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OPTIMAL PPF CONTROLLER
FOR MULTIMODAL VIBRATION SUPPRESSION

Štefan Fenik, Ladislav Starek*

Positive Position Feedback (PPF) is one of the most attractive vibration control
method due to its stability and ease of implementation. On the other hand, low
robustness makes the PPF design more complicated in multimodal control case. It
is known that a little change in optimal parameters setup, especially the change in
controller frequency, can strongly degrade the control effort. Thus knowing a good
approximation of optimal PPF parameters can be very helpful in practical imple-
mentations and simplified analytical relations between optimal parameters and modal
properties of the structure are inevitable for efficient control design. In this paper
derivation of such relations is introduced, based on simplified transfer function of con-
trolled structure. Furthermore influence of the parallel PPF controllers in multimodal
vibration suppression is analyzed and formulae for optimal parameters updating are
suggested. Optimal multimodal PPF control design is demonstrated on experimental
example of vibration suppression of beam structure.

Key words : vibration suppression, PPF control, root-locus method, optimization,
piezoactuator

1. Introduction

Structural vibration control has experienced rapid development in the last 30 years. Al-
though there have been many new algorithms for vibration suppression developed, the most
useful and attractive technique is still Positive Position Feedback (PPF), which has achieved
much success because of its stability and ease of implementation. PPF controller, basically
a special form of second order compensator, was first introduced by Caughey and Goh [1],
who also published a study com- paring collocated velocity feedback to PPF [2]. In [3]
authors showed that PPF is capable of controlling several vibration modes simultaneously
and has global stability conditions, which are easy to fulfil even in the presence of actuator
dynamics. On the other hand, as any narrow-band active control system, PPF reaches its
best results if tuned properly to the characteristics of the structure to be controlled. The
PPF transfer function contains three parameters to be determined in designing the control
law for each mode. The three parameters are gain, filter damping ratio and frequency. To
determine the values of these parameters a tuning principle is often used. Most authors
suggest a value for the filter frequency slightly greater than the structural frequency to be
damped. While in [4] authors specified a factor of 1.3, in [5] author chose 1.45. The range
for the filter damping ratio found in the literature reaches from 0.01 to 0.5. In many ex-
periments described in the literature the authors would find a compromise value for the
damping ratio, and leave it constant through all their experiments. Some authors ([2], [5])
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used a pole placement technique to compute the three parameters that ensures minimal
gains at a maximum closed-loop damping ratio. However, an exact model of the poles of
the structure to be damped is required. Other authors only used information about the
frequency of the pole to be damped and determine the parameters with a trial and error
technique experimentally. Goh and Lee realized that effective vibration control with PPF
depends on the accuracy of the modal parameters used in the control design [6]. They
extended the original feedback technique with an adaptive estimation procedure to identify
the structural parameters and presented design parameters for the PPF filter depending on
the structural damping ratios and frequencies to achieve the maximum amount of damping.
However, for the multi-mode case and persistent excitation, it is shown that simultaneous
parameter estimation and control may possibly lead to erroneous results. Another technique
to adaptively tune the PPF filter parameters in real time was suggested in [7], where genetic
algorithm (GA) was utilized to adapt the filter frequency of a single second order filter in
a simulation. The filter damping ratio and the gain were kept constant. McEver [8] states
that the optimal parameters can be derived from the ratio of the structural zero frequencies
to the structural poles. He proposes a very simple algorithm for obtaining the two PPF
filter parameters damping and frequency depending on gain, which is related to stability
margin. In this way, McEver was able to automate the tuning process of one second-order
PPF filter, while keeping the gain constant [8].

In this paper, there are presented new relations for calculation of all three parameters for
optimal single PPF controller. These relations take into account not only the pole and zero
of the desired mode, but also the natural damping and dynamical stiffness, which determines
the gain as an absolute parameter. Derivation of the relations is based on numerical root-
locus analysis and proper simplification of frequency response function (FRF) in the narrow
band within the controlled mode of vibration. In the next step multimodal PPF control
is analyzed and simple correction formulae for optimal parameters updating are derived.
Experimental example of multimodal vibration suppression is also presented.

2. Mathematical modelling

The best suited mathematical model for analysing the vibration suppression problem in
practical technical applications is well-known Finite Element Method (FEM) model of the
form :

Mq̈ + Dq̇ + Kq = Bu , (1)

where q is the vector of generalized displacements, M is the symmetric positive definite
mass matrix, D is the symmetric positive semi-definite viscous damping matrix, K is the
symmetric positive (semi-)definite stiffness matrix, u is the vector of control variables, B is
the input matrix, which transforms control variables to generalized actuator forces.

The measured output needed for control purposes can be represented, in the case of
position feedback, by linear combination of the generalized displacements :

y = Cq , (2)

where C is corresponding output matrix for position measurement.

Providing a modal analysis of the system (1) without damping (i.e. D = 0) we obtain the
values of undamped natural frequencies and set of appropriate mode shape vectors, which
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can be easily normalized to fulfil the following statements:

VT MV = I , VT KV = Ω , Ω = diag(ω2
n1, ω

2
n2, . . . , ω

2
ni, . . . , ω

2
nn) , (3a,b)

where V is real and non-singular modal matrix, which columns are normalized mode shape
vectors of undamped system (1), I is an identity matrix, ωni is the i-th undamped natural
frequency, Ω is diagonal matrix containing the squares of ωni. All matrices in (3) are square
of dimension n, where n is number of DOFs (i.e. length of the vector q).

