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EXACT LINEARIZATION OF NONHOLONOMIC SYSTEM
DYNAMICS APPLIED TO CONTROL
OF DIFFERENTIALLY DRIVEN SOCCER ROBOT

Robert Grepl*, Byoungsoo Lee** Ctirad Kratochvil*, Frantisek Solc*** Jakub Hrabec***

This paper describes the dynamic modeling of nonholonomic system for control pur-
poses. The equations of motion together with nonholonomic constraint are reduced
into system of five 1°** order equations. Further, the exact linearization is performed
and finally we obtain a decoupled system of two independent integrator chains. Next
we describe the controller design, and at the end, the simulation results are presented.
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1. Introduction

This paper deals with modeling of dynamics of two-wheeled differentially-driven soccer
robot of FIRA MIROSOT category. An overview of the system is depicted in Fig.1. The
game runs autonomously controlled by a computer. Two teams (of up to 11 players) play
on a playground surrounded by a 50mm high side walls. A camera is located above the
centre of the playground and it is connected to the computer. The image of the playground
is analyzed to gain positions of the robots and the ball (orange golf ball). Based on this
information, the robots are controlled remotely.

The rules for this competition limit the size of the robots to a cube with 75mm long
edges and its mass to 650¢g. Therefore, the speed and acceleration can be rather high (up
to 4m/s and 10m/s? respectively) and thus the dynamics of the robot plays an important
role. The goal is to replace the former control based on kinematics only by the control based
on dynamics of the system, as the kinematics-based control has its clear drawbacks.

Fig.1: Robot soccer system (FIRA MIROSOT category)
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Fig.2: Soccer robot of FIRA MIROSOT category
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Fig.3: Schema of differentially driven soccer robot

In this paper, we neglect the dynamics of the wheels (considering their mass and power
of the drives) and consider the robot as one rigid body. The described procedure can be
generalized for more complex systems. Fig.3 shows the schema of two-wheeled robot.

The dynamics of electrical drives is also neglected and drives are modeled as force inputs.

2. Simplified dynamics of nonholonomic robot

We use a vector q of three generalized coordinates q = [x,y, ¢]T for description of robot
state, where x and y denote position of the reference point and ¢ orientation of the robot
w.r.t. positive direction of the z-axis (please refer to Fig.3) in global Cartesian coordinate
frame O.

There are following external forces:
— action forces Fao a Fp from drives,
— viscous friction against the wheel movement

Fop =bva =b(ve + ho) (1)

where v¢ is the CG velocity, ¢ is angular velocity and b is viscous friction coefficient and
— lateral force Fg which guarantees no movement in yy, direction.
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Free body diagram leads to these three equations of force and torque balance

Fp cosp+ Fpcosp— Frsing —b(z+hpcosp)—b(&—hpcosp)=mi, (2)

Fpax Fypx
Fa sinp+ Fg sinp + Fg cosp —b (& +h¢ sing) —b(& —hpsing) =my , (3)
Fah—Fgh—2bh*o=1¢, (4
which can be easily expressed in matrix form

m z -2 T cosp  cosy | p —sing
m g+ —2b y| = |sing singp [F }— cosp | Fr,

I @ —2bh% || ¢ h  —h |L7F 0
Mg+ Vg=Bf-ATX. (5)

In these three equations (n=3) and there are the following unknown variables: {Z, §, $, Fr }.

3. Model reduction

If we consider zero lateral movement (rolling without (lateral) skid of the wheel), the
nonholonomic constraint is formulated as

yL =0 ) (6)
which can be transformed into fixed coordinate system O as follows:
]
==t . 7
U~ tang 7)
Introduced one nonholonomic constraint (k = 1) can be expressed in matrix form:

Ttanp —y=0, (8)

[tanp —1 O] 9)

G <S8
Il
o

A(q)q=0. (10)

Note here, that our system has no holonomic constraint and therefore the total number of
constraints is m = k + 0 = 1. We define matrix S(q) € R"*™~" such as

A(q)S(q) =0. (11)

For our case, the fitting definition is [4]:

cosp 0
S=|sinp 0] . (12)
0 1

Next, we define the vector v with respect to the following equation :

a(q) =S(q)v(t) , (13)
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which is in our case (remarked for clearer understanding):

~[3-12)

Let’s differentiate eq. 13 with respect to time

G=Sv+Sv, (15)

) —sing 0

S=1| cosp 0]¢. (16)
0 0

Let’s substitute resulting formulas into eq.5 and the whole equation multiply by ST.

