
Engineering MECHANICS, Vol. 16, 2009, No. 5, p. 367–392 367

TIME-DEPENDENT ANALYSIS OF COMPOSITE
STEEL-CONCRETE BEAMS USING INTEGRAL EQUATION

OF VOLTERRA, ACCORDING EUROCODE-4

Doncho Partov*, Vesselin Kantchev*

The paper presents analysis of the stress changes due to creep in statically determinate
composite steel-concrete beam. The mathematical model involves the equation of
equilibrium, compatibility and constitutive relationship, i.e. an elastic law for the
steel part and an integral-type creep law of Boltzmann-Volterra for the concrete part.
For determining the redistribution of stresses in beam section between concrete plate
and steel beam with respect to time t, Volterra integral equations of the second kind
have been derived, on the basis of the theory of the viscoelastic body of Arutyunian-
Trost-Bazant. Numerical method, which makes use of linear approximation of the
singular kernal function in the integral equationis is presented. Example with the
model proposed is investigated. The creep functions is suggested by the ‘CEB-FIP’
models code 1990. The elastic modulus of concrete Ec(t) is assumed to be constant
in time t.

Keywords : composite steel-concrete section, Volterra integral equations, rheology,
EUROCODE-4

1. Introduction

Steel-concrete composite beams are a popular and economical form of construction in
both buildings and bridges. A reinforced concrete slab is mechanically connected to the
top flange of a rolled or fabricated steel beam, thereby forming a composite member that is
considerably stronger and stiffer than the steel beam acting on its own.

In sagging or positive bending, the concrete slab is most effective forming a wide com-
pressive flange and raising the position of the neutral axis so that most of the steel section
is available to carry tension.

The time-varying behavior of composite steel-concrete members under sustained service
loads drawn the attention of engineers who have been dealing with the problems of their
design for more than 60 years [56].

It is known that while in the steel beam, under the effect of the serviceability loads,
we see only elastic deformations, in the concrete plate during the time significant inelastic
deformation takes place as a consequence of creep and shrinkage of concrete.

These inelastic strains in the concrete deck cause redistribution of stress and significant
increases in deformation.

The first works, which give the answer to this problem, are based on the Law of
Dischinger [49, 50] (theory of aging), who had first formulated a time-dependent stress-strain
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differential relationship for concrete, using the following equation :

dεct
dt

=
σct

Ec0

dϕt

dt
+

1
Ect

dσct

dt
, (1)

where ϕt is called creep function.

These books and papers connected with the names of Fröhlich [56], Esslinger [54],
Klöppel [64], Sonntag [94], Kunert [67], Müller [70], Dimitrov [48], Mrazik [69] and
Bujňák [39] represent one independent group for which it is characteristic that by writ-
ing equilibrium and compatibility equations and the constitutive laws for the two materials,
the problem is governed by a system of two simultaneous differential equations, which have
been derived and solved.

As known in this differential equations it exists a group of normal forces Nc,r(t), Na,r(t)
and bending moments Mc,r(t), Na,r(t), which influence the general stress conditions of the
statically determinate composite plate beam is expressed by the decrease of the stresses in
the concrete plate and in the increase of stresses in the steel beam (Fig. 1).

All these methods have been collected and analyzed by Sattler [87] and by the first author
of this paper [72].

In parallel with the developed analytical methods, Blaszkowiak [36], Bradford [37],
Fritz [55] and Wippel [101] have developed approximate methods, which use Dischinger’s
idea for applying in the calculation the ideal (fictitious) modulus of elasticity [49, 50] :

Eci =
Ec0

1 + ϕn
, (2)

where ϕn is the ultimate value of creep.

Another method of the estimate design calculation as described in [90] has been based
on the creep fibred method by Busemann [40].

With Wippel’s methods [101] the first stage of the development of the analytical methods,
based entirely on the works of Dischinger [49, 50], has been completed.

Further development of rheology as a fundamental science and its application to concrete
[2, 5, 81, 86, 98] as well as a great number of investigations in the field of creep of concrete
have led to new formulations of the time-dependent behavior of concrete [22, 41, 80].

