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IDENTIFICATION OF STIFFNESS AND DAMPING
COEFFICIENTS OF AEROSTATIC JOURNAL BEARING

Jan Kozánek*, Jǐŕı Šimek**, Pavel Steinbauer, Aleš Bı́lkovský***

Paper deals with subject of identification of aerostatic journal bearings dynamic prop-
erties with use of Rotor Kit Bently Nevada superstructure. Different bearing types
were experimentally investigated and their static and dynamic characteristics were
identified. Various methods of identification were used and spectral and modal prop-
erties of the system were calculated. Computer program was revised on the basis of
experimental data. The influence of non-diagonal stiffness and damping elements was
investigated by numeric simulation.
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1. Introduction

Project of identification of aerostatic journal bearing dynamic properties was started
in 2006. Super-structure of Rotor Kit Bently Nevada (RK) was designed and manufac-
tured [1, 2] and after some modifications [3] successfully used for identification of stiffness
and damping coefficients. Methods of identification were developed to enable identification
even in cases of not quite ideal harmonic signals. Comparison of measured and calculated
data enabled to revise computer program and to achieve much better agreement between
theory and experiment. The influence of non-diagonal elements of stiffness and damping
matrices on spectral properties was investigated, too.

Fig.1: Test aerostatic journal bearings – variant 1 (left) and 2 (right)
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Fig.2: Superstructure of Rotor Kit equipped with vertically (up) and horizontally
(down) oriented piezoactuators for excitation of test bearing

2. Test stand and test bearings

Two test bearings were used, both with two feeding planes (two rows of feeding orifices
– see Fig. 1), because bearing with one feeding plane in the middle is more sensitive to
parasitic forces.
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Both bearings had 8 orifices symmetrically distributed around periphery : bearing 1 with
l/D ratio of 1.5 and radial clearance of 0.04mm had orifices 0.2mm in diameter, bearing 2
with l/D ratio of 1.0 and radial clearance of 0.025mm was equipped with orifices 0.3mm in
diameter. When identifying bearing characteristics, the journal can to move within about
50% of radial clearance, so that some space for harmonic excitation is left. One can imagine
extremely high demands on accuracy of adjusting the bearing position during tests with
piezoactuator static offset. Several structural modifications had to be built and tested to
attain required translational motion of the test head.

Cross section of test stand is shown in Fig. 2. Rigid shaft 1 is supported in two precise
ball bearings 18 with the casings 2, 3 fastened to RK frame. Aerostatic test bearing 5,

Fig.3: Detail of Rotor Kit superstructure

Fig.4: Instrumentation for experiment control and data acquisition
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enclosed in test head 4 located between supporting bearings, can be excited by vertically
and horizontally oriented piezoactuators 12. Exciting forces are transferred to test bearing
via load cells 13, thus enabling to measure instant values of dynamic force. Test bearing
response is observed by two pairs of relative sensors S1, S2 and S3, S4. Parallelism of test
bearing motion relative to shaft surface is secured by suspension, consisting of three thin
strings 35 anchored at test head disk 30 and two disks 31 fastened to the RK frame. Proper
alignment of the test head with the shaft is achieved by means of threaded pins 33 and nuts
34. Detail of the test stand is presented in Fig. 3, instrumentation necessary for experiment
control and data recording is shown in Fig. 4.

3. Method of dynamic characteristics identification

Coefficients of stiffness and damping matrices were identified from dynamic model shown
in Fig. 5, which was in more detail presented e.g. at [2], frequency of rotation ω = 2π n/60
and n signifies rpm.

Fig.5: Simplified dynamic model of the test stand

The real part of the time-response q̃(t) = [x(t) y(t)]T of the test bearing relative to the
shaft on the complex harmonic excitation force with the frequency Ω = 2π f , f > 0

f(t) =
[
fx(t)
fy(t)

]
=

[
fx
fy

]
ei Ω t = f ei Ω t , f ∈ R2 , i =

√−1 , Ω > 0 (1)

was evaluated from measured discretized signal in the first step as the simple linear (in real
parameters q0, qS, qC ∈ R2) and non-linear (related to Ω) least squares regression problems

q̃(t) = q0 + qS sin(Ω t) + qC cos(Ω t) (2)

and transformed into ‘complex amplitude form’

q(t) = q ei Ω t , q = qC − iqS ∈ C2 (3)
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corresponding to the complex excitation force (1). The equation of motion in harmonic
regime and in amplitude form is