MSv+MSv+VSv=Bf-ATX, (17)
STMSv+ST(VSMS)v=8T"Bf - STAT X. (18)
N——
=(AS)T=0

As we can see, the described procedure leads to elimination of vector A, which is a key
success. Final resulting equation together with eq. 13 constitutes the new reduced model of
the system

STMSv+ST(VS+MS)v=S8"Bf, (19)
q=Sv. (20)

Resulting model consists of five ODEs of the first order. The state vector is [v,w, z,y, ¢]T.

4. Exact linearization

We reformulate eq. 19 into simpler form

Further, we define the input vector of action forces f as follows [2]:
f=B ' (Mu+Kv) (23)
where u is the new system input. Thus, we obtain new partially linearized system

v=u (24)
q=Sv (25)

This result is interesting, but the use of 1, coordinate as a control input is rather inconve-
nient.

Equation 24 represents simple decoupled linear time invariant system, but together eq. 25
the system is still nonlinear and we want to control q not v only. The main target is to
control the position (i.e., the  and y coordinates) of the robot.
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Let’s denote z = [x,y]". Then
. |xz| |cosp O] |w
=[)=me ol e) )
z=Pv (27)

and
7=Pv+Pv. (28)

Now we can reformulate eq. 24 with help of eq. 27 and eq. 28 as

Pv=Pu, (29)
Zz—Pv=Pu, (30)
Z=Pu+Pv=r (31)

where r can be considered a new control input related to u according
u:Pfl(r—Pv) . (32)

Equation 31 represents decoupled LTI system. Unfortunately, P is singular and thus we
cannot obtain u. However, there exists the following solution.

The very interesting result can be obtained by simple modification (see [2]). Remember
that our goal is to control the position of robot in the plane. Normally, the position is given
by coordinates of COG point C. If we use the point D instead of C as a control point, the
new control vector can be defined as

_|x+ L cosy
Z_[y—l-Lsin(p} ' (33)

Please note that if we use the reference point C, the second control input (w) would have
no direct effect on its position. The steering affects the position of the reference point only
indirectly in this case, through the change of orientation of the robot. This case of dynamic
feedback linearization (exact linearization) is described in [3]. Also, more on controllability
and stabilizability if the wheeled mobile robots can be found in [5].

Let’s differentiate it with respect to time and we obtain

P t—L¢sing| |cosp —Lsing| |v (34)
T ly+Lpcosp | |sing Leceosp | |w]|’
z=Pv. (35)
After second differentiation, we have
7=Pv+Pv, (36)

p— | sine —Lcosel o (37)
cosp —Lsing
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Let’s multiply the eq. 24 by matrix P. Further, we reformulate equations

Pv=Pu, (38)
Z—Pv=Pu, (39)
7=Pu+Pv (40)
and define the input u as follows:
u:Pfl(r—Pv) (41)

where r is again the new redefined system input.

Finally, we have (globally) linearized system with usable control variable. The system is
decoupled, which allows to adjust the dynamic properties of both subsystems independently.

i=r. (42)

5. Control design

After the exact linearization, we control the decoupled system of second order represented
by eq.42. Using the theory of second order system behaviour, we can form the controller as
follows (please refer to Fig.5):

r=7'-Kyz-K, 7z, (43)
z=1z—1z" (44)
where z4 is required and z is real position of reference point D. After simple modification,

we get
z+Kiz+Kpz=0. (45)

Remember, that matrixes K; and K are diagonal ones and eq.45 is thus a system of
n —m = 2 independent second order systems, whose properties we can arbitrarily chosen.

