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NUMERICAL SIMULATION OF AEROELASTIC PROBLEMS
WITH CONSIDERATION OF NONLINEAR EFFECTS

Petr Sváček*

In this paper the numerical approximation of a two dimensional aeroelastic problem
is addressed, where nonlinear effects are considered. For the flow model we use the
Navier-Stokes equations, spatially discretized by the FE method and stabilized with
a modification of the Galerkin Least Squares (GLS) method. The motion of the
computational domain is treated with the aid of the Arbitrary Lagrangian Eulerian
(ALE) method. The structure model is considered as a solid body with two degrees
of freedom (bending and torsion). The motion is described with the aid of a system
of nonlinear differential equations and coupled with the flow model by the strongly
coupled algorithm.

Keywords : aeroelasticity, finite element method, Arbitrary Lagrangian Eulerian
method

1. Introduction

The numerical approximation of fluid-structure interaction (FSI) is becoming to be im-
portant in many technical and scientific applications, cf. [2], [1]. In order to properly ap-
proximate the mutual interaction between fluid and structure, various strategies are used.
During last years, significant advances have been made in the development of computational
methods for fluid-structure interaction problems. The arbitrary Lagrangian-Eulerian (ALE)
formulations are usually employed. The application of the ALE method is straightforward,
cf. [9], [8], but there is still a number of important computational issues which need to be
properly addressed, cf. [4]. The application of the ALE method depends on the discretization
method used.

In this paper the main attention is paid to the numerical approximation of fluid-structure
interaction problems particulary for the near- and post-critical regimes. The conservative
ALE formulation of Navier-Stokes system is considered (see, e.g. [8]) and numerically appro-
ximated by the finite element method. In the finite element context the ALE non-con-
servative formulation of the incompressible Navier-Stokes system is usually used, cf. [6]. For
the finite volume schemes the ALE conservative formulation are used, cf. [4], but it can be
applied also in the finite element context, see [8].

We focus here on the use of ALE conservative formulation of the Navier-Stokes system
in the finite element context. In order to explain the differences between conservative and
non-conservative formulation a simplified elliptic problem is considered, formulated weakly
on moving grids with the aid of ALE conservative and non-conservative formulations, and
discretized by the finite element method. The numerical solution of a benchmark problem
(cf. [8]) is found and the results of different formulations are compared.
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Further, the ALE conservative formulation of the Navier-Stokes equations is formulated
weakly, discretized by the finite element method, stabilized and applied to an aeroelastic
problem. The numerical solution of the post-critical case, where the loss of stability occurs,
is presented. This paper is an extended version of the paper [12].

2. Mathematical model

The mathematical formulation of the problem consists of the flow model, the structure
model and the interface conditions. We assume that the fluid motion is described by the
incompressible Navier-Stokes system written in the ALE conservative form, cf. [8],

1
J

DA

Dt

(
J vi

)
+ div [(v − wD) vi] − ν �vi +

∂p

∂xi
= 0 , i = 1, 2 ,

div v = 0 , in Ωt ⊂ �
2 ,

(1)

where Ωt is the computational domain at time t, v = (v1, v2) is the fluid velocity vector,
p is the kinematic pressure (i.e., the pressure divided by the constant fluid density ρ), ν is
the kinematic viscosity of the fluid (i.e. the viscosity divided by the density ρ).

Here, the ALE method is used. We assume that A = A(ξ, t) = At(ξ) is an ALE mapping
defined for all t ∈ (0, T ) and ξ ∈ Ω0, which satisfies the following assumptions :

(A1) The mapping t ∈ (0, T ), ξ ∈ Ω0 �→ x = A(ξ, t) ∈ Ωt has continuous first order deriva-
tives with respect to t, ξ1, ξ2 and continuous second order derivatives ∂2ϕ/(∂ξi ∂t) and
∂2ϕ/(∂t ∂ξi) for i = 1, 2.

