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ANALYSIS OF NONUNIFORM BEAMS
ON ELASTIC FOUNDATIONS

USING RECURSIVE DIFFERENTATION METHOD

Mohamed Taha Hassan*, Samir Abo Hadima*

Analytical solutions for static and dynamic stability parameters (Pcr and ωn) of an
axially loaded nonuniform beam resting on a two parameter foundation are obtained
using the recursive differentiation method (RDM) along with automatic differentia-
tion. The analysis includes all cases of beam end conditions and indicates that the
foundation stiffness influence is noticeable on both the critical load Pcr and natural
frequency ωn in the case of slender beams. Also, it is found that the effect of the
end conditions decreases as the slenderness parameter of the beam increases. In ad-
dition, the analysis concludes that neither the critical load nor the natural frequency
corresponding to the first mode is always the smallest one in the case of beams on
elastic foundations. The obtained solutions are verified and used to investigate the
significance of different parameters on the critical loads and natural frequencies.

Keywords : critical load, natural frequency, recursive differentiation method, beams
on elastic foundation

1. Introduction

Several numerical while few analytical methods were being developed to obtain appro-
ximate solutions for the static and dynamic behaviour of nonuniform beams. Using Ritz
method, Sato [1] studied the transverse vibration of linearly tapered beams. Lee and Ke [2]
proposed a fundamental solution for nonuniform beams with general end conditions. Vi-
bration of nonuniform beams was analysed by Abrate [3] by transforming the equation of
motion of some nonuniform beams to that for a uniform beam to obtain the natural frequen-
cies. Differential transform (DTM) was used by Boreyri, et al [4] to study the nonuniform
beams with exponentially variable thickness.

On the other hand, numerical methods such as: finite element method (FEM) used by
Naidu, et al [5], and differential quadrature method DQM used by Chen [6], Hsu [7] and Taha
and Nassar [8] offer tractable alternatives for beams that involve complicated configurations
and/or complex boundary condition.

Recently, recursive differentiation method (RDM) proposed by Taha [9] have been used to
solve many types of boundary value problems. However, the analytical solution for nonuni-
form beams needs the solution of differential equations with variable coefficients. In such
cases, the RDM algorithm of the derived analytical expressions will include recursive dif-
ferentiations which need lengthy calculations. An efficient tool to overcome such difficulty
is the automatic differentiation (AD) which uses exact formulas along with floating-point
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values, instead of expression strings as in symbolic differentiation, and it involves no ap-
proximation error as in numerical differentiation using difference quotients (Neidinger [10]).
Also computational differentiation or algorithmic differentiation may be used.

As a matter of fact, in the static stability analysis of axially loaded beams (columns),
the determination of the axial load at which the beam lose its static stability is the main
design issue, while in the dynamic analysis of beams, the natural frequency of the beam is
the important factor to avoid resonance phenomenon which leads to unbounded response.

In the present work, the formulation of the RDM will be extended to include the solution
of differential equations with variable coefficients, then employed to investigate the static and
dynamic stability parameters of nonuniform beams resting on two parameter foundations.
Analytic expression for the amplitude of the lateral displacement will be derived, and then
the applications of the boundary conditions at beam ends yield the corresponding eigen
problem in two parameters (Pcr, ωn). The solution of the eigen problem yields either the
critical loads (for ωn = 0) or the natural frequencies for the case (P < Pcr). The influences
of the different beam-foundation parameters on both the critical load and natural frequency
will be investigated.

2. Problem statement

2.1. Equilibrium equation

The equations of dynamic equilibrium of an infinitesimal element of the axially loaded
nonuniform beam resting on two parameter foundation shown in Fig. 1 :

∂V

∂x
+ q(x, t) − k1 y(x, t) + k2

∂2y

∂x2
= 	A(x)

∂2y

∂t2
, (1)

V (x, t) + p
∂y

∂x
=
∂M

∂x
. (2)

The beam flexure constitutive equation is :

M(x, t) = −E I(x) ∂
2y

∂x2
. (3)

where E I is the flexural stiffness of the beam, 	 is the density, A is the area of the cross
section, p is the axial applied load, k1 and k2 are the linear and shear foundation stiffness
per unit length of the beam, q(x, t) is the lateral excitation, E is the modulus of elasticity,
I is the moment of inertia, V (x, t) is the shear force, M(x, t) is the bending moment, y(x, t)
is the lateral response of the beam, x is the coordinate along the beam and t is time.