Kq + i ΩBq− Ω2 Mq = f , (4)

where real matrices K, B, M ∈ R2,2 are matrices of stiffness, damping and mass. In our
case the matrix

M =
[
M 0
0 M

]
,

where M is mass of test head with aerostatic bearing, is known. The unknown parameters
– elements of matrices

K =
[
Kxx Kxy

Kyx Kyy

]
, B =

[
Bxx Bxy

Byx Byy

]
,

can be identified from the equations (4) for two orthogonal excitation forces f and for one
or more corresponding excitation frequencies Ω using least squares method – see [2].

Higher number of measurements with different excitation frequencies, especially in re-
gions near resonance, should increase robustness of solution. In ideal case it would be also
advisable to identify eigenvalues by indirect identification method and to confront these
values with eigenvalues corresponding to identified stiffness and damping matrices. It is
also possible to determine at first step diagonal elements of stiffness and damping matrices,
which are less sensitive to measurement errors, and only in further phase of evaluation to
deal with cross coupling terms.

4. Calculated bearing characteristics

Very low frequencies from f = 0.5Hz to f = 4 Hz were used to compare ‘quasi-static’
stiffness, defined as a ratio of excitation force amplitude to bearing response amplitude, with
calculated values. ‘Quasi-static’ stiffness is practically independent on excitation frequency
and for both bearings its measured values are summarized in Table 1.

direction stiffness (N.m−1)

of bearing 1 bearing 2

excitation 0.2 MPa 0.4 MPa 0.2 MPa 0.4 MPa

vertical 1.13×106 1.54×106 1.94×106 3.90×106

horizontal — — 1.00×106 3.22×106

Tab.1: Measured ‘quasi-static’ stiffness

Difference in stiffness with vertical and horizontal excitation can be explained by varied
position of journal in bearing gap. As can be seen from calculated load carrying capacity
characteristics in Fig. 6, bearing 1 has practically linear characteristic up to relative eccen-
tricity of about 0.7 . On the other hand, characteristic of bearing 2 starts to bend from
relative eccentricity of about 0.4 . The difference in ‘quasi-static’ values of bearing 2 stiff-
ness can be explained by slightly different value of relative dominant eccentricity in vertical
direction. To achieve the same magnitude of eccentricity for both directions of excitation is
practically impossible due to above-mentioned small values of bearing gap.
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Fig.6: Calculated load capacity of bearing 1 (left) and 2 (right)

Fig.7: Calculated principal stiffness and damping coefficients of bearing 1

Fig. 7 illustrates influence of speed n = 60ω/2π and excitation ratio r = Ω/ω of exciting
to rotational frequency for ω > 0 on principal stiffness and damping coefficients. As can
be seen, in test regime range (up to n = 6000 rpm) the influence of speed is very weak.
Stiffness curves for excitation ratio r = 1.0 are omitted, because they are very close to those
for excitation ratio r = 2.0 .

5. Some identified stiffness and damping coefficients

Identified stiffness and damping coefficients of test bearing 1 are presented in Table 2
for two values of inlet pressure and relatively broad range of excitation and revolution
frequencies. Due to greater bearing width, which made the test more resistant to disturbing
phenomena, somewhat better results were obtained with this bearing as compared with
bearing 2.
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Inlet speed excitation ratio
pressure n frequency f r Kxx Kyy Bxx Byy

(MPa) (rpm) (Hz) (N.m−1) (N.m−1) (N.s.m−1) (N.s.m−1)

0.2 0 5 – 9.52E+05 9.65E+05 525 698
1000 16.7 1 9.88E+05 9.79E+05 589 465
2000 66.7 2 9.30E+05 9.79E+05 777 786
3000 25 0.5 1.00E+06 9.66E+05 457 461
4000 33.3 0.5 9.84E+05 9.77E+05 401 429
5000 41.7 0.5 9.51E+05 9.71E+05 500 485

0.4 0 5 – 1.42E+06 1.41E+06 1158 1280
1000 8.3 0.5 1.43E+06 1.45E+06 1063 556
2000 16.7 0.5 1.43E+06 1.44E+06 497 471
3000 25 0.5 1.42E+06 1.42E+06 450 447
4000 33.3 0.5 1.44E+06 1.45E+06 344 444
5000 166.7 2 1.27E+06 1.72E+06 483 432

Tab.2: Identified stiffness and damping coefficients of bearing 1

Identified stiffness and damping elements of test bearing 2 are summarized in Table 3.
Excitation frequency of 30Hz was used for all speeds, because with higher frequencies the
signals of bearing response were somewhat distorted and condition of harmonic excitation
was not therefore fulfilled. It can be seen, that in accordance with quasi-static values of
stiffness also elements Kxx and Kyy of bearing 2 differ with roughly the same ratio.