(A2) The mapping ξ �→ x = A(ξ, t) is continuously differentiable mapping of Ω0 onto Ωt

with the Jacobian Ĵ = Ĵ (ξ, t), which is continuous, bounded and

J (x, t) = Ĵ (ξ, t) = det
DA
Dξ

(ξ, t) > 0 , where x = At(ξ) .

(A3) The domain velocity wD : M → � satisfies

wD(A(ξ, t), t) =
∂A
∂t

(ξ, t) ∀ξ ∈ Ω0.

In what follows by symbol ŵD we shall denote the domain velocity defined on the refe-
rence configuration Ω0, i.e.

ŵD(ξ, t) = wD(A(ξ, t), t).

Similary for any function f(x, t) defined on the open set

M =
{
(x, t); x ∈ Ωt, t ∈ (0, T )

}
. (2)

we shall define the function f̂(ξ, t) defined for any ξ ∈ Ω0 and t ∈ (0, T ) by

f̂(ξ, t) = f(A(ξ, t), t) .

Furthermore the symbol DA/Dt denotes the ALE derivative, i.e. the time derivative with
respect to the reference configuration:

DAf

Dt
(x, t) =

∂f̂

∂t
(ξ, t) , where x = At(ξ) .
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Under the assumptions (A1)-(A3) the ALE derivative satisfies (cf. [6, 8])

DAf

Dt
(x, t) =

∂f

∂t
(x, t) + wD(x, t) · ∇f(x, t) .

The non-conservative ALE formulation follows from (1) with the aid of the relation

DAJ
Dt

= J (∇ ·wD) ,
∂Ĵ
∂t

(ξ, t) = Ĵ (ξ, t) div wD(A(ξ, t), t) , (3)

which is equivalent to the Euler’s expansion formula, see, e.g. [5]. The equivalent (non-con-
servative) formulation of equations (1) reads

DAvi

Dt
+ (v − wD) · ∇vi − ν �vi +

∂p

∂xi
= 0 . (4)

Fig.1: The flexibly supported airfoil shown in the deformed position (left); sketch
of the computational domain Ωt and the parts of the boundary ∂Ωt (right)

The system (1) is equipped with boundary conditions prescribed on mutually disjoint
parts of the boundary ∂Ω = ΓD ∪ ΓO ∪ ΓWt :

a) v = vD on ΓD ,

b) v = wD on ΓWt ,

c) −ν
∂v
∂n

+ (p − pref)n = 0 on ΓO ,

(5)

where pref denotes a reference pressure. Further, the system (1) is equipped with an initial
condition v(x, 0) = v0(x), x ∈ Ω0.

The flow model is coupled with the structure model representing the flexibly supported
airfoil (see Figure 1). The airfoil can be vertically displaced by h (downwards positive) and
rotated by angle α (clockwise positive). The equations of motion then read (see [6])

mḧ + Sα α̈ cosα − Sα α̇2 sinα + dhh ḣ + khh h = −L(t) ,

Sα ḧ cosα + Iα α̈ + dαα α̇ + kαα α = M(t) .
(6)
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where m is the mass of the airfoil, Sα is the static moment around the elastic axis EO, and
Iα is the inertia moment around the elastic axis EO. The parameters dαα and dhh denote
the structural damping coefficients, khh and kαα denote the stiffness coefficients. On the
right-hand side the aerodynamical lift force L(t) and aerodynamical torsional moment M(t)
are involved.

The aerodynamical lift force and torsional moment satisfy

L = −l

∫
ΓWt

2∑
j=1

τ2j nj dS , M = l

∫
ΓWt

2∑
i,j=1

τij nj rort
i dS , (7)

where

τij = ρ

[
−p δij + ν

(
∂vi

∂xj
+

∂vj

∂xi

)]
, rort

1 = −(x2 − xEO2) , rort
2 = x1 − xEO1 , (8)

(see Fig. 2) and l denotes the depth of the airfoil section.