Substitution of Eq. (2) and Eq. (3) into Eq. (1), then the equation of lateral response of
a nonuniform beam is obtained as :

∂2

∂x2

(
E I(x)

∂2y

∂x2

)
+ (p− k2)

∂2y

∂x2
+ k1 y(x) + 	A(x)

∂2y

∂t2
= q(x, t) . (4)

For free vibration :
q(x, t) = 0 . (5)

Using the dimensionless variables :

ξ =
x

L
and φ(ξ, t) =

y(x, t)
L

, (6)
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where φ(ξ, t) is the dimensionless lateral response and L is the beam length.

Then, a dimensionless form of Eq. (4) may be rewritten as :

∂2

∂ξ2

(
E I(x)

∂2φ

∂ξ2

)
+ (p− k2)L2 ∂

2φ

∂ξ2
+ k1 L

4 φ(ξ) + 	A(ξ)L4 ∂
2φ

∂t2
= 0 . (7)

Fig.1: a) Nonuniform beam on elastic foundation, b) element forces

Linear variation of the beam depth or width is assumed in many researches, however in
the present work, any continuous variation may be assumed. Assuming the width of the
beam b is constant while the depth d(ξ) varies in an exponential form as :

d(ξ) = d0 eα ξ , then α = ln
(
dL

d0

)
, (8)

where d0 and dL are the beam depths at ξ = 0 and ξ = 1 respectively. Practically, the
exponential variation may be easily used to simulate various real cases of beam variations,
such as the case of a beam with linearly varying depth where the exponential variation fits
accurately the depth variations up to (dL/d0 = 1.5). Using Eq. (8), then the moment of
inertia I(ξ) and the area A(ξ) of the beam cross sectional are :

I(ξ) = I0 e3α ξ and A(ξ) = A0 eαξ . (9)

Substitute Eq. (9) into Eq. (7), and assume the solution in the form φ(ξ, t) = w(ξ) eiω t,
then the equation of mode functions of the beam free vibration may be expressed as :

d4w

dξ4
+ 6α

d3w

dξ3
+
[
(P −K2) e−3α ξ + 9α2

] d2w

dξ2
+
(
K1 e−3α ξ − λ4 e−2α ξ

)
w(ξ) = 0 . (10)

where the following dimensionless parameters are defined :

K1 =
k1 L

4

E I0
, K2 =

k2 L
2

E I0
, P =

pL2

E I0
, λ4 =

	A0 ω
2 L4

E I0
,

η =
L

r
and r =

√
I0
A0

.

(11)

The parameters K1 and K2 are the foundation linear and shear stiffness parameters
respectively, P is the axial load parameter, λ is the natural frequency parameter, η is the
slenderness parameter and r is the radius of gyration of the beam cross section.



86 Taha M.H. et al.: Analysis of Nonuniform Beams on Elastic Foundations Using Recursive . . .

2.2. Boundary conditions

The boundary conditions in dimensionless forms may be expressed as :

For the case of the pinned-pinned (P-P) beams :

w(0) = w′′(0) = 0 at ξ = 0 and w(1) = w′′(1) = 0 at ξ = 1 . (12)

For the case of the clamped-pinned (C-P) beams :

w(0) = w′(0) = 0 at ξ = 0 and w(1) = w′′(1) = 0 at ξ = 1 . (13)

For the case of the clamped-clamped (C-C) beams :

w(0) = w′(0) = 0 at ξ = 0 and w(1) = w′(1) = 0 at ξ = 1 . (14)

For the case of the clamped-free (C-F) beams :

w(0) = w′(0) = 0 at ξ = 0 and

w′′(1) = 0 , w′′′(1) = −P e−3αw′(1) at ξ = 1 .
(15)

3. RDM solution

3.1. Recursive differentiation method (RDM)

Consider an nth-order non-homogeneous linear differential equation with variable coeffi-
cients is given in the form:

y(n)(x) =
n∑
i=1

A1,i(x) y(i−1)(x) + F1(x) a ≤ x ≤ b (16)

with the boundary conditions :