In the case of modal viscous damping, which is very close to the case of damping behaviour
of all lightweight structures with no passive dampers or dashpots, modal transformation of
the damping matrix gives :

VT DV = 2Δ , Δ = diag(δ1, δ2, . . . , δi, . . . , δn) , (4)

where δi is modal damping constant, i.e. product of damping ratio and undamped natural
frequency (δi = ζi ωni), Δ is diagonal matrix containing δi.

An identification of modal properties mentioned above is usually based on Experimental
Modal Analysis (EMA) in given frequency range. As analytical FRFs have to match with
their experimental counterparts, the estimation of undamped frequencies, modal damping
constants and some components of mode shape vectors can be done by proper optimization
technique, based on fact that analytical FRFs for the system (1) has the form of truncated
partial fraction expansion. Bearing in mind only frequency band of given modes one can
take the influence of the lower (including rigid body modes) and upper frequencies into
account like this [9] :

Hrs(ω) = −R0rs

ω2
+

m∑
i=1

Rirs

−ω2 + 2 jω δi + ω2
ni

+ Zirs , (5)

where Hrs(j ω) is the FRF for the s-th input a the r-th output, Rirs is so called residue
for the i-th mode within the given input-output pair, δi and ωni are the damping constant
(δi = ζi ωni) and undamped natural frequency for the i-th mode, R0rs is the residue repre-
senting rigid body modes (if present), Zirs is the constant representing the contribution of
higher modes, m is the number of vibration modes within the frequency band of interest.

When modal viscous damping (4) is present the residues of FRF (5) are all real constants
and can be computed as (see Appendix A) :

Rirs = cr vi vT
i bs , (6)

where bs is the s-th column of the input matrix B, cr is the r-th row of the output matrix
C, vi is normalized mode shape vector of the i-th mode (i.e. column of modal matrix V).

If we analyze the control performance in the narrow frequency band within only one given

mode, we can simplify the FRF (5) and convert it into a transfer function in the following
way :

Hrs(s)
.=

Rirs

s2 + 2 δi s + ω2
ni

+ Zirs = Zirs

s2 + 2 δi s + ω2
ni +

Rirs

Zirs

s2 + 2 δi s + ω2
ni

for s ≈ jωni , (7)
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where s = jω is imaginary variable (assuming the poles are stable), Zirs is real constant rep-
resenting the contribution of the rest of vibration modes (in both lower and upper frequency
range).

In the numerator of (7) there is (same as in the denominator) polynomial of the second
order, which roots are zeros of the transfer function. Imaginary part of the zero plays
important role in the control design and for lightly damped modes it can be expressed as :

Im(sZ) .= ωari =
√

ω2
ni +

Rirs

Zirs
if ω2

ni +
Rirs

Zirs
≥ 0 , (8)

where sZ is the zero of the transfer function (7), ωari is antiresonant circular frequency for
the i-th undamped mode.

If the antiresonant frequency can be easily determined from FRF (either analytical or
experimental) the constant Zirs will be simply :

Zirs
.=

Rirs

ω2
ari − ω2

ni

. (9)

In a special case of collocated actuator-sensor arrangement, which is the crucial case in
the active control of vibration, the FRFs have interesting property of alternating resonances
and antiresonances. Actually, it is easy to show that for collocated actuator-sensor pair all
residues of given FRF have the same sign :

cs = αbT
s ⇒ Riss = cs vi vT

i bs = α (vT
i bs)2 ≥ 0 ∀i, s if α ≥ 0 , (10)

where Riss is the residue of the i-th mode for collocated input-output pair within the s-th
control variable, α is constant ratio.

Fig.1: Typical FRF of beam structure with well-separated modes
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Thus from (10) and (5) it is obvious that real part of Hss(j ω) changes its sign just once
between two neighbouring resonances, which implies the existence of sharp antiresonance
for low natural damping. The frequency bandwidth of accurate approximation of FRF
depends, in general, on resonant frequencies and natural damping of neighbouring modes.
Figure 1 shows the typical FRF of beam structure with well-separated modes. For such
type of structure the simplified FRF (7) gives very good approximation of full series FRF
in sufficient frequency range within given mode.

Let’s now discuss the closed-loop control problem in the terms of transfer function ana-
lysis. In single-input, single-output (SISO) case (see Figure 2) the closed-loop transfer can
be expressed as :

Y (s) =
HMS(s)

1 − HMS(s)HC(s)
D(s) , (11)

where Y (s) is the Laplace transform of the output variable y, D(s) is the Laplace transform
of the input disturbance d, U(s) is the Laplace transform of the control variable u, HMS(s)
is the transfer function of the mechanical structure (i.e. open-loop transfer function), HC(s)
is the transfer function of the controller (U(s)/Y (s)).

Fig.2: SISO control loop with positive feedback

If both the controller and the structure are linear systems the transfer functions in (11)
are rational functions of s :

HMS(s) =
[

Y (s)
D(s)

]
U=0

=
AMS(s)
BMS(s)

, HC =
U(s)
Y (s)

=
AC(s)
BC(s)

, (12)

where AMS (BMS) is the polynomial numerator (denominator), which roots are zeros (poles)
of HMS(s), AC (BC) is the polynomial numerator (denominator), which roots are zeros
(poles) of HC(s).