If we set the Ko, the critical damping (the fastest stabilization without overshooting) is

guaranteed by
| 2VEkn 0
Ko = { 0 2\/@] (46)

where ko; is arbitrary value which defines the response dynamics for i-th component.

The controlled system is schematically shown in Fig. 4.
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> (37) (26) (24) J (23)_) f i
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Fig.4: Schema of system control
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Let us complete the control algorithm description with the analytically expressed control
input vector f. Using eqns. 23 and 41 we get :

f=B 'MP 'r—B (MP'P+K)v, (47)

which can be rewritten as

f=U(p)r+W(w)v (48)
1 mhlLcosp—1Ising mhLsinp+ I cosp
U(w)_QhL mhlLcosp+1Ising mhlLsinpg—1I cosp (49)
Resulting matrix can be expressed as follows:
Qbh2[};—£[w OJT;L—G-hb
W=l pnry 1w wmL (50)
2hL 2

We can see, that we can compute control vector for all cases h, L # 0. As can be seen
from Fig. 3, these values represent physical dimensions of the robot and z-coordinate of the
reference point in robot local coordinates frame, respectively. Therefore, the singularity
should be avoided.

'D_X’

Fig.5: Control of integrator chain

6. Simulation experiments
The algorithm described above has been implemented in Matlab environment. We in-
troduce the vector of disturbance into the system (eq.5)

fo = [ Fpx, Fry, Mp, ", (51)
Mg+Vaq=Bf—ATA+1fp (52)

which affects the eq. 21 as follows:
Mv+Kv=Bf+8S"fp. (53)

For the trajectory planning we use function jtraj from Robotic Toolbox for Matlab. The
function define the position, velocity and acceleration z9, z4 and 9 using the polynomial of
second order. The required and simulated trajectories of two examples are shown in Fig. 6.
The matrix Ko was chosen differently, the K; always respect critical damping.
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Fig.6: Simulated result for ko1 = ko2 = 5 (left) and ko1 = ko2 = 50 (right)

7. Conclusion

Resulting control algorithm is computationally efficient and can potentially be used in
a real device. It should be noted that it is usual to control the position of the reference
point C located on the wheels’ axis (it’s the center of rotation of the robot). In our case,
it’s necessary to generate appropriate reference trajectory for the point D (moved forward).

Acknowledge

The presented results were acquired using the subsidization of projects AV0Z20760514
and GACR 101/06,/0063.

References

[1] Oh C., Kim M.S., Lee J.J.: Control of nonholonomic mobile robot using an RBF network,
Artificial Life Robotics 8, pp. 14-19, 2004

[2] Caracciolo L., De Luca A., Iannitti S.: Trajectory Tracking Four-Wheel Differentially Driven
Mobile Robot, International Conference on Robotics and Automation, Detroit, Michigan, 1999

[3] Oriolo G., De Luca A., Vendittelli M.: WMR Control Via Dynamic Feedback Linearization :
Design, Implementation, and Experimental Validation, IEEE Transactions on Control Systems
Technology, Vol. 10, No. 6, pp.835-852, 2002

[4] Gholipour A., Yazdanpanah M.J.: Dynamic tracking control of nonholonomic mobile robot
with model reference adaptation for uncertain parameters, in proc. ECC2003: European Con-
trol Conference, Cambridge, UK, Sep. 2003

[5] De Luca A., Oriolo G.: Modeling and Control of Nonholonomic Mechanical Systems, in An-
geles J., Kecskemethy A. (Eds.): Kinematics and Dynamics of Multi-Body Systems, CISM
Courses and Lectures, vol. 360, pp. 277-342, Springer Verlag, Wien, 1995

Received in editor’s office: March 13, 2008
Approved for publishing: April 14, 2008

Note: The paper is an enlarged version of the contribution presented at conference
Dynamics of Machines 2008, Prague.