Bi(y, y(1), . . . , y(n−1)) = bi , i = n (17)

where y(n) is the nth-derivative, A1,i(x) are the variable coefficients for the first recursion,
F1(x) is the source function for the first recursion and bi are constants. The solution of
Eq. (16) using RDM, which based on Taylor’s expansion, is given as [9] :

y(x) =
n∑

m=1

TmRm(x) +RF(x) , (18)

where the recursive functions Rm(x) and RF(x) are given by :

Rm(x) =
xm−1

(m− 1)!
+
N−n∑
i=1

Ai,m(a)
xn+i−1

(n+ i− 1)!
, m = 1 : n , (19)

RF(x) =
N−n∑
i=1

Fi(a)
xn+i−1

(n+ i− 1)!
. (20)

and N is the truncation index that achieves the acceptable accuracy.
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The recurrence formulae for the weighting coefficients Ak+1,i(x) and Fk+1(x) may be
obtained as :

Ak+1,1(x) = A
(1)
k,1 +Ak,n A1,1 ,

Ak+1,r(x) = Ak,r−1 +A
(1)
k,r +Ak,n A1,r , r = 2 : n

Fk+1(x) = F
(1)
k +Ak,n F1(x) .

(21)

The substitution of the boundary conditions at the beam ends into Eq. (18) yields a sys-
tem of n algebraic equation in n unknowns; namely; the coefficients Tm, m = 1 : n. However,
the solution of such system yields Tm which may be substituted into Eq. (18) to obtain an
analytical solution for the given differential equation.

In addition, in case of homogeneous differential equation (F1(x) = 0), the substitution of
the boundary conditions into Eq. (18) yields a homogeneous system of n algebraic equations
in n unknowns. The nontrivial solution of such system requires that the determinant of
the coefficients matrix should be vanished. The expansion of the determinant leads to
the characteristic equation of the differential equation. The solution of such expansion is
known as the eigen value problem of the system and yields the eigen values and the eigen
vectors. Indeed, in the case of static analysis of beams, the eigen values represent the
critical (buckling) loads; Pcr-r; while the eigen vectors represent the buckling modes ϕr(x).
In addition, for the case of dynamic analysis of beams, the eigen values represent the natural
frequencies while the eigen vectors represent the mode shapes of free vibration ϕr(x).

3.2. Application of RDM to the equation of the nonuniform beam vibration

To use the RDM, Eq. (10) is rewritten in the recursive form :

w(4)(ξ) = A(1,1) w
(0) +A(1,2) w

(1) +A(1,3) w
(2) +A(1,4) w

(3) , (22)

where :
A(1,1) = λ4 e−2α ξ −K1 e−3α ξ ,

A(1,3) = (K2 − P ) e−3αξ − 9α2 ,

A(1,2) = 0 ,

A(1,4) = −6α .
(23)

Using Eq. (15), then the solution of Eq. (22) may be expressed as :

w(ξ) =
4∑
i=1

TmRm(ξ) , (24)

where the recursive functions Rm(ξ), m = 1 : 4 are obtained from Eq. (19) as :

Rm(ξ) =
ξm−1

(m− 1)!
+
N−4∑
i=1

A(i,m)(0)
ξi+3

(i+ 3)!
, m = 1 : 4 . (25)

Substitution of Eq. (24) into the boundary conditions (Eq. (12):Eq. (15)) yields the cha-
racteristic equation for the corresponding case of the end conditions as :

For P-P case :
R20R42 −R22R40 = 0 , (26)

for C-C case :
R30R41 −R31R40 = 0 , (27)
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for C-P case :
R30R42 −R32R40 = 0 , (28)

for C-F case :
R32 (R43 + P e−3αR41) −R42 (R33 + P e−3αR31) = 0 , (29)

where Rmk = R
(k)
m , m = 1 : 4 at ξ = 1.

Assembling a simple MATLAB code, using the automatic differentiation (Neidinger [10]),
the coefficients Ak+1,i(x) can be obtained up to the required accuracy. Hence, applying
a proper iterative technique, the solution of the characteristic equations yields the funda-
mental (smallest) critical load Pcr in the static case (ω = 0) for the corresponding end
conditions. However, assuming any value for P < Pcr, then the fundamental natural fre-
quency ωn for a nonuniform beam subjected to axial load may be obtained.