These new formulations that give the relationship between σc(t) and εc(t) are formulated
by integral equations, which present the basis of the theory of linear viscoelastic bodies.

The integral-type creep law, i.e., the superposition equation for stepwise prescribed stress
history σ(t), is expressed by :

εc(t, t0) = εsh(t) + σ(t0)J(t, t0) +

t∫
t0

dσ(τ)
dτ

J(t, τ) dτ . (3)

By using algebraic methods, simpler forms for (3) are obtained. These methods are based
on the hypothesis that the strain in the concrete fibers can be considered as a linear function
of the creep coefficient (Trost [96], Bažant [8], Knowles [43]). This permits transforming (3)
into

εc(t, t0) = εsh+σc(t0)
[

1
Ec(t0)

+
ϕ(t, t0)
Ec

]
+
[
σc(t)−σc(t0)

] [ 1
Ec(t0)

+
χ(t, t0)ϕ(t, t0)

Ec

]
, (4)
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where

χ(t, t0) =
Ec(t0)

Ec(t0) −R(t, t0)
− Ec

Ec(t0)ϕ(t, t0)
(5)

is the aging coefficient; ϕ(t, t0) – the creep coefficient; R(t, t0) – relaxation function, i.e., the
stress response to a constant unit strain applied at the time t0; Ec – the elastic modulus of
concrete at 28 days.

The age-adjusted effective method (AAEM) directly assumed the expression provided
by (5) for the aging coefficient. In this case, it is necessary to evaluate previously the relaxa-
tion function R(t, t0). This function is calculated numerically by applying the step-by-step
procedure of the general method to the integral type relation between the creep and the
relaxation function (Bažant [7]). However, for some standard parameters, diagrams of the
χ coefficient are available from model codes (Chiorino, Carreira [43]). Moreover, a number
of empiric expressions were recently proposed that provide final values of the χ coefficient
with sufficient precision (Lacidogna and Tarantino [43]).

Using the effective modulus method (EMM), (4) becomes

εc(t, t0) = εsh(t) + σc(t)J(t, t0) , (6)

where χ(t, t0) = 1; and Ec(t0) = Ec. In this case, the variation of the stress in the interval
(t−t0) is neglected and the stress is always considered equal to its final value. Consequently,
this method underestimates the creep effects when the stress decreases with time. The
time dependent analysis can be performed as an equivalent elastic analysis, where Young’s
modulus Ec is multiplied by the coefficient 1/[1 + ϕ(t, t0)].

When the Mean Stress Method (MSM) is applied (4) can be written as

εc(t, t0) = εsh(t) + σc(t0)J(t, t0) +
[
σc(t) − σc(t0)

] J(t, t) + J(t, t0)
2

, (7)

where χ(t, t0) = 0.5; and Ec(t0) = Ec.

Equations (4), (6) and (7) represent the essence of the algebraic methods. It needs
to be pointed out, however, that these algebraic equations used in structural analysis as
constitutive laws for concrete in substitution of the integral-type creep law, as presented
still cannot give a realistic picture of the stresses and deflections.

However, in order to avoid the mathematical problems in solving of the integral equa-
tions of Volterra for treating the problem connected with the creep of concrete structures,
Trost [96] and Zerna [99], have revised the integral relationship into new algebraic stress-
strain relationship :

εct =
σc0

Ec0
[1 + ϕt] +

σct − σc0

Ec0
[1 + �ϕt] ,

where � is the relaxation coefficient. From the same considerations another revision of inte-
gral relationship into new algebraic stress-strain relationship have been made by Krüger [65]
and Wolff [103] :

Ec0 εcϕ,t = σc0
ϕt0 − ϕt1

2
+ σct

[
1 +

ϕt(t−1)

2

]
+

t−1∑
i=1

σci
ϕt,i−1 − ϕt,i+1

2
.

On the basis of that algebraic stress-strain relationship, new methods have been de-
veloped connected with the names Wappenhans [100], Wolff [103], Trost [97], Heim [62],
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Amadio [1], Dezi [43–47,95] ( by preposition that the connectors are deformationsable) and
Gilbert [58, 59], for solving the problem raised by Fröhlich [56].