Thus the transfer between the disturbance d and the measured output y takes the form :

Y (s)
D(s)

=
AMS BC

BMS BC − AMS AC
. (13)

According to the fact that only poles of (13) are needed to determine overall dynamical
behaviour of the controlled structure, following characteristic equation is vital for root-locus

based control design :
BMS BC − AMS AC = 0 . (14)

If transfer function of the controller has simple form (similar to transfer function (7)), an-
alytical relations between optimal control parameters and modal properties (i.e. parameters
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of simplified FRF) can be derived by solving equation (14) with respect to given root-locus

objectives. For instance, in vibration suppression problem, the objective is to add the max-
imum damping, which is represented by the real part of appropriate root of (14), to given
mode of vibration.

3. PPF control

In the area of structural vibration suppression, the technique with perhaps the greatest
immunity from the destabilizing effects of spillover is collocated direct velocity feedback,
which, in the absence of actuator dynamics, is unconditionally stable. In the presence of
actuator dynamics, however, instability may result if a priori precaution is not taken. It has
been shown that the stability boundary of modes near the natural frequency of the actuators
critically dependent on the inherent natural damping in these modes a quantity not well
known in most cases. In addition, the technique requires rate measurement a quantity that
becomes vanishingly small at low frequencies.

The technique implemented in this contribution, Positive Position Feedback (PPF), was
originally suggested by Caughey and Goh [2], as an alternative to collocated direct velocity
feedback. Like velocity feedback, the method is not sensitive to spillover but in addition,
it is not destabilized by finite actuator dynamics. PPF requires only generalized displace-
ment measurements which makes it amenable to a strain-based sensing approach. While
PPF is not unconditionally stable, the stability condition is non-dynamic and minimally
restrictive [2].

Single PPF controller, working as vibration compensator, is essentially an auxiliary sys-
tem similar to the mechanical vibration absorber. The compensator is driven by position
of the structure, thus, the output variable y takes form (2), while the control variable u is
proportional to the coordinate (position) of compensator and fed back to the structure with
positive gain (hence the name of this method). When parameters of the single compensator
are properly tuned desired amount of damping is added in narrow frequency range (usually
within only one mode of interest). For multimodal control an appropriate number of parallel
compensators are needed. In such case the mathematical model of the PPF controller is in
the matrix form :

qc + 2Δc qc + Ωc qc = Bc Cq , (15)

where qc is the vector of controller modal coordinates, Δc is diagonal matrix containing
damping constants (products of damping ratios and natural frequencies) of the controller,
Ωc is diagonal matrix containing the squares of controller natural frequencies, C is the output
matrix for displacements, q is displacement vector of the structure, Bc is the controller input
matrix.

Now the control law is :
u = FΩc qc , (16)

where F is the constant gain matrix, u is the vector of control variables.

State space model of mechanical structure with multimodal PPF controller can be de-
rived from the equation of motion (1) and equations (15) and (16). After extension of the
displacement vector q by the controller coordinates qc we get :

M̂ ¨̂q + D̂ ˙̂q + K̂ q̂ = 0 for q̂ =
[

q
qc

]
, (17)
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where :

M̂ =
[
M 0
0 I

]
, D̂ =

[
D 0
0 2Δc

]
, K̂ =

[
K −BFΩc

−Bc C Ωc

]
. (18)

Now if the state vector is given as :

x =
[
q̂
˙̂q

]
(19)

the state-space representation is :

ẋ = Ax , A =
[

0 I
−M̂−1 K̂ −M̂−1 D̂

]
. (20)

Analysing the eigenvalues of state matrix A we can find the optimal values of the con-
troller parameters with respect to the control objective. Using only single PPF to damp
only one mode we have three parameters : matrix F reduced to gain Kp, and matrices Δc

and Ωc reduced to damping constant δc (= ζc ωc) and controller natural frequency ωc.

Let’s now analyze, for example, the eigenvalues of the free-free beam (see section 6 for
details) with the lowest deformation mode controlled by single PPF controller with collocated
actuator-sensor pair. As we have three independent parameters, it will be useful to keep
one of them constant and search the traces of appropriate closed-loop eigenvalues in Gauss
plane as the result of the changes in the remaining two parameters. At first, we start with
constant gain, set to Kp = −1 (Kp Rirs > 0 for PPF). Tuning the controller damping δc and
the natural frequency ωc in valid range we can find the eigenvalues related to the controlled
mode of the beam and the eigenvalues of PPF controller moving along the root-loci curves
plotted in Figure 3.

Bold lines belong to approximately optimal values, for wich the maximum of closed-loop
damping of the controlled mode is achieved (at intersection). We can see that for constant

Fig.3: Root-loci curves for free-free beam with single PPF – constant gain
(subscript ‘opt’ for approximately optimal values)
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gain Kp = −1 the closed-loop damping has distinct maximum for δc between 14.5 s−1 and
15.75 s−1. For δc greater than 15.75 s−1 closed-loop damping of the controller is growing, but
closed-loop damping of the controlled mode is decreasing very quickly. In the next, let us try
to plot root-loci while the damping is kept constant near the optimal value from Figure 3.
We obtain the curves presented in Figure 4. Here again bold lines belong to approximately
optimal values. Now we can see that for gain |Kp| < 1 the closed-loop damping of the
controlled mode is decreasing for any value of ωc. On the other hand for gain |Kp| > 1
the closed-loop damping of the controlled mode can grow only at the cost of decreasing the
closed-loop damping of the controller. Furthermore, the average damping can not exceed the
value of approximately 0.5 δc. Gain |Kp| = 1 is the minimum gain for which the closed-loop
damping of both modes is on the same level and equals to 0.5 δc.

Now results of numerical root-locus analysis can be summarized as follows :

1. When the gain is constant, eigenvalue related to the mode of the structure lies always in
the interior of the circle, which has centre located in the pole of uncontrolled structure
and which radius depends on the value of the gain. For positive feedback (Kp Rirs > 0)
damping of this mode is increased.