3.3. Verification

To verify the solutions obtained from the RDM, the natural frequency parameter λr
of a nonuniform beam calculated from the RDM and those obtained from the 4th order
Runge-Kutta analytical solutions and DTM [4] are presented in Table 1 for different values
of non-uniformity exponent α. It is clear that the RDM results are very close to those
calculated from DTM as the two techniques are based on Taylor expansion.

C-C P-P
α Method λ1 λ2 λ3 λ1 λ2 λ3

DTM 4.5048 7.4713 10.4580 2.9948 5.9765 8.9628
−0.2000 RK4 4.5069 7.4929 10.4889 2.9952 5.9881 9.0223

RDM 4.5018 7.4706 10.458 2.9844 5.9752 8.9624
DTM 4.7324 7.8537 10.9958 3.1496 6.2842 9.4251

0.0000 RK4 4.7335 7.8642 11.0473 3.1502 6.3001 9.4593
RDM 4.73 7.8532 10.996 3.1416 6.2832 9.4248
DTM 5.1062 8.4662 11.8480 3.3818 6.7692 10.1521

0.3000 RK4 5.1119 8.5277 12.0001 3.3824 6.7912 10.2850
RDM 5.1046 8.4658 11.848 3.3762 6.7685 10.152
DTM 5.3793 8.9020 12.4477 3.5350 7.1085 10.6597

0.5000 RK4 5.3855 8.9773 12.6389 3.5354 7.1341 10.8272
RDM 5.378 8.9017 12.448 3.5305 7.108 10.66

Tab.1: Parameter of natural frequencies for nonuniform beams (k1 = k2 = 0)

4. Numerical Results and discussion

4.1. Values of the foundation stiffness parameters k1 and k2

The values of foundation stiffness (k1, k2) are calculated using the expressions proposed
by Zhaohua et al. [11] for a rectangular beam resting on a two parameter foundation as :

k1 =
E0 b

2 (1 − ν2
0)

δ

χ
and k2 =

E0 b

4 (1 − ν)
χ

δ
. (30)

where :

χ = 3

√
2E I (1 − ν2

0)
bE0 (1 − ν2)

, E0 =
Es

1 − ν2
s

and ν0 =
νs

1 − νs
,
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E and ν are the elastic modulus and Poisson ration of the beam respectively, Es and νs for
the foundation and δ is a parameter accounts for the beam-foundation loading configuration
(it is a common practice to assume δ = 1). Typical values of the elastic modulus and Poisson
ratio for different types of foundations are given in Table 2.

Type of No foundation Weak foundation Medium foundation Stiff foundation

foundation (NF) (WF) (MF) (SF)

Es [N/m2] 0 1×107 5×107 1×108

Poison ratio νs 0 0.40 0.35 0.30

Tab.2: Typical values for modulus of elasticity and Poisson ration for soils

The obtained solution expressions are derived in dimensionless forms for the sake of
generality, however, in the present analysis, the properties of the beam are; concrete beam,
b = 0.2m, h = 0.5m, E = 2.1×1010 Pa, Poisson ratio ν = 0.15 .

Actually, the smallest value of (Pcr or λf) is the most important value (or the fundamental
value) which controls the stability behavior of the beam. In the present work, the used
iteration technique picks Pcr (or λf) in ascending order according to the value not the mode
number, then the first picked one is the most critical value. Furthermore, in the case of
a beam on elastic foundation, the critical load corresponding to the first buckling mode
is not always the smallest one as it is commonly known for beam without foundation. In
addition, in the case of a beam on elastic foundation loaded by axial compression load,
the natural frequency corresponding to the first vibration mode is not always the smallest
natural frequency [9]. The distribution of the displacement along the beam may be traced
and used to identify the mode number corresponding to the smallest picked value.

The above analysis is used to investigate the dependence of the stability parameters of the
beam-foundation system (Pcr and λf) on the non-uniformity exponent α, the slenderness pa-
rameter η, the foundation stiffness parameters (K1 and K2) and the loading parameter γ for
different beam end conditions. The non-uniformity exponent α and the loading parameter γ
are defined as :

γ =
p

pcr
and α = ln

(
dL

d0

)
. (31)

where p and pcr are the axial applied load and the critical load respectively and d0 and dL

are the beam depths at ξ = 0 and ξ = 1 respectively.