In parallel with the methods developed by Furtak [57], Kindman [63], Lapos [68],
Pachla [71], Partov [75], on the basis of the theory of linear viscoelastic bodies, Sattler [88],
Haenzel [60], and Profanter [79] have recently developed new methods, which are based on
the ‘modified theory’ of Dischinger, called also the theory of Rüsch-Jungwirt [85]. This
theory is described by the following equations :

dεct
dt

=
σct

Ecv

dϕf,v

dt
+

1
Ecv

dσct

dt
,

where Ecv = Ec(t0)/1.4, ϕf,v = ϕf,0 |Kf(t) −Kf(t0)|/1.4 .

Different approach to the solving of the formulated problems is applying the FEM by
Hering [61], Cumbo [42] and Wissman [102].

Since the theory of Rüsch-Jungwirt [85] has been subjected to serious criticism in the
works of Alexandrovski-Arutyunyan [2, 3, 52, 93] and [6–24, 27–35] the authors of the present
paper make an attempt for a new step toward deriving more precise solution of the problem.
An effort is made to give an answer to the dispute between Bažant and Rüsch-Jungwirt
in [25, 26].

The first works [73–76], which give the answer to this dispute [25,26], using the integral
equation of Volterra , are based on the Law of by Bolztmann-Volterra [2, 21, 91] who first
formulated a time-dependent stress-strain differential relationship for concrete, described by
the following integral equation :

εc(t) =
σc(t0)
Ec(t0)

[
1 + φ(t− t0)

]
+

t∫
t0

dσc(τ)
dτ

1
Ec(τ)

[
1 + φ(t− τ)

]
dτ , (8)

where φ(t − τ) = ϕNK(τ) f(t − τ) is the so called the creep function and ϕN the ultimate
value of creep coefficient, K(τ) depends on the age increase of concrete. It is called the
function of aging, and it characterizes the process of the aging. The increase of τ makes
K(τ) monotonously decrease. The functions

K(τ) =

⎧⎨
⎩

10.28
5 +

√
τ

for τ ≤ 857

0.3 for τ > 857
and f(t− τ) = 1 − e

�
−0.6( t−τ

30 +0.0025)0.4−0.091
�

(8a)
(where t is the time interval during which the structure is under observation, τ is the running
coordinate of time) – characterizes the process of creeping.

A practical method for solving of composite constructions based on Volterra integral
equations are reported in [73]. A new idea for development of the above mentioned method
is the investigation of the tangent modulus of concrete elasticity besides invariant in time t
i.e. Ec(τ) = Ec(t0) = Econst and also for the case when it depends on time t [38, 92] :

Ec(τ) = Ec(t0)
√

τ

4 + 0.86 τ
. (9)

A practical example with time-dependent elasticity modulus of concrete is considered
in [78].
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However the new norms suggested by EUROCODE-4 [52, 53] in analysis of composite
steel-concrete beams regarding rheology, required a new ‘CEB-FIP’ creep models code 1990,
which leads to completely different approach for solving of the above formulated prob-
lems [77]. In this paper we try to reformulate and solve these problems taking into account
the new mathematical formulas.

2. Basic equations for determining the creep coefficient

The creep (compliance) function proposed by the 1990 CEB Model Code (‘CEB-FIP’
1991), defined as the strain at time t caused by a constant unit stress acting from time τ to
time t, is given by the relationship :

J(t, t0) =
1

Ec(t0)
+
φ(t, t0)
Ec28

,

where φ(t, t0) is the creep coefficient related to the elastic deformation at 28 related to Ec28;
and Ec(t0) and Ec28 – modulus of elasticity at the age of t0 and 28 days, respectively. The
creep coefficient is evaluated with the following formula :

φ(t, t0) = φ0 βc(t− t0) ,

where
φ0 = φRH β(fcm)β(t0)

or
φ(t, t0) = φRH β(fcm)β(t0)βc(t− t0) ,

φ(t, τ) = φRH β(fcm)β(τ)βc(t− τ) ,

where

φRH = 1 +
1 − RH

100

0.46 3

√
h0

100

is a factor to allow for the effect of relative humidity on the notional creep coefficient. RH is
the relative humidity of the ambient environment in %.