2. When the damping of the structure is increasing, regardless of which parameter is being
adjusted, controlled eigenvalue is approaching toward the eigenvalue of the controller. In

the optimal case of vibration suppression, when the maximum damping of both modes

is desired, the appropriate eigenvalues coincide. This very important property allows us
to derive the formulae for computing the optimal parameters in the next section.

4. Optimal PPF control for single-mode vibration suppression

From the numerical analysis presented in previous section we can see that little change in
optimal parameters setup, especially the change in frequency ωc, can strongly degrade the

Fig.4: Root-loci curves for free-free beam with single PPF – constant
damping (subscript ‘opt’ for approximately optimal values
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control effort. Thus knowing the good approximation of optimal parameter values can be
very helpful in practical implementations. Hereby, according to the computational intensity
of numerical root-locus analysis, simplified analytical relations between optimal parameters
and modal properties of the structure are inevitable for efficient control design.

Going out from simplified FRF (7) and taking the transfer function of single PPF in the
form :

HPPF(s) =
Kp ω2

c

s2 + 2 δc s + ω2
c

=
AC

BC
(21)

we have polynomial characteristic equation (14) of the fourth order :

(s2 + 2 δi s + ω2
ni) (s2 + 2 δc s + ω2

c ) − Kp Zi ω2
i (s2 + 2 δi s + ω2

ari) = 0 , (22)

where Zi is real constant representing the contribution of the rest of vibration modes from (9)
(index rs dropped for simplicity), δi is damping constant of the i-th mode, ωni is the i-th
natural frequency and ωari is antiresonant circular frequency for the i-th undamped mode.

Assuming there are two pairs of stable complex conjugate poles we can write eq. (22) in
the form :

(s2 + 2 δir s + ω2
nir) (s2 + 2 δcr s + ω2

cr) = 0 (23)

where δir and ωnir are closed-loop damping constant and frequency of the i-th mode, δcr and
ωcr are closed-loop damping constant and frequency of the controller (real positive values).

Extracting and comparing the corresponding coefficients of polynomials (22) and (23)
we get four equations :

δir + δcr = δi + δc ,

ω2
cr + ω2

nir + 4 δir δcr = ω2
c (1 − Kp Zi) + ω2

ni + 4 δi δc ,

δir ω2
cr + δcr ω2

nir = δi ω2
c (1 − Kp Zi) + δc ω2

ni ,

ω2
cr ω2

nir =
[
1 − Kp Zi

ω2
ari

ω2
ni

]
ω2

ni ω2
c .

(24a–d)

As we have mentioned in previous section, maximum damping is achieved when controlled
pole of the structure coincides with pole of the controller (see Appendix B for proof). Hence
two conditions can be stated to reduce the set of equations (24) :

δir = δcr , ω2
cr = ω2

nir . (25a,b)

Using these conditions we get two expressions from (24a,d) :

δir = δcr =
1
2

(δi + δc) , ω2
cr = ω2

nir = ωc ωni

√
1 − Kp Zi

ω2
ari

ω2
ni

. (26a,b)

Now substituting from (26a,b) to (24b,c) we obtain two equations relating only control
parameters and modal properties of the structure :

ω2
c (1 − Kp Zi) + ω2

ni − 2 ωc ωni

√
1 − Kp Zi

ω2
ari

ω2
ni

− (δc − δi)2 = 0 , (27a,b)

δi

[
ω2

c (1 − Kp Zi) − ωc ωni

√
1 − Kp Zi

ω2
ari

ω2
ni

]
+ δc

[
ω2

ni − ωc ωni

√
1 − Kp Zi

ω2
ari

ω2
ni

]
= 0 .
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Finally, equations (27) allow us to express two arbitrary PPF parameters as functions of
the third. Choosing the gain Kp as independent, formula for optimal controller frequency
follows :

ωc,opt =
ω2

ni + δi (δc − δi)

ωni

√
1 − Kp Zi

ω2
ari

ω2
ni

.=
ωni√

1 − Kp Zi
ω2

ari

ω2
ni

. (28)

Relative error caused by neglecting the damping δi in (28) equals to the product of
damping ratio of the controlled mode and damping ratio of the controller (this product is
usually less then one percent). Substituting (28) to (27a) and rearranging terms we have
the optimal value of the controller damping constant as :

δc,opt = δi +

√√√√√Kp Zi (ω2
ari − ω2

ni)

1 − Kp Zi
ω2

ari

ω2
ni

= δi +

√√√√√ Kp Ri

1 − Kp Zi
ω2

ari

ω2
ni

(29)

where Ri is the residue of the i-th mode from (9) (index rs dropped for simplicity).

Amount of the damping added to controlled mode in optimal case (i.e. maximum) follows
directly from (26a). For lightly damped structures it is approximately the half of δc. In
optimal control case the undamped closed-loop natural frequency is same as the open-loop
one, as follows from (26b) after substituting from (28). We can also see that optimal PPF
control (with respect to conditions (25)) make sense only if the product Kp Ri is positive
and the magnitude of the gain is less than critical value Kcr :

|Kp| < Kcr =
ω2

ni

|Zi|ω2
ari

. (30)

From this point of view, it is better to express the gain Kp as function of the damping
δc, which can be set apriori (as double of the desired increase of structural damping). Here
inversion of (29) gives :

Kp,opt =
1

Zi + Ri

[
1

ω2
ni

+
1

(δc − δi)2

] . (31)

Note that for any real value of δc substituted into (31) condition (30) holds, so it is no
more needed. However, according to the physical limitations, the gain Kp has adequate
limit, depending on actuator’s working range and level of measured deformation. Thus
there is always some limit of maximum possible damping increase we can desire. Note that
formula (31) is only approximation for low open-loop damping δi. For exact formula, which
is more complicated, see Appendix B.