Fig.2: The outward unit normal n and vectors r, rort

3. Weak formulation and time discretization

In order to introduce the weak formulation of the Navier-Stokes equations problem, we
multiply equations (1) by a test function z, integrate over the domain Ωt and apply Green’s
theorem. Because the computational domain varies in time, it is natural to use also time-
dependent test functions z.

We consider a test function z = z(x, t) in the form z = ẑ ◦ A−1
t , which means that

z(x, t) = ẑ(ξ), where x = At(ξ) for all ξ ∈ Ω0, and ẑ ∈ H1(Ω0) (H1(Ω0) =
[
H1(Ω0)

]2 and
H1(Ω0) is the Sobolev space of functions which are square integrable over Ω0 together with
their first-order derivatives). The space of all such test functions z = z(x, t) will be denoted
by X̃ and we define X by

X =
{
z ∈ X̃ : z(x, t) = 0, x ∈ ΓD ∪ ΓWt, t ∈ (0, T )

}
.

Further, for any time instant t we define the spaces Wt,Qt by

Wt = H1(Ωt) , Qt = L2(Ωt) .
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The weak formulation is introduced with the aid of the following identity: Let the map-
ping At and wD satisfy assumptions (A1)-(A3) and let v ∈ C1(M) and z ∈ X . Then∫

Ωt

1
J

DA

Dt

(
J vi

)
zi dx =

d
dt

∫
Ωt

vi(x, t) zi(x, t) dx . (9)

Proof. We start with the use of the substitution theorem, use the fact that function ẑ = ẑ(ξ)
does not depend on time and exchange the order of integration and differentiation :∫

Ωt

1
J

DA

Dt

(
J vi

)
zi dx =

∫
Ω0

∂

∂t

(
Ĵ v̂i

)
ẑi(ξ) dξ =

=
∫
Ω0

∂

∂t

(
Ĵ (ξ, t) v̂i(ξ, t) ẑi(ξ)

)
dξ =

=
d
dt

∫
Ω0

Ĵ (ξ, t) v̂i(ξ, t) ẑi(ξ) dξ =

=
d
dt

∫
Ωt

vi(x, t) zi(x, t) dx ,

where the last equation holds with the use of substitution theorem again. �

Now, the weak formulation of the problem (1) reads: Find U = (v, p) ∈ Wt × Qt such
that it satisfies the identity

d
dt

[(
v, z

)
Ωt

]
+ ν

(
∇v,∇z

)
Ωt

+ ((w · ∇)v, z)Ωt
−
(
p,∇ · z

)
Ωt

−

−
(
(∇ ·wD)v, z

)
Ωt

+
(
∇ · v, q

)
Ωt

= −
∫
ΓO

pref n · zdS ,
(10)

for all V = (z, q) ∈ X ×Qt, where w = v − wD and v(·, t) satisfies

v(x, t) = vD(x) , x ∈ ΓD ,

v(x, t) = wD(x, t) , x ∈ ΓWt .

Remark 3.1 (Weak formulation of ALE non-conservative form). The weak formulation of

equation ALE (1) reads Find U = (v, p) ∈ Wt × Qt such that for all V = (z, q) ∈ X̃t ×Qt

holds (
DAv
Dt

, z

)
Ωt

+ ν
(
∇v,∇z

)
Ωt

+ ((w · ∇)v, z)Ωt
−
(
p,∇ · z

)
Ωt

+

+
(
∇ · v, q

)
Ωt

= −
∫
ΓO

pref n · zdS ,

(11)

where w = v − wD and v(·, t) satisfies

v(x, t) = vD(x) , x ∈ ΓD ,

v(x, t) = wD(x, t) , x ∈ ΓWt .
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3.1. Time discretization

In order to discretize problem (10) in time, we consider a time step Δt > 0, de-
note tk = k Δt and at every time instant tk employ the approximations vk ≈ v(·, tk) and
pk ≈ p(·, tk). Moreover we approximate the domain velocity wD at time level tk by wk

