (9). It means
that it is not possible to express the dimension-less velocity v+ in the dependence on the
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dimension-les distance from the wall, in accordance to expression (11). So it means that is
not possible to compare this power-law velocity profile with the log law near the wall.

The new velocity profile has no such problem near the wall and in the tube center like
the power-law velocity profile. It means it is possible to compare this velocity profile near
the wall with the log law. This comparison is done in fig. 5. The log-law is drawn there for
two different sets of coefficients κ and B. The case 01 is drawn for κ = 0.41 and B = 5.2 in
the book [1]. The case 02 is drawn for κ = 0.4 and B = 5 in the book [2].

The new velocity profile removes all the previous discrepancies of the power-law velocity
profile and more over it offers other new features. The formula of the velocity profile (23)
describes both extremes of the velocity profile the laminar flow and the flow with infinite
Reynolds number. If the power N = 1 then the laminar velocity profile is obtained. If the
value of N is going to the infinity then the piston profile is obtained.

The new velocity profile also has some problem. This problem is in the tube center. It
consists in the velocity profile curvature. The value of second derivative in the tube center
is zero. It means that the radius of curvature is infinite in the tube center. This is not true,
but there is a chance to remove this discrepancy and the author is working on this problem.

It will be also interesting to draw the shear stresses at the tube cross-section. The total
shear stress changes linearly. it can be divided into two parts the viscous shear stress and
the turbulent (Reynolds) shear stress.

τ = τμ + τt . (25)

The viscous shear stress can be expressed from the velocity profile formula (23)

τμ = μ
∂v

∂r
= −μ v(av)

N + 3
R

( r
R

)N
. (26)

This viscous stress can be expressed in dimensionless form

τμR

μv(av)
= −(N + 3)

( r
R

)N
. (27)

The turbulent shear stress can be obtained by subtracting the viscous stress from the total
stress. The viscous and turbulent stresses over the cross-section for the laminar and two
different turbulent velocity profiles are depicted in the fig. 6.

Fig.6: The viscosity and turbulent shear stresses
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4. Conclusion

The new analytical velocity profile for both the laminar and the turbulent flow in the
infinite length tube has been introduced in this article. This profile avoids some discrepancies
of the power law velocity profile. This velocity profile offers new interesting features as the
study of the near wall velocity profile. It rather good approximates the log-law velocity
profile near the wall. But it still has some problems which have to be solved. The main
problem is that there is the infinite curvature radius in the tube center. The author is
working on it to avoid this problem. At the end it is also necessary to compare this velocity
profile with an experimental data.
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Nomenclature
Symbol Units Description
A(n) Varies Polynomial coefficients

L [m] Length – distance between the pressure location measuring
n – Coefficient for the power law velocity profile
N – Order of the polynomial, power

n(r)k – Unit vector in direction of rk vector
Δp [Pa] Pressure difference

p(1), p(2) [Pa] Pressure at location 1 or 2 respectively
Q [m] Unit flow rate. Flow rate between two parallel plates with 1m width

r, R [m] Radius
Re [–] Reynolds number
rk [m] Vector between points xk and x′

k

r(0) [m] Distance of point x′
k from straight vortex filament

v(av) [m s−1] Average velocity between two parallel plates

v, vi [m s−1] Component of velocity in x direction
v(max) [m s−1] Maximal velocity component in x direction

v∗ [m s−1] Shear velocity
v+ [–] Dimensionless velocity near the wall
vi [m s−1] Velocity vector

v1, v2, v3 [m s−1] Components of velocity vector
x1, x2, x3 [m] Coordinates of location

x′
k [m] Coordinates of the induced velocity location

x(0)k [m] Coordinates of point x′
k projected onto the vortex filament

y [m] Coordinate y, or distance from wall
y+ [–] Dimensionless distance from the wall
Γ [m2 s−1] Circulation
γ [m s−1]/[s−1] Linear/planar vorticity density

εijk [–] Levi-Civita tensor
λ – Friction coefficient
μ [Pa s] Dynamic viscosity
ν [m2 s−1] Kinematic viscosity
� [kgm−3] Density
τj [–] Unit tangential vector
τt [Pa] Turbulent (Reynolds) shear stress
τw [Pa] Shear stress on the wall
τµ [Pa] Viscous shear stress
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