5. Optimal parameters for multimodal PPF control

Important attribute of the PPF control, which made it popular, is roll-off character of
its transfer function. From (21) it is clear that frequency band within the control action is
narrow, with cut-off frequency being slightly greater than natural frequency of the controller
(see Figure 5). On the other side, PPF controller affects all lower modes to some extent,
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even when they are well-separated. Therefore it is required to design the PPF controllers
in descending order with respect to their natural frequencies and taking the influence of the
higher (currently designed) controllers into account. If we use the same input-output pair
for all the PPF controllers, then designing process is quite straightforward. Substituting
simplified transfer function of the structure from (7) to (11) we have the estimation of
closed-loop transfer function in neighbourhood of the i-th mode in the form :

HCL(s) =
Zi

1 − HAGR(s)Zi

s2 + 2 δi s + ω2
ni +

Ri

Zi

s2 + 2 δi s + ω2
ni −

HAGR(s)Ri

1 − HAGR(s)Zi

, s ≈ j ωni (32)

while :

HAGR(s) =
∑

k

HPPF,k(s) =
∑

k

Kpk ω2
ck

s2 + 2 δck s + ω2
ck

, (33)

where HCL(s) is closed-loop transfer function, HAGR(s) is aggregated transfer function rep-
resenting the set of parallel PPF controllers aiming the higher modes, Kpk, δck and ωck are
design parameters for the k-th PPF controller.

Fig.5: Typical amplitude plot of PPF controller

The aggregated transfer function HAGR(s) is nearly constant in any narrow frequency
range below the lowest value of ωck :

HAGR(j ω) .=
∑

k

Kpk ω2
ck

ω2
ck − ω2

ni

= Gi = const. for ω ≈ ωni < min(ωck) , (34)

where Gi is the gain representing the influence of the higher PPF controllers in the frequency
range of the i-th mode.
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Now the closed-loop transfer function can be transformed to the simplified form by
substituting Gi for HAGR(s) :

HCL(s) = Zupi

s2 + 2 δi s + ω2
ni +

Ri

Zi

s2 + 2 δi s + ω2
upi

=
Rupi

s2 + 2 δi s + ω2
upi

+ Zupi (35)

if following statements hold :

Zupi =
Zi

1 − Gi Zi
, Rupi =

Ri

(1 − Gi Zi)2
, ω2

upi = ω2
ni −

Gi Ri

1 − Gi Zi
, (36a–c)

where Ri, Zi and ωni are parameters of open-loop transfer function (7), Rupi is updated
value of the residue for the i-th mode, Zupi is updated value of the constant Zi, ωupi is
the i-th natural frequency affected by higher PPF controllers, Gi is the gain from (34)
representing all higher PPF controllers in frequency range of the i-th mode.

So when we design any lower PPF controller (aiming the i-th mode), first we have to
compute the gain Gi, which is then used for updating of the modal parameters and finally
optimal parameters of the controller are obtained from (28) and (29). Note that there
is no change in antiresonant frequency when only one input-output pair is present. In
the case of collocated control all residues Ri have the same sign, thus updated value of
natural frequency (36c) is less than open-loop one, assuming there is at least one higher
PPF controller (Gi Ri > 0). This interesting property implicates that more damping can
be added with the same value of gain Kp in comparison with single mode control. Figure 6
illustrates the effect of updating the optimal parameters on example of vibration suppression
of cantilever beam within two lowest modes (see Table 4 for PPF parameters). First the
single PPF is applied on the first mode (ωn1 ≈ 86 rad s−1) and damping ratio about 26%
is achieved with gain Kp = −4.2 . When optimal PPF for the second mode is applied with
the same gain, PPF for the first mode is affected and damping decrease to 21%. But after
updating of PPF parameters for the first mode damping ratio reaches almost 34%.

Fig.6: Root-loci of canteliver beam with collocated PPF control : a) single PPF
– only 1st mode; b) multi PPF – parameters for 1st mode unchanged;
c) multi PPF – parameters for 1st mode updated
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6. Experiment – vibration suppression of beam

In this section we demonstrate the designing of multimodal PPF control on experimental
example of vibration suppression, where prismatic aluminium beam with cross-section area
of 40mm× 4mm is used as controlled structure in two configurations: free-free (hanging on
soft rubber bands) and one-end clamped (i.e. cantilever beam). One 100mm long piezopatch,
product QP40N of Midé Technology Corporation, is attached on the surface of the beam
and serves as self-sensing actuator [4].