D.
Similary we shall use a simplified notation for the test function z. By zk we shall denote
the function zk(x) = z(x, tk) defined for any x ∈ Ωk = Ωtk

. In what follows we shall relate
the value of the test function zk to the value of the test function on the time level tn+1 by
the identity

zk(x) = z
(
Atn+1

(
A−1

tk
(x)

)
, tn+1

)
= zn+1

(
Atn+1

(
A−1

tk
(x)

))
, x ∈ Ωk . (12)

The time derivative in the weak formulation (10) is approximated at time t = tn+1 by
the second order backward difference formula, i.e.

d
dt

[(
v, z

)
Ωt

]
≈

3
(
vn+1, zn+1

)
Ωn+1

− 4
(
vn, zn

)
Ωn

+
(
vn−1, zn−1

)
Ωn−1

2 Δt
.

Further, we shall consider the function spaces at the time instant tk

Wk = H1(Ωk) , Qk = L2(Ωk) .

Let us define the forms at time instant t = tn+1

a(U∗, U, V ) =
3

2 Δt

(
vn+1, zn+1

)
Ωn+1

+
(
(wn+1 · ∇)vn+1, zn+1

)
Ωn+1

+

+ ν (∇vn+1,∇zn+1)Ωn+1 +
(
∇ · vn+1, q

)
Ωn+1

−

−
(
pn+1,∇ · zn+1

)
Ωn+1

−
(
(∇ · wn+1

D )vn+1, zn+1
)
Ωn+1

,

L(V ) = −
∫
ΓO

pref n · zn+1 dS +
4

2 Δt
(vn, zn)Ωn

− 1
2 Δt

(
vn−1, zn−1

)
Ωn−1

,

where U = (vn+1, pn+1), V = (zn+1, q), U∗ = (v∗,n+1, pn+1), wn+1 = v∗,n+1 − wn+1
D , and

the functions zn, zn−1 are defined by the relation (12).

Problem 3.1 (Weak ALE conservative-formulation of the time discretized problem). For

t = tn+1 find U = (vn+1, pn+1) ∈ Wn+1 ×Qn+1 such that for all test functions V = (z, q)
where q ∈ Qn+1 and z ∈ X holds

a(U, U, V ) = L(V ) . (13)

ALE non-conservative formulation

The finite element method is usually applied to the Navier-Stokes equations written in
the non-conservative form. Let us start from equations (4), where the ALE time derivative
is approximated with the aid of second order backward difference formula (BDF2) by

DAv
Dt

(x, tn+1) ≈
3vn+1(x) − 4 ṽn(x) + ṽn−1(x)

2 Δt
for any x ∈ Ωtn+1 ,

where ṽk(x) = vk
(
Atk

(
A−1

tn+1
(x)

))
.
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Similary as for problem (13) we define the forms anon and Lnon on the time level tn+1:

anon(U∗, U, V ) =
(

3vn+1

2 Δt
, zn+1

)
Ωn+1

+
(
(wn+1 · ∇)vn+1, zn+1

)
Ωn+1

+

+ ν (∇vn+1,∇zn+1)Ωn+1 +
(
∇ · vn+1, q

)
Ωn+1

−
(
pn+1,∇ · zn+1

)
Ωn+1

,

Lnon(V ) = −
∫
ΓO

pref n · zn+1 dS +
(

4 ṽn − ṽn−1

2 Δt
, zn+1

)
Ωn+1

,

where U = (vn+1, pn+1), V = (zn+1, q), U∗ = (v∗,n+1, pn+1), wn+1 = v∗,n+1 − wn+1
D .