Inlet speed excitation ratio
pressure n frequency f r Kxx Kyy Bxx Byy

(MPa) (rpm) (Hz) (N.m−1) (N.m−1) (N.s.m−1) (N.s.m−1)

0.2 0 30 — 2.45E+06 1.33E+06 618 997
1000 30 1.8 2.35E+06 1.25E+06 759 1030
2000 30 0.9 2.31E+06 1.15E+06 721 1110
3000 30 0.6 2.32E+06 1.16E+06 774 1170
4000 30 0.45 2.24E+06 1.14E+06 699 1060
5000 20 0.24 2.17E+06 1.17E+06 668 1070
6000 30 0.3 2.16E+06 1.15E+06 498 1210

0.4 0 30 — 5.25E+06 3.77E+06 789 1090
1000 30 1.8 5.19E+06 4.09E+06 901 855
2000 30 0.9 4.83E+06 3.22E+06 1810 1450
3000 30 0.6 4.70E+06 3.31E+06 466 955
4000 30 0.45 4.54E+06 3.11E+06 1685 1179
5000 30 0.36 4.66E+06 3.33E+06 582 1080
6000 30 0.3 4.65E+06 3.40E+06 349 995

Tab.3: Identified stiffness and damping coefficients of bearing 2

Table 4 presents eigenfrequencies and eigendampings calculated from identified complete
stiffness and damping matrices of bearing 2. Contrary to principal stiffness and damping ele-
ments, eigenfrequencies (imaginary parts of complex eigenvalues) and eigendampings (abso-
lute values of real part of complex eigenvalues) were calculated from identified non-diagonal
elements of corresponding matrices. Variability of non-diagonal elements of stiffness and
namely damping matrices (together with prevailing diagonal matrix elements) implicates
the alternations in eigenfrequencies and eigendampings, mostly in the case of higher inlet
pressure of 0.4MPa (see Table 4). All calculated eigenvalues correspond to stable mathema-
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Inlet speed excitation ratio 1st eigen- 1st eigen- 2nd eigen- 2nd eigen-
pressure n frequency f r freguency damping freguency damping
(MPa) (rpm) (Hz) (Hz) (Hz) (Hz) (Hz)

0.2 0 30 - 153 65 225 42
1000 30 1.8 147 69 217 49
2000 30 0.9 137 80 212 40
3000 30 0.6 136 78 215 50
4000 30 0.45 141 72 210 45
5000 20 0.24 143 73 207 43
6000 30 0.3 135 85 209 28

0.4 0 30 - 272 73 329 52
1000 30 1.8 289 56 325 60
2000 30 0.9 264 88 271 128
3000 30 0.6 256 65 315 30
4000 30 0.45 209 78 288 111
5000 30 0.36 256 73 310 37
6000 30 0.3 258 68 312 21

Tab.4: Eigenfrequencies and eigendampings calculated from
identified stiffness and damping matrices of bearing 2

tical model (with negative real parts) and relative damping values are in intervals 〈0.4, 0.6〉,
〈0.1, 0.2〉 for inlet pressure of 0.2MPa and 〈0.2, 0.3〉, 〈0.1, 0.5〉 for inlet pressure of 0.4MPa
respectively.

6. Comparison of experimental and calculated results

Identified ‘quasi-static’ and dynamic stiffness coefficients enabled to revise computer
program for aerostatic journal bearings. Detailed description of theoretical solution and
computer program can be found in [6]. Results of revised program calculation were then
compared with experimental values. Apart from experimental data from RK test stand,
also load-eccentricity characteristics from work [4] were used for comparison, because it
included rotating speeds up to more 50000 rpm, showing already strong influence of journal
rotation speed on load capacity of the bearing. As can be seen from Fig. 8, qualitative as well
as quantitative agreement between revised program calculation and experimental results is
quite good for both values of inlet pressure of 0.2MPa (left) and 0.4MPa (right). Similarly
good agreement was obtained also for smaller value of bearing clearance of 0.018mm, where
maximum achieved speed was 53500 rpm.