Fig.7: Experimental aluminium beam with self-sensing
piezoactuator and acceleration sensor

Optimal actuator placement was found (see [10] for details) that allows us to control
the four lowest modes in both configurations, as it can be seen in Figure 7. There is also
one accelerometer measuring the transverse vibrations attached at the free end of the beam.
Inertia and elastic properties of both piezoelement and accelerometer are included in FEM
model. Damping matrix is computed using measured damping (Table 1), assuming modal
viscous damping behaviour of the beam.

free-free beam cantilever beam

mode ωni/2π (Hz) ζi (%) ωni/2π (Hz) ζi (%)

1 19.57 2.5 13.69 3.3
2 54.24 3.9 87.7 2.4
3 106.54 2.6 243.1 2.2
4 176.5 1.3 492 —

Tab.1: Experimental natural frequencies and damping ratios of the beam

Piezoelement QP40N acts as bending actuator with bending moment of 1.45×10−3 Nm/V
and sensor of slope angle difference with sensitivity of 7630V/rad [10]. Using analytical
mode shape vectors and full series FRF we can compute appropriate residues Ri from (6),
antiresonant frequencies and constants Zi for controlled modes (see Table 2).

free-free beam cantilever beam

mode Ri (s−2) Zi (–) ωari/2π (Hz) Ri (s−2) Zi (–) ωari/2π (Hz)

1 −200.0 −0.0614 21.53 −271.25 −0.0376 19.3
2 −560.3 −0.0564 56.13 −3061 −0.0265 102.15
3 −1828 −0.0572 110.1 — — —
4 −13316 −0.0432 198.1 — — —

Tab.2: Parameters of simplified FRF of the beam
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δc (s−1) ωc (rad s−1) ζimax (%)

mode Gi single multi single multi single multi

1 −6.8 23.7 44.4 134.1 137.8 10.1 18.5
2 −5.09 40.35 57.3 363.5 370.2 6.4 8.9
3 −3.15 68.6 84.9 716.9 724.6 5.2 6.4
4 — 185.6 185.6 1187 1187 8.6 8.6

Tab.3: Optimal parameters and achievable damping for
PPF control of free-free beam (Kp = −2.15)

δc (s−1) ωc (rad s−1) ζimax (%)

mode Gi single multi single multi single multi

1 −4.3 42.6 56.5 105.4 107.6 25.7 33.7
2 — 125.4 125.4 593.0 593.0 11.7 11.7

Tab.4: Optimal parameters and achievable damping for
PPF control of cantilever beam (Kp = −4.2)

Fig.8: Amplitude plot for free-free beam with multi-modal PPF

In the next the optimal parameters for single- and multi-modal PPF can be computed
using formulae presented in previous sections. The gain Kp was set to be constant according
to physical limits. Values of the parameters together with theoretical closed-loop damping
ratios are shown in Tables 3 and 4.

Experimental FRFs measured for transverse displacement of the free end of the beam
are shown in Fig. 8 (free-free beam) and Fig. 9 (cantilever beam).

It can be seen that increase of structural damping as result of multimodal PPF control is
approximately 5–10 times the natural damping for each mode, in agreement with predicted
values in Tables 3 and 4.

7. Conclusions

Relations between optimal PPF control parameters and modal properties of actively
damped structure were derived, which allows the designing of PPF controller to be straight-
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Fig.9: Amplitude plot for cantilever beam with multi-modal PPF

forward and efficient. Modal properties needed for calculation of the optimal parameters
can be easily obtained experimentally (EMA) or analytically, using updated FEM model of
the structure, thus an easy implementation into an adaptive PPF control is also possible.
Using derived relations desired increase of structural damping can be achieved with min-
imum control gain, or maximum damping can be achieved with given gain (with respect
to limitations of control aparatus). It has been also shown, that predicted control perfor-
mance is fully consistent with numerical analysis, assuming the structure is lightly damped
with well-separated modes. In multimodal case the interconnection between parallel PPF
controllers has been analysed. In general, influence of given PPF controller in lower fre-
quency range is evident regardless of modal properties of the structure and without proper
updating the controll effort is degraded (comparing to single PPF). However, after param-
eter updating suggested in this paper simultaneous PPF controllers for multimodal control
can achieve better results than in single-mode control. Finally, the experimental example
of multimodal vibration suppression of the beam (4 controlled modes for free-free beam or
2 controlled modes for cantilever beam respectively) has demonstrated very good agreement
with theoretical results.

Appendix A : Computation of transfer functions for vibrating mechanical
systems

Generalized displacements of the structure q and measured outputs y can be expressed
as linear combination of so called modal coordinates using non-singular modal matrix V :

q = V ξ , y = CV ξ , (A-1a,b)

where C is the output matrix.

Substituting (A-1a) into eq. of motion (1), multiplying with the transpose of V from left
and using eqs. (3) and (4) we get :

I ξ̈ + 2Δ ξ̇ + Ω ξ = VT Bu , (A-2)

where Δ, Ω are diagonal matrices of damping constants and squares of natural frequencies.
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Taking Laplace transform of equation (A-2) we get relation between modal coordinates
and input variables in the form :

X(s) = (s2 I + s 2Δ + Ω)−1 VT BU(s) , (A-3)

where X(s) is Laplace transform of vector ξ(t), and U(s) is Laplace transform of the in-
put u(t).

Taking Laplace transform of (A-1b) and substituting from (A-3) we get the open-loop
relation between input u(t) and output y(t) :

Y(s) = H(s)U(s) , H(s) = CV (s2 I + s 2Δ + Ω)−1 VT B , (A-4)

where H(s) is matrix of transfer functions for given input and output variables. Transfer
Hrs(s) between s-th input us(t) and r-th output yr(t) is an element of the transfer matrix
in the r-th row and s-th column and can be computed as follows :

Hrs(s) =
Yr(s)
Us(s)

= cr V (s2 Is 2Δ + Ω)−1 VT bs , (A-5)

where cr is the r-th row of the output matrix C, bs is the s-th column of the input matrix B.

Since expression in the brackets in (A-5) is diagonal matrix, its inversion is simply:

(s2 Is 2Δ + Ω)−1 = diag
(

1
s2 + 2 δi s + ω2

ni

)
, i = 1, 2, . . . , n , (A-6)

where δi is damping constant of the i-th mode, ωni is the i-th natural frequency, n is number
of generalized displacements.