Problem 3.2 (Weak ALE non-conservative formulation of the time discretized problem). For

t = tn+1 find U = (vn+1, pn+1) ∈ Wn+1×Qn+1 such that for all test functions V = (zn+1, q)
where q ∈ Qn+1 and zn+1 ∈ Xn+1 holds

anon(U, U, V ) = Lnon(V ) . (14)

4. Finite element approximation and stabilization

In order to apply the Galerkin FEM, we approximate the spaces Wk, X k, Qk from the
weak formulation by finite dimensional subspaces Wk

�, X k
�, Qk

�, � ∈ (0,�0), �0 > 0,
X k

� = {v� ∈ W�;v�|ΓD∩ΓWt = 0}. In practical computations we assume that the domain
Ωn+1 is a polygonal approximation of the region occupied by the fluid at time tn+1 and
the spaces Wn+1

� , Xn+1
� , Qn+1

� are defined over a triangulation T n+1
� of the domain Ωn+1,

formed by a finite number of closed triangles K ∈ T n+1
� . We use the standard assumptions

on the system of triangulation, cf. [3]. Here � denotes the size of the mesh T n+1
� . The

spaces Wn+1
� , Xn+1

� and Qn+1
� are formed by piecewise polynomial functions :

Hn+1
� = {v ∈ C(Ωn+1); v|K ∈ Pk(K) for each K ∈ T n+1

� } ,

Wn+1
� =

[
Hn+1

�

]d

, Xn+1
� = Wn+1

� ∩ Xn+1 ,

Qn+1
� = {v ∈ C(Ωn+1); v|K ∈ Pk(K) for each K ∈ T n+1

� } .

(15)

The standard Galerkin approximation of the weak formulations (13) and (14) may suffer
from two sources of instabilities. One instability is caused by the incompatibility of the
pressure and velocity pairs of finite elements, cf. [11], [10]. Further, the finite element scheme
is unstable due to the dominating convection.

In order to overcome both difficulties, we apply a modification of the Galerkin Least
Squares method together with div-div stabilization, cf. [7]. We start from the definition of
two parts Ra

K and Rf
K of the local element residual on the element K ∈ T�n+1:

Ra
K(wn+1;vn+1, pn+1) =

3vn+1

2 Δt
− ν �vn+1 +

(
wn+1 · ∇

)
vn+1 + ∇pn+1 , (16)

where the function wn+1 stands for the transport velocity and Rf
K is defined by

Rf
K(ṽn,ṽn−1) =

1
2 Δt

(4 ṽn − ṽn−1), (17)

where ṽk = vk ◦ Atk
◦ A−1

tn+1
.
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The stabilizing terms are defined by

LGLS(U∗
�, U�, V�) =

∑
K∈T n+1

�

δK

(
Ra

K(wn+1;vn+1, pn+1),
(
wn+1 · ∇

)
zn+1 + ∇qn+1

)
K

,

FGLS(V�) =
∑

K∈T n+1
�

δK

(
Rf

K(ṽn, ṽn−1),
(
wn+1 · ∇

)
zn+1 + ∇qn+1

)
K

,
(18)

where the function wn+1 stands for the transport velocity, i.e. wn+1 = v∗,n+1 − wn+1
D .

Furthermore, the div-div stabilizing terms P�(U�, V�) read

P�(U�, V�) =
∑

K∈T n+1
�

τK (∇ · vn+1,∇ · zn+1)K . (19)

Here, τK ≥ 0 and δK ≥ 0 are suitably chosen parameters. The stabilized discrete problem
reads :

Problem 4.1 (GLS stabilized problem). Find U� = (vn+1, pn+1) ∈ Wn+1
� ×Qn+1

� such that

vn+1 satisfies approximately the Dirichlet boundary conditions (5a,b) and the condition

a(U�, U�, V�) + LGLS(U�, U�, V�) + P�(U�, V�) = f(V�) + FGLS(V�) , (20)

holds for all V� = (zn+1, q) ∈ Xn+1
Δ ×Qn+1

� .

The parameters δK and τK are defined by

τK = ν

(
1 + Reloc +

h2
K

ν Δt

)
, δK =

h2
K

τK
,

where the local Reynolds number Reloc is

Reloc =
hK ‖wn+1‖K

2 ν
,

and hK denotes the local element length measured in the direction of the transport velo-
city wn+1.

