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BIFURCATION AND CHAOS IN ELECTROMENCHANICAL
DRIVE SYSSTEMS WITH SMALL MPTPRS

Lubomir Houfek, Martin Houfek, Jif{ Krejsa, Ctirad Kratochvil*,
Josef Kold¢ny, Pavel Nykodym**

The purpose of this article is to provide an elementary introduction to the subject of
chaos in the electromechanical drive systems with small MPTPRS. In this article, we
explore chaotic solutions of maps and continuous time systems. These solutions are
also bounded like equilibrium, periodic and quasiperiodic solutions.
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1. Introduction

Chaos can be defined on bounded-state behavior that isn’t equilibrium solution or a pe-
riodic solution or a quasiperiodic solution. The attractor associated with chaotic motion
in state space is not a simple geometrical object like a finite number of points, a closed
curve or a torus. Chaotic attractor are complicated geometrical objects that posses fractal
dimensions.

In contrast with the spectra of periodic and quasiperiodic attractors, which consist of
a finite number of sharp spikes, the spectrum of a chaotic signal has a continuous broadband
character. In addition, the spectrum of chaotic signal often contains spikes that indicate the
predominant frequencies of the signal. We can also say, that chaotic motion has a very large
number of unstable periodic motions. Thus, a chaotic system may dwell for a brief time on
motion that is very nearly periodic and then may change to another periodic motion with
a period that is k times that of the preceding motion. These constant evolutions from one
periodic motion to another a long-time impression of randomness while showing short-term
glimpses or order [1].

Chaotic systems are also characterized by sensitivity to initial conditions or some struc-
tural parameters of model of drive systems. That is, tiny differences in the input can be
quickly amplified to create overwhelming differences in the output (this is so-called butterfly
effect)

2. Deterministic chaos

Deterministic chaos is a term used to denote the irregular behavior of dynamical systems
arising from a strictly deterministic time evolution without any source of noise or external
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stochasticity. This irregularity manifests itself in an extremely sensitivity dependence on
initial conditions (or some structural parameters), which precludes any long-term prediction
of the dynamics. Most surprisingly, it turned out that such chaotic behavior can already be
found for dynamical systems with a small degree of freedom and it is, moreover, typical for
a great number of mechatronic systems. A dynamical system can be described simply as a
system of IV first order differential equations

dIi
dt

where the independent variable ¢ can be read as time and the x;(t) are dynamical quantities

= fi(z1,2a,...,xN,T), 1=1,2,...,N, (1)

whose time dependence is generated by (1), starting from the specific initial conditions
x;(0), ¢ = 1,2,...,N. Tt should be noted that the system (1) is autonomous because it
is not explicitly t-dependent. The f; is nonlinear function of the x; which is characterized
by the parameter(s) r. The equations lead to chaotic motion, which develops and changes
its characteristics with varying control parameter(s) r. The assumption of an autonomous
system is not essentials, because it can be converted into an autonomous one by introducing
time ¢ as an additional variable zx4+1. An example of dynamical system are the Hamiltonian
equations of motion in classical mechanics.

A discrete dynamical system is an iterated mapping
xi(n+1) = fi(z1(n),...,zn(n),r) , i=1,2,...,N, (2)

starting from an initial point 2;(0), ¢ = 1,2,..., N. Such discrete system may appear quite
naturally from the setup of the problem under consideration, or it may be a reduction of the
continuous system (2) in order to simplify the analysis, as for example the Poincare maps.

Basically, one can make a distinction between conservative and dissipative. In the first
case, volume elements in phase space are conserved, whereas dissipative systems contract
phase space element. This results in markedly different behavior [2].

3. Bifurcation behavior of real drive system

We can demonstrate the computational modeling of bifurcations and chaos on the exam-
ple of DC drive with separate excitation and current controller with hysteresis. Schematic
diagram of the drive and its circuits is shown on Fig. 1.
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Fig.1: Schematic diagram of controlled drive
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Modeled system consists of power and control parts. Power part contains power switching
element and zero diode. Control part contains PI controller of angular velocity and current
controller with hysteresis. Controllers output pulses are brought into R-S flip flop which is
clocked by clock pulses with period T'. This prevents high frequency switching of power ele-
ment and defines sample period T for further signal analysis. The equations describing given
system therefore contain time 7' on the right side, which means that it is nonautonomous
system. Modeled system was modified so that during design of computational model in
MATLAB we could directly use the basic mathematical description.