Now the transfer function Hrs(s) can be expressed as the sum of partial fractions :

Hrs(s) =
n∑

i=1

Rirs

s2 + 2 δi s + ω2
ni

, (A-7)

where Rirs is the residue for the i-th mode within the given input-output pair (r, s).

Finally comparing (A-7) and (A-5) and using (A-6) we have the formula for computation
of the residues Rirs :

Rirs = cr vi vT
i bs . (A-8)

Appendix B : Conditions for achieving the maximum closed-loop damping using
PPF control

Analytical relations between open-loop and closed-loop modal parameters of the PPF
controller (index c) and controlled mode of the structure (index i) are given by equa-
tions (24) :

δir + δcr = δi + δc ,

ω2
cr + ω2

nir + 4 δir δcr = ω2
c (1 − Kp Zi) + ω2

ni + 4 δi δc ,

δir ω2
cr + δcr ω2

nir = δi ω2
c (1 − Kp Zi) + δc ω2

ni ,

ω2
cr ω2

nir =
[
1 − Kp Zi

ω2
ari

ω2
ni

]
ω2

ni ω2
c .

(B-1a–d)
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where δir and ωnir are closed-loop damping constant and frequency of the i-th mode, δcr

and ωcr are the closed-loop damping constant and frequency of the controller, Zi is real
constant representing the contribution of the rest of vibration modes given by eq. (9), δi is
open-loop damping constant of the i-th mode, ωni is the i-th open-loop natural frequency,
ωari is corresponding antiresonant frequency, δc is open-loop damping constant of the PPF
controller, ωc is the controller open-loop natural frequency, Kp is the controller gain.

When control objective is to add the maximum of damping to the both modes (controller
and structure), which are contributing to overall closed-loop performance equally, from the
first equation of (B-1) directly follows :

δir = max ∧ δcr = max ⇒ δir = δcr =
1
2

(δi + δc) = max . (B-2)

Equation (B-2) is in fact the claim (25a). Now the main question is : what is the maximum
value of δc we can set for given values of ωc or Kp? Or, what is the minimum control gain for
achieving desired damping increase? To answer these questions, let us analyze the system
of equations (B-1).

Substituting (B-2) into (B-1) we get three equations relating open-loop and closed-loop
modal quantities :

ω2
cr + ω2

nir + (δc − δi)2 = ω2
c (1 − Kp Zi) + ω2

ni ,

ω2
cr + ω2

nir =
2 δi

δc + δi
ω2

c (1 − Kp Zi) +
2 δc

δc + δi
ω2

ni ,

ω2
cr ω2

nir = ω2
ni ω2

c

(
1 − Kp Zi

ω2
ari

ω2
ni

)
.

(B-3a–c)

From (B-3c) it is clear, that value of the gain Kp is not arbitrary, but has to fullfil following
inequality :

1 − Kp Zi
ω2

ari

ω2
ni

> 0 . (B-4)

Now subtracting c) from b) in (B-3) we have relation between δc and ωc :

(δc − δi)2 =
δc − δi

δc + δi
[ω2

c (1 − Kp Zi) − ω2
ni] or δ2

c − δ2
i = ωc (1 − Kp Zi) − ω2

ni . (B-5)

From (B-5) the square of the open-loop frequency ωc is :

ω2
c =

1
1 − Kp Zi

(ω2
ni + δ2

c − δ2
i ) > 0 . (B-6)

Substituting (B-6) into (B-3b,c) we get two equations relating the closed-loop frequencies
and open-loop parameters δc and Kp :

ω2
cr + ω2

nir = 2 [ω2
ni + δi (δc − δi)] = 2 ω2

s ,

ω2
cr ω2

nir =
1 − Kp Zi

ω2
ari

ω2
ni

1 − Kp Zi
ω2

ni (ω2
ni + δ2

c − δ2
i ) = C(Kp)ω2

ni (ω2
ni + δ2

c − δ2
i ) ,

(B-7a,b)

where frequency ωs is function of ωc only and C(Kp) is function of Kp only.
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From (B-7b) it is clear that, for real non-zero values of closed-loop frequencies, function
C(Kp) is positive :

C(Kp) > 0 . (B-8)

Now using (B-7) we can express ωnir and ωcr as solutions of quadratic equation :

(Ω2 − ω2
nir) (Ω2 − ω2

cr) = Ω4 − 2 ω2
s Ω2 + C(Kp)ω2

ni (ω2
ni + δ2

c − δ2
i ) = 0 , (B-9)

which roots are :

Ω2
1,2 =

(
ω2

cr

ω2
nir

)
= ω2

s ±
√

ω4
s − C(Kp)ω2

ni (ω2
ni + δ2

c − δ2
i ) = ω2

s ±
√

D(δc, Kp) , (B-10)

where D is discriminant of equation (B-9). Note that D is function of two independent
parameters, controller damping δc and gain Kp.