Comparison of measured stiffness coefficients of bearing 1 with values calculated after
computer program revision is presented in Table 5. It is evident, that agreement of cal-
culated results with experimental ones is reasonably good. Calculated damping coefficient
agreed quite well with experimental data already before program revision for excitation ratio
around 1. Contrary to calculation the experimental results did not show strong dependence
of damping on excitation ratio. This fact is also respected in revised program.

7. Spectral and modal properties of mathematical model

As an example of identified mathematical model let us present experimentally deter-
mined matrices of stiffness and damping, corresponding to zero speed and inlet pressure of
0.2MPa for bearing 1 (K1, B1) and bearing 2 (K2, B2). Spectral (complex eigenvalues in
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Fig.8: Comparison of calculated and measured load capacity vers. relative eccentricity

Inlet speed excitation ratio measured calculated
pressure n frequency f r Kxx Kyy Kxx Kyy

(MPa) (rpm) (Hz) (N.m−1) (N.m−1) (N.m−1) (N.m−1)

0.2 0 5 — 9.52E+05 9.65E+05 1.02E+06 1.00E+06
1000 16.7 1 9.88E+05 9.79E+05 1.02E+06 1.01E+06
2000 66.7 2 9.30E+05 9.79E+05 1.02E+06 1.01E+06
3000 25 0.5 1.00E+06 9.66E+05 1.02E+06 1.01E+06
4000 33.3 0.5 9.84E+05 9.77E+05 1.02E+06 1.02E+06
5000 41.7 0.5 9.51E+05 9.71E+05 1.02E+06 1.01E+06

0.4 0 5 — 1.42E+06 1.41E+06 1.52E+06 1.51E+06
1000 8.3 0.5 1.43E+06 1.45E+06 1.52E+06 1.51E+06
2000 16.7 0.5 1.43E+06 1.44E+06 1.52E+06 1.51E+06
3000 25 0.5 1.42E+06 1.42E+06 1.53E+06 1.51E+06
4000 33.3 0.5 1.44E+06 1.45E+06 1.53E+06 1.51E+06
5000 166.7 2 1.27E+06 1.72E+06 1.53E+06 1.51E+06

Tab.5: Comparison of calculated and measured principal stiffness coefficients

diagonals of spectral matrices S1, S2) and modal (right modal matrices V1, V2 and left
modal matrices W1, W2 with normed vectors – columns – conformed with the condition,
that in absolute value bigger coordinates of right- and left-eigenvectors are identical) ma-
trices were calculated for both models. Influence of non-diagonal elements of stiffness and
damping matrices K1, B1 of mathematical model of the bearing 1 will be further analyzed
by means of numerical simulation.

Both identified mathematical models have non-symmetric stiffness and damping matrices
with Kxy �= Kyx and Bxy �= Byx , which, as will be shown later, with regard to substantially
predominating diagonal elements (main stiffness elements) do not have significant influence



218 Kozánek J. et al.: Identification of Stiffness and Damping Coefficients of Aerostatic . . .

on their dynamic properties, and damping matrices, of which do not differ too much from so
called commutative matrix (i.e. with eigenvectors nearing corresponding undamped system).

Coefficient matrices for bearing 1 are

M =
[

1.2 0
0 1.2

]
, K1 =

[
952000 12700
10900 965000

]
, B1 =

[
525 −10.1
16 698

]
,

complex diagonal spectral matrix (in Hz)

S1 =
[−46.2 + 135.1 i 0

0 −34.9 + 137.4 i

]

shows stable dynamic system with higher relative damping and with eigenfrequencies of
vibration in vertical and horizontal directions close one to the other, which are substantially
higher than frequency of forced vibrations from prospective unbalances at shaft speeds up
to 6000 rpm.

Modal matrices are complex, but after division by the number (1− i) we get eigenvectors
close to real ones and it is evident, that damping matrix is almost commutative and further,
that ‘asymmetry’ of the model characterized by difference of right- and left-eigenvectors is
small :

V1 =
[−0.0027− 0.0001 i 0.0156− 0.0156 i

0.0158− 0.0157 i −0.0003 + 0.0023 i

]
,

W1 =
[

0.0002− 0.0022 i 0.0156− 0.0156 i
0.0158− 0.0157 i 0.0025− 0.0002 i

]
.