Solution of the nonlinear problem

The nonlinear discrete problem (20) is solved on each time level tn+1 with the aid of the
linearized Oseen iterative process

a(U (�)
� , U

(�+1)
� , V�) + LGLS(U (�)

� , U
(�+1)
� , V�) + P�(U (�+1)

� , V�) =

= f(V�) + FGLS(V�) for all V� ∈ X� ×Q� ,
(21)

where we start from the initial approximation U
(0)
� = (v̂n, p̂n) or U

(0)
� = (2v̂n − v̂n−1,

2p̂n − p̂n−1). It is usually enough to compute 5–8 Oseen iterations on each time level.

4.1. Coupling of fluid-structure models

The coupling of fluid and structure problems is given by Equation (7) and the boundary
condition (5b). For a given value of αn+1, hn+1 the ALE mapping is constructed with the
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aid of linear elasticity analogy, cf. [13]. Then the domain velocity wn+1
D at the time instant

tn+1 is approximated with the aid of the two step second order backward difference formula

wn+1
D (x) =

3 xn+1 − 4 xn + xn−1

2 Δt
, xn+1 ∈ Ωn+1 ,

where xn+1 = Atn+1(ξ), xn = Atn(ξ), xn−1 = Atn−1(ξ) denote the locations of a moving
point xn+1 with a given fixed reference ξ ∈ Ω0 at time instants tn+1, tn, and tn−1.

The aerodynamic lift force L(t) and moment M(t) are computed from the approximations
of fluid velocity and pressure with the aid of the weak formulation of the problem. The
Navier-Stokes equations in the ALE form discretized with respect to time at instant t := tn+1

can be expressed component-wise as

ρ
3 vn+1

i − 4 v̂n
i + v̂n−1

i

2 Δt
+ ρ

(
(vn+1 − wn+1

D ) · ∇
)
vn+1

i =

=
2∑

j=1

∂τij

∂xj
in Ωn+1 , i = 1, 2 .

(22)

Let us set ΩΓWt = ∪{K ∈ T n+1
� ; K ∩ ΓWt �= ∅}, which represents a one layer strip around

the airfoil formed by finite elements. We shall use the function ϕ ∈ W� such that ϕ(x) = 1
for x ∈ ΓWt and ϕ(x) = 0 outside the set ΩΓWt , see Fig. 3.

Fig.3: The example of the one layer strip ΩΓWt around ΓWt

Multiplying equation (22) with i = 2 by the function ϕ, integrating over ΩΓWt , applying
Green’s theorem to the terms with τij and, finally, writing the already known finite element
approximations vn+1

� , vn
� and vn−1

� instead of the functions vn+1, vn and vn−1, respectively,
we arrive at the representation of the force L :

L = −l

∫
ΩΓWt

{
ρ

(
3vn+1

�2 − 4 v̂n
�2 + v̂n−1

�2

2 Δt
+
(
(vn+1

� − wn+1
D ) · ∇

)
vn+1
�2

)
ϕ −

−
2∑

j=1

τ2j
∂ϕ

∂xj
,

}
dx .

(23)

(Here we use the notation v� = (v�1, v�2), v̂n
� = (v̂n

�1, v̂
n
�2), etc.)

Similarly, if we use the vector-valued function vort = (vort
1 , vort

2 ) = ϕ (rort
1 , rort

2 ), where
the functions rort

1 , rort
2 are defined by (8), we can derive the formula

M = −l

∫
ΩΓWt

{
ρ

(
3vn+1

� − 4 v̂n
� + v̂n−1

�
2 Δt

+
(
(vn+1

� − wn+1
D ) · ∇

)
vn+1
�

)
· vort

}
dx −

−
∫

ΩΓWt

2∑
i,j=1

τij
∂vort

i

∂xj
dx .