4.2. Variation of critical load

The variations of Pcr with α for the case of a beam with η = 50 without foundation (NF)
or resting on foundation of medium stiffness (MF) for different end conditions are shown in
Fig. 2. It is obvious that as α increases Pcr increases while the effect of α on Pcr is negligible
for C-F beams without foundations. For P-P beams on MF the interaction between the
beam stiffness and the foundation stiffness depends on I0 which leads to variation in the
trend at α = 0.

The variations of Pcr with η, for the case of NF and MF (no foundation and foundation
of medium stiffness) and α = 0, 0.5 for different end conditions are shown in Fig. 3. In
Fig. 4, the variations of Pcr with η, for the case of WF and SF (weak stiffness foundation
and stiff foundation) and α = 0.5 for different end conditions is illustrated. It is found that
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Fig.2: Variation of Pcr with α

Fig.3: Variation of Pcr with η

Fig.4: Variation of Pcr with η and the beam end conditions

the critical load increases as α increase. However, it should be noted that as η increases, the
stiffness of the foundation relative to the beam increases, and the influence of the foundation
stiffness on Pcr becomes more noticeable. The variation of α is more effective in the case of
C-C beams. Also, the influence of the foundation stiffness is more effective in the case of
C-F slender beams. The transition between different buckling modes is obvious in the case
of SF. The irregularities in the Pcr – η indicate the transitions of the beam from a buckling
mode to the consequent higher one for the case of slender beams.
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4.3. Variation of natural frequency

The variations of λf with α for the case of a beam with η = 50 and γ = 0, 0.5 resting on
no foundation (NF) or foundation of medium stiffness (MF) for different end conditions are
shown in Fig. 5. It is obvious that as α increases λf increases while the effect of α on λf is
negligible for C-F beams when γ = 0. Also, it is found that as γ increases, λf decreases.

The variations of λf with η, α = 0.5, for different foundation stiffness and different beam
end conditions are shown in Fig. 6. It should be noted that as η increases, the foundation
influence on λf increases, hence as α increases, λf increases.

Fig.5: Variation of λf with α

Fig.6: Variation of λf with the beam end condition and η
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Fig.7: Variation of λf with η and the beam end conditions

In Fig. 7, the effect of η on λf is shown for the case of WF and SF for different end
conditions. It is obvious that the effect of the end conditions decreases as η increases.

The effect of loading parameter γ on λf is shown on Fig. 8 to Fig. 11 for different beam-
foundation system parameters. It is found that λf decreases as γ increases and the free
vibration of the system die out as γ approaches one. The effect the foundation stiffness on
the λf is insignificant for short beams on elastic foundations.

5. Conclusions

The static and dynamic stability behavior of nonuniform beams resting on two parameter
foundations and subjected to axial load was analyzed using the recursive differentiation
method (RDM). A simple MATLAB code for automatic differentiation is assembled and
used to drive the weighting coefficients up to the required accuracy, then the recursive
functions of the problem are derived. However, the application of the end conditions yields
the corresponding eigen value problem in two parameter (Pcr and ωn). The solution of
the equivalent eigen problem yields either the critical loads or the natural frequencies of the

Fig.8: Variation of λf with γ and foundation stiffness for C-C beams

Fig.9: Variation of λf with γ and foundation stiffness for C-P beams



Engineering MECHANICS 93

Fig.10: Variation of λf with γ and foundation stiffness for P-P beams

Fig.11: Variation of λf with γ and foundation stiffness for C-F beams

beam-foundation system for different end conditions. Both the smallest critical load and the
smallest natural frequency are investigated to indicate the significance of the slenderness
parameter of the beam (η), the foundation stiffness relative to the beam (K1 and K2),
the non-uniformity exponent (α), the applied axial load parameter (γ) and the beam end
conditions. The influence of foundation controls the behavior of the system in the case
of slender beams (η > 40) while the end condition controls the behavior of short beams
(η < 40). It is observed that, both the natural frequencies and the critical loads to be
increase with the increase of α and as γ increases, the natural frequency decreases till the
free vibration die out at γ = 1. Also, it is found that, as α increases, the stiffness of the
foundation relative to the beam decreases; hence, the total stiffness of the system decreases
in the case slender beams where the foundation stiffness is the dominant. The effect of the
non-uniformity exponent α on the critical load is more significant in the case of C-C beams
while for C-F beams, the effect of α is noticeable only for slender beams (η > 40). It should
be noted that the relative stiffness of the C-F beam decreases as α increases and vice versa
for the F-C beams.
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