To get real non-zero values of ωnir and ωcr the discriminant D must satisfy next condi-
tions :

ω4
s > D(δc, Kp) , D(δc, Kp) ≥ 0 . (B-11a,b)

From (B-8) it is clear, that (B-11a) holds automatically. For further analysis of (B-11b) we
suppose that damping of the controller is greater than open-loop damping of the controlled
mode (we want to add damping to the structure) :

δc > δi . (B-12)

Let ωi be the damped open-loop frequency of the controlled mode :

ω2
i = ω2

ni − δ2
i > 0 . (B-13)

Using (B-13) we can write the discriminant of (B-9) in the form :

D(δc, Kp) = (ω2
i + δc δi)2 − C(Kp) (ω2

i + δ2
i ) (ω2

i + δ2
c ) ≥ 0 . (B-14)

Now extracting C(Kp) from (B-14) we have :

C(Kp) ≤ (ω2
i + δc δi)2

(ω2
i + δ2

i ) (ω2
i + δ2

c )
. (B-15)

Since for δc > δi the ratio on the right side of (B-15) is less than 1, we can complete condition
(B-8) as follows :

1 > C(Kp) =
1 − Kp Zi

ω2
ari

ω2
ni

1 − Kp Zi
> 0 . (B-16)

Solving (B-16) for Kp and assuming that from (B-6) is (1 − Kp Zi) > 0 we get these gain
limits :

ω2
ari > ω2

ni ⇒ 1 >
ω2

ni

ω2
ari

> Kp Zi > 0 ,

ω2
ari < ω2

ni ⇒ Kp Zi < 0 .

(B-17a,b)
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Note that for collocated control holds (B-17a) so we must use positive feedback to add
damping to the structure. Now let us try to solve (B-14) for δc. Making some re-arrangement
we can write :

(1 − C) (ω2
i + δc δi)2 ≥ C ω2

i (δc − δi)2 > 0 , (B-18)

and finally, assuming that both (B-12) and (B-16) hold, we have :

ω2
i + δc δi ≥

√
C

1 − C
ωi (δc − δi) > 0 (B-19)

or after re-gruping terms within δc it is :

ωi

(
ωi +

√
C

1 − C
δi

)
≥ δc

(√
C

1 − C
ωi − δi

)
. (B-20)

There are two solutions for δc depending on sign of the right side of (B-20). Since this right
side changes its sign when value of C(Kp) reaches square of open-loop damping ratio ζi :

C > ζ2
i =

δ2
i

ω2
i + δ2

i

=
δ2
i

ω2
ni

⇒
√

C

1 − C
ωi − δi > 0 ,

0 < C ≤ ζ2
i ⇒

√
C

1 − C
ωi − δi ≤ 0

(B-21a,b)

we can write:

C(Kp) > ζ2
i ⇒ δc ≤

ωi

(
ωi +

√
C

1 − C
δi

)
√

C

1 − C
ωi − δi

= δc,max ∈ Re ,

C(Kp) ≤ ζ2
i ⇒ δc > 0 ⇒ δc,max → ∞ .

(B-22a,b)

For gain Kp such that C(Kp) > ζ2
i the damping constant δc has its maximum defined by

(B-22a), which we can set as controller parameter in agreement with (B-2).

Using (B16) we can re-define gain limits as :

C(Kp) > ζ2
i ∧ ω2

ari > ω2
ni ⇒ ω2

ni

ω2
ari

≥ ω2
ni − δ2

i

ω2
ari − δ2

i

> Kp Zi > 0 , (B-23)

where ωari is corresponding antiresonant frequency.

For gain Kp such that C(Kp) ≤ ζ2
i the damping constant δc has no real bound and

theoretically can be set as infinity. In technical applications it is of course impossible. Note
that for decaying C(Kp) the gain Kp is raising, so there is no reason to set Kp greater than
upper bound in (B-23). In such case (i.e. C(Kp) > ζ2

i ) maximum controller damping can
be computed from (B-22a) using (B-13) :

δc,max = δi +
ω2

ni√
C(Kp)

1 − C(Kp)
ωi − δi

. (B-24)
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Alternatively, if desired damping is given, the minimal gain needed for achieving this damp-
ing can be computed from (B-16) :

(Kp Zi)min =
1 − Cmax

ω2
ari

ω2
ni

− Cmax

, (B-25)

where Cmax is on the right side of (B-15) :

Cmax =
(ω2

i + δc δi)2

(ω2
i + δ2

i ) (ω2
i + δ2

c )
. (B-26)

Substituting (B-26) into (B-25) and using (B-13) we can express minimum gain as :

(Kp Zi)min =
1

1 + (ω2
ari − ω2

ni)
ω2

ni + δ2
c − δ2

i

(ω2
ni − δ2

i ) (δc − δi)2

, (B-27)

and finally using (9) we can write:

(Kp)min =
1

Zi + Ri

[
δ2
c

(ω2
ni − δ2

i ) (δc − δi)2
+

1
(δc − δi)2

] . (B-28)

Comparing (B-28) and (31) we see, that for δi → 0 we get same result.

Setting Kp,min for given δc or δc,max for given Kp and substituting into (B-14) we get :

D(δc,max, Kp) = D(δc, Kp,min) = 0 . (B-29)

Equation (B-29) is, in fact, proof of the claim (25b), because after substituting (B-29) into
(B-10) the closed-loop frequencies are the same :

Kp = Kp,min ∨ δc = δc,max ⇒ ω2
nir = ω2

cr = ω2
s = ω2

ni + δi (δc − δi) . (B-30)

Now using (B-30) we can easily compute the open-loop frequency of the controller from
(B-3c) :

ωc,opt = ωc(Kp, δc,max) = ωc(Kp,min, δc) =
ω2

ni + δi (δc − δi)

ωni

√
1 − Kp Zi

ω2
ari

ω2
ni

, (B-31)

where ωc,opt is controller frequency for achieving the maximum damping (or minimum gain)
with respect to condition (B-2).

As can be expected, formula (B-31) is same as formula (28).
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