β(fcm) =
5.3(
fcm
10

)0.5

is a factor to allow for the effect of concrete strength on the notional creep coefficient.

β(t0) =
1

0.1 + (t0)0.2

is a factor to allow for the effect of concrete age at loading on the notional creep coefficient
(for continuous process we consider the function).

β(τ) =
1

0.1 + τ0.2
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is a function of aging, depending on the age of concrete and it characterizes the process of
aging.

βc(t− t0) =
[

t− t0
βH + (t− t0)

]0.3

is a function to describe the development of creep with time after loading.

βH = 150

[
1 +

(
1.2

RH

100

)18
]
h0

100
+ 250 ≤ 1500

is coefficient depending on the relative humidity (RH in %) and notional member size (h0 in
mm), where fcm = fck +8 – the mean compressive strength of concrete at the age of 28 days
(megapascals); and h0 = 2Ac/u – the notional size of member (millimeters) (Ac – the cross
section; and u – the perimeter of member in contact with the atmosphere).

Constant Young’s modulus is given by :

Ec = 104(fcm)
1
3 .

Variable Young’s modulus is given by :

Ec(t) = β0.5
cc Ec ,

where Ec = 104(fcm)1/3 and

βcc = exp
[
s

(
1 − 5.3

t0.5

)]
,

where s = 0.25 for normal and rapid hardening cements. So

Ec(t) = 336190 e0.5
�
0.25

�
1− 5.3√

t

��
,

φ(t∞, t0) is a final creep coefficient of concrete.

3. Basic assumption and material constitutive relationship

The hypotheses (essentially based on those introduced in initial studies of [6, 56, 59, 63, 64,
79, 89]) in the elastic analysis of composite steel-concrete sections with stiff (rigid) shear
connectors are assumed as following :

a) Bernoulli’s concerning plane strain of cross-sections (Preservation of the plane cross
section for the two elements considered compositely).

b) No vertical separation between parts, in other words identical vertical displacement
at the slab-beam interface is assumed.

c) The connection system is distributed continuously along the axis of the beam.
d) The cross sections are free to deform ( because they belong to statically determinate

structures).
e) Concrete is not cracked σc ≤ (0.4 ÷ 0.5)Rc.
f) For the service load analysis of these cross sections the stress levels are small and,

therefore, linear elastic behavior may be assumed for the steel beam, in another words
Hooke’s law applies to steel as well as to concrete under short-time loads.
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g) Moreover , for the concrete part, if the dependence of strains and stresses upon histo-
ries of water content and temperature is disregarded, with the exclusion of large strain
reversals, and under normal environment conditions, the strain can be considered as
a linear functional of the previous stress history alone. This linearity implies the
principle of superposition [8, 9, 80, 82, 83, 84, 92, 97], which states that strain response
due to stress increments applied at different times may be added.

h) In the range of serviceability loads concrete behaves in a way allowing to be treated
as a linear viscoelastic body. On the basis of our assumptions for the purpose of
structure analysis the total strain for concrete subjected to initial loading at time t0
with a stress σ(t0) and subjected to subsequent stress variations Δσ(ti) at time ti
may be expressed as follows :

εtot(t, t0) − εsh(t, t0) = σ(t0)J(t, t0) +

t∫
t0

dσ(τ)
dτ

J(t, τ) dτ

where t is the time elapsed from casting of concrete; εtot(t, t0) – total axial strain;
εsh(t, t0) – strain due to shrinkage, i.e. an elastic strain. Then the stress-strain beha-
vior of concrete can be described with sufficient accuracy by the integral equations (1)
by Bolztmann-Volterra [2, 21]

εc(t) =
σc(t0)
Ec(t0)

[
1 + φ(t, t0)

]
+

t∫
t0

dσc(τ)
dτ

1
Ec(τ)

[
1 + φ(t, τ)

]
dτ ,

or according to ENV 1992-1-1 we get

εc(t) =
σc(t0)
Ec(t0)

[
1 + φRH β(fcm)β(t0)β(t− t0)

]
+

+

t∫
t0

dσc(τ)
dτ

1
Ec(τ)

[
1 + φRH β(fcm)β(τ)β(t − τ)

]
dτ ,

(10)

where φRH β(fcm)β(τ)β(t−τ) is the so called the creep function and ϕN the ultimate
value of creep coefficient, β(τ) depends on the age increase of concrete. It is called
the function of aging, and it characterizes the process of the aging. The increase of τ
makes β(τ) monotonously decrease. The function βc(t − τ) – (where t is the time
interval during which the structure is under observation, τ is the running coordinate of
time) – characterizes the process of creeping. The constitutive law expressed by (10),
represents the stress-strain-time relationship for the concrete slab.

i) The modulus of concrete elasticity is invariant in time t [38, 92] i.e.

Ec(τ) = Ec(t0) = Econst = 104 (fcm)
1
3

and depending on time t

Ec(t) = 336190 e0.5
�
0.25

�
1− 5.3√

t

��
daN/cm2

. (11)
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j) According to a proposal by Sonntag [53], the influence of the development of the ben-
ding moment Mc,r(t) in the concrete member, upon the redistribution of the normal
force of concrete Nc,r(t) can be neglected.

k) For the service load analysis no slip and uplift effects occur between the steel and
concrete.

l) A single theory of interaction ignoring shear lag effects is considered [66].

4. Basic equations of equilibrium

Let us denote both the normal forces and the bending moments in the cross-section of
the plate and the girder after the loading in the time t = 0 with Nc,0, Mc,0, Na,0, Ma,0 and
with Nc,r(t), Mc,r(t), Na,r(t), Ma,r(t) a new group of normal forces and bending moments,
arising due to creep and shrinkage of concrete.

For a composite bridge girder with

Jc =
Ac(n Ic)n
As Is

≤ 0.2

according to the suggestion of Sonntag [94] we can write the equilibrium conditions in time t
as follows

N(t) = 0 , Nc,r(t) = Na,r(t) , (12)∑
M(t) = 0 , Mc,r(t) +Nc,r(t) r = Ma,r(t) . (13)

Due to the fact that the problem is a twice internally statically indeterminate system,
the equilibrium equations (12), (13) are not sufficient to solve it.

It is necessary to produce two additional equations in the sense of compatibility of de-
formations of both steel girder and concrete slab in time t (Fig. 1).

Fig.1: Mechano-mathematical model for deformations in cross-section in
composite steel-concrete beam, regarding creep of the concrete
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5. Deriving of the generalised mechano-mathematical model

5.1. Strain compatibility on the contact surfaces between the concrete and steel
members of composite girder

Nc,0

Ec(t0)Ac

[
1 + φRH β(fcm)β(t0)β(t− t0)

]−
− 1
Ac

t∫
t0

1
Ec(τ)

dNc,r(τ)
dτ

[
1 + φRH β(fcm)β(τ)β(t − τ)

]
dτ +

+
Na,0

EaAa
− 1
EaAa

t∫
t0

dNa,r(τ)
dτ

=

=
Ma,0

Ea Ia
r + r

1
Ea Ia

t∫
t0

dMa,r(τ)
dτ

dτ .

(14)

Using
Nc,0

Ec(t0)Ac
+

Na,0

EaAa
=
Ma,0

Ea Ia
r

and integrating the equation (14) by parts we get

Nc,0

Ec(t0)Ac

[
φRH β(fcm)β(t0)β(t− t0)

]−
−
[
Nc,r(τ)
EcAc

[
1 + φRH β(fcm)β(τ)β(t − τ)

]]∣∣∣∣∣
t

t0

+

+
1
Ac

t∫
t0

Nc,r(τ)
d
dτ

{
1

Ec(τ)
[
1 + φRH β(fcm)β(τ)β(t − τ)

]}
dτ −

− 1
EaAa

Na,r(t) = r
1

Ea Ia
Ma,r(t) ,

(15a)

Nc,0

Ec,0Ac

[
φRH β(fcm)β(t0)β(t− t0)