(24)
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The components τij are computed from (8), where vn+1
� and pn+1

� are substituted for v and
p respectively.

Coupling algorithm

The coupling of fluid and structure problems is given by Equations (23), (24) and the
boundary condition (5b). The approximate solution should satisfy both conditions Equa-
tions (23), (24) as well as boundary condition (5b). In the presented computations the strong
coupling algorithm shown in next table is used :

5. Numerical examples

In this section we shall apply the developed ALE method to an aeroelastic problem for
velocities nearby the flutter limit. In order to compare the ALE conservative and non-
conservative formulations we shall test these formulations on a parabolic problem.

5.1. Model problem

We test the stability of the above developed technique on a simplified problem from [8].
The deformation of the reference domain Ω0 = {ξ = (ξ1, ξ2) : 0 < ξi < 1} is given by

At : Ω0 �→ Ωt , x = At(ξ) , xi = ξi (2 − cos(20 π t)) ,

for t ∈ [0, T ]. We consider the equation

∂u

∂t
− ν �u = 0 in Ωt , (25)

equipped with the Dirichlet boundary condition u = 0 on ∂Ωt and the initial condition

u(ξ, 0) = 1600 ξ1 (1 − ξ1) ξ2 (1 − ξ2) in Ω0 .

We shall use two ALE formulations of problem (25). The ALE non-conservative form of
equation (25) reads

DAu

Dt
− (wD · ∇u) − ν �u = 0 in Ωt . (26)
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In the ALE conservative formulation (25) has the form

1
J

DA

Dt

(
J u

)
− div (wD u) − ν �u = 0 in Ωt . (27)

Weak formulation

In order to introduce the weak formulation of problems (26), (27) we multiply equations
by a test function v, integrate over the domain Ωt and apply Green’s theorem. Similary
as in Section 2 we consider a test function v = v(x, t) in the form v = v̂ ◦ A−1

t , which
means that v(x, t) = v̂(ξ), where x = At(ξ) for all ξ ∈ Ω0, and v̂ ∈ H1

0 (Ω0). The space
of all such test functions v = v(x, t) will be denoted by Z̃. We multiply by a test function
v ∈ Z̃ equation (27), integrate over Ωt, use Green’s theorem and relation (9). Then the
weak formulation of (27) reads : Find u = u(x, t) such that u(x, t) = 0 for x ∈ ∂Ωt and

d
dt

∫
Ωt

u v dx −
∫
Ωt

∇ · (wD u) v dx + ν

∫
Ωt

∇u · ∇v dx = 0 , (28)

for all v ∈ Z̃.

Weak formulation of equation (26) reads : Find u = u(x, t) such that u ∈ H1
0 (Ωt) for any

t ∈ [0, T ] and ∫
Ωt

(
DAtu

Dt
v − (wD · ∇u) v

)
dx + ν

∫
Ωt

∇u · ∇v dx = 0 , (29)

holds for any v ∈ Z̃.

Apriori estimate

Both formulations (29) and (28) are equivalent. We shall proof the relation

d
dt

1
2
‖u(t)‖2

L2(Ωt)
+ ν ‖∇u‖2

L2(Ωt)
= 0 , (30)

which shows that the quantity E(t) = ‖u(t)‖2
L2(Ωt)

is strictly decreasing in time.

Proof. In order to estabilish (30) we first prove the relation

d
dt

∫
Ωt

1
2
|u|2 dx =

∫
Ωt

DAtu

Dt
u +

1
2
|u|2 (∇ · wD) dx , (31)

which follows from the use of the substitution theorem

d
dt

∫
Ωt

1
2
|u|2 dx =

d
dt

∫
Ω0

Ĵ (ξ, t)
1
2
|û(ξ, t)|2 dξ =

=
∫
Ω0

∂

∂t

[
Ĵ 1

2
|û|2

]
dξ =

∫
Ω0

1
2

∂Ĵ
∂t

|û|2 + Ĵ ∂û

∂t
u dξ =

=
∫
Ωt

[
1
J

DAJ
Dt

1
2
|u|2 +

DAu

Dt
u

]
dx =

∫
Ωt

[
(∇ · wD)