For on state S

% = Li& (=Raia — Laitwr + ua) ,
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and for off state S
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where i, is current in motor armature circuit, i¢ is current in excitation coil, w, is rotor
angular speed, L, is anchor circuit inductance, Ly is excitation coil inductance, J is motor
moment of inertia, R, is resistance in motor armature circuit, Ry is excitation coil resistance,
By, is coefficient of viscous damping, u, is armature circuit voltage, us is excitation circuit
voltage, M, is load torque.

The parameters of DC drive and loads are: U, = 280V, R, = 0.5, L, = 0.01H,
Ry =240Q, Ly = 0.001H, Loy = 1.23H, J = 0.05kgm?, B = 0.02N m/rads~!, proportional
component of PI K, = 1.6, integration component of PI K; = 16, band width of controller
with hysteresis is 0.8 A. Frequency of clock pulses is 200 Hz.

We can determine the behavior of the system on the base of time courses of selected
variables, characters of attractors in both stable and unstable states and spectral analysis
of selected variables. Such data are shown on figures 2-5.

Figure 2 shows courses of motor current and speed in steady state with single period,
corresponding to simple attractor — limit cycle. The same parameters are shown in Figure 3
at steady state with double period. One can see that attractor has more complex character
and corresponds to more complex motion. State close to chaos is shown in Fig. 4. Mainly the
attractor (Fig. 4c) is represented by more complex motion with open course, corresponding
to unstable state of the system.

These facts are illustrated also by spectra of motor speed courses for both stable and
chaotic state, see Fig.5. The modulation of base frequency component in state close to
chaos can not be overlooked and documents the complex character of motion.
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Fig.2: Steady state of the system with single period — a) time course
of current, b) time course of speed, c) attractor
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Fig.3: Steady state of the system with two periods — a) time course
of current, b) time course of speed, c) attractor
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Bifurcation diagram is often used for analysis of how the change of certain parameter
influences the behavior of the system in question. To create bifurcation diagram we have to
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Fig.4: Chaotic state of the system — a) time course of
current, b) time course of speed, c) attractor

. Bifurcation and chaos

build a circuit to generate required signal for oscilloscope.

Typical bifurcation diagram has horizontal axis corresponding to the parameter change
and vertical axis corresponding with sampled steady values of the variable of tested system.
To draw bifurcation diagram we have to bring the required signals for X and Y inputs of
the oscilloscope. To obtain those signals we must perform two actions:

1. change of selected parameter of examined system corresponding to the small change

of voltage sawtooth brought to X input of the oscilloscope
2. sampling of selected signal of examined system and sending samples to Y input of the

oscilloscope.
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Fig.5: Motor speed spectra — a) steady state with single period,
b) steady state with two periods, c) chaotic state
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Fig.6: Block diagram of bifurcation diagram

Those two actions must be coordinated and saw increment must be relatively small.
Then for each value of bifurcation diagram the sampled data are brought to Y input of
the oscilloscope. The system implementing this way of bifurcation diagram construction is
shown on Fig. 6.

To obtain the information about the behavior of modeled system during the change of
selected parameters following examples were chosen :
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— First we evaluated bifurcation diagram of motor current with parameter wuys; (input
voltage) for w, = 80rads~!. The diagram is shown on Fig. 7.
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Fig.7: Bifurcation diagram of motor current with
Uuyst parameter for wy = 80 rad s71

— Another example is bifurcation diagram of motor current with w, parameter for
Uyst = 280V which is shown on Fig. 8.
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Fig.8: Bifurcation diagram of motor current with wy
parameter for constant value of uysy = 280 V
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— The last example is the most interesting regarding the mechanism of transition from
stable state to unstable state of the system.
Fig. 9a shows the bifurcation diagram of current with parameter K, for u,s = 332V and
w; = 135rads™'. Further changed parameters of the system are: integration component of
PI controller K; = 0 and band width of controller with hysteresis which is set to 2 A. It is
clear that with increasing PI controller gain we are moving towards unstable area.
The complex mechanism of transition between stable and unstable states of the system
is shown in detail on Fig. 9b.
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Fig.9: Bifurcation diagram of motor current with Ky parameter
for constant values of uyst = 332 V and wy = 135 rad st

5. Conclusion

Bifurcation analysis of dynamic systems responses (or real systems models) can be used
for relatively simple description of steady states of nonlinear systems and for evaluation
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of changes in their behavior depending on changes of certain control parameter or initial
conditions.

In the case of electric drives the bifurcation analysis can be used as a mean for limit
parameter value identification or for diagnostics of the drive as whole. Bifurcation analysis
is in such case based on observation and analysis of angular velocity and armature current.
Those variables are commonly observed in industrial drive systems for the feedback control
loops purposes.
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