Coefficient matrices for bearing 2 are

M =
[

1.2 0
0 1.2

]
, K2 =

[
2162649 65224

4935 1213610

]
, B2 =

[
822 −71
−99 1173

]
,

with similar properties as before, but now with substantially higher stiffness in vertical
direction of vibration, which manifests also by corresponding higher eigenfrequency - see
imaginary parts of spectral matrix (in Hz):

S2 =
[−78.5 + 139.7 i 0

0 −53.8 + 206.5 i

]
.

Conclusions similar to those for bearing 1 are valid also for right and left modal matrices
of bearing 2:

V2 =
[−0.0011 + 0.0019 i 0.0127− 0.0126 i

0.0154− 0.0153 i −0.0002 + 0.0021 i

]
,

W2 =
[−0.0001 + 0.0019 i 0.0127 − 0.0126 i

0.0154− 0.0153 i 0.0008 − 0.0018 i

]
.

As identified, namely non-diagonal elements of stiffness and damping matrices, showed
great differences in identification, their influence on spectral properties was examined by
the way of numeric simulation and with the help of inverse formulae derived for this model
with coefficient matrices of the 2nd order in analytic form – [5]. We proceeded by inverse
method, when for selected, relatively small interval of variation of eigendamping |Re(s1)|
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Re(s1) ∈ 〈−55.7,−39.8〉 Im(s1) ∈ 〈127.3, 143.2〉
Kxx ∈ 〈951920, 952070〉 Kxx ∈ 〈950620, 953330〉

Kxy ∈ 〈7324, 20512〉 Kxy ∈ 〈1510, 2300〉
Kyx ∈ 〈3465, 22526〉 Kyx ∈ 〈4371, 18216〉

Kyy ∈ 〈938900, 1011500〉 Kyy ∈ 〈867600, 1074200〉
Bxx ∈ 〈523.4, 526.1〉 Bxx ∈ 〈524.7, 525.3〉

Bxy ∈ 〈−20.34,−2.75〉 Bxy ∈ 〈−20.9, 0.8〉
Byx ∈ 〈8.28, 27.01〉 Byx ∈ 〈7.96, 23.16〉
Byy ∈ 〈600.8, 843.5〉 Byy ∈ 〈697.7, 698.2〉

Tab.6: Prescribed variation of Re(s1) and Im(s1) and corresponding
changes of elements of coefficient matrices K1, K2

and of eigenfrequency Im(s1) of bearing model 1, corresponding intervals of values of all
elements of the matrices K1, B1 were calculated – Table 6.

It follows from Tab. 6, that relatively small changes of diagonal (main) elements of coeffi-
cient matrices and much greater changes of non-diagonal elements correspond to selected
intervals of spectral changes. As spectral values actually define dynamic properties of the
model and its response, this means, that greater variability of non-diagonal elements in
identification evaluation of measured, by experimental errors burdened responses, is a con-
sequence of their smaller influence on forced vibrations.

8. Conclusions

Project of aerostatic journal bearing dynamic properties identification was carried out,
using superstructure built on Rotor Kit Bently Nevada. Although maximum achievable
journal speed was limited to about 6 000 rpm, it was possible to attain sufficient quantity
of measured data. That enabled to revise computer program, so that reasonable agreement
between calculation and experiment was achieved. As no experimental data concerning
stiffness and damping of aerostatic journal bearings were available before, important step in
verification of aerostatic journal bearing computational methods was made.
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[5] Kozánek J.: Analytic formulae for the construction of diagonalisable dynamical systems, Proc.

of XV-th National seminar Interaction and Feedbacks 2008, p. 47 (in Czech)
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[7] Kozánek J.: Remark on least squares problem in identification solutions, Proc. Colloquium

Dynamics of Machines 95, IT AV CR, Prague ÚT, pp. 55–60, 1995 (in Czech)
[8] Daněk O., Balda M., Turek F., Zeman V., Kozánek J.: Dynamics of non-conservative systems,

Czechoslovak Society for Mechanics CAS, Brno, 1986 (in Czech)

Received in editor’s office : March 18, 2009
Approved for publishing : June 23, 2009

Note : This paper is an extended version of the contribution presented at the national
colloquium with international participation Dynamics of Machines 2009 in Prague.