1
2
|u|2 +

DAu

Dt
u

]
dx
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where equation (3) was used. Further the application of Green’s theorem yields

1
2

∫
Ωt

u2(∇ · wD) dx = −
∫
Ωt

(wD · ∇u)u dx , (32)

and with the use of equations (32) in (31) we get

d
dt

∫
Ωt

1
2
|u|2 dx =

∫
Ωt

DAtu

Dt
u − (wD · ∇u)u dx = −ν

∫
Ωt

|∇u|2 dx ,

where the last equation follows from equation (29) with the choice v = u. �

Time discretization

The resulting problem is discretized in time with the aid of either the implicit Euler
method or by the second order two step backward difference formula (BDF2).

The numerical results were obtained for the viscosity value of ν = 0.01, the time step
0.01 and for the the time t ∈ [0, 0.4]. The results are shown in Figure 4. In the case of
the time discretized problem on the fixed domain Ωt ≡ Ω the quantity E(tk) is decreasing.
This is not the case for the moving domain solution as shown in Figure 4. Nevertheless, the
numerical results are stable for both conservative as well as non-conservative formulation.
Moreover, the conservative formulation is observed to preserve the monotone behaviour at
least for the implicit Euler method.

Fig.4: The numerical approximation of E(t) for problem (25) with the implicit Eu-
ler formula (left) and the second order two step backward difference formula
(right) : —— non-conservative formulation, – · – conservative formulation

5.2. Aeroelastic simulations

Now we present the numerical simulation of the coupled aeroelastic problem of flow
induced vibrations of the airfoil NACA 0012. We consider the post-critical far field velocity
U∞ = 40 ms−1. In that case the divergence type aeroelastic instability occurs.

We studied the response of the system in dependence on the initial values of α and h.
The results are shown in Figures 5–8. In all figures a typical divergence type instability can
be observed. The different behaviour of the aeroelastic system can be seen because of the
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different initial conditions. In Fig. 8 the response of the aeroelastic model reminds a combi-
nation of the divergence type instability and flutter type instability. The velocity magnitude
distribution and pressure distribution during three time instants are shown in Fig. 9.

Fig.5: The aeroelastic response of the airfoil NACA 0012 for U∞ = 40 m/s
with the initial condition α(0) = 0.03◦ and h(0) = 0mm

Fig.6: The aeroelastic response of the airfoil NACA 0012 for U∞ = 40 m/s
with the initial condition α(0) = 0.3◦ and h(0) = 0mm

Fig.7: The aeroelastic response of the airfoil NACA 0012 for U∞ = 40 m/s
with the initial condition α(0) = 3◦ and h(0) = 0 mm
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Fig.8: The aeroelastic response of the airfoil NACA 0012 for U∞ = 40 m/s
with the initial condition α(0) = 6◦ and h(0) = 0 mm

6. Conclusion

The robust finite element method for the numerical simulation of interaction of incom-
pressible flow and a vibrating airfoil is presented. It is based on the combination of the
Arbitrary Lagrangian Eulerian (ALE) conservative formulation of the Navier-Stokes equa-
tions, time discretization, and the finite element method stabilized by the Galerkin-Least
Squares method. The comparison of ALE conservative and non-conservative formulation is
presented and the influence of the initial condition is numerically studied.
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[13] Sváček P., Horáček J.: On finite element method application in computational aeroelasticity,
In ECCOMAS CFD 2006 Proceedings [CD-ROM], Delft: Delft University of Technology, 2006

Received in editor’s office : April 25, 2008
Approved for publishing : August 25, 2009

Note : The paper is an extended version of the contribution presented at the conference
Topical Problems of Fluid Dynamics 2008, Prague, 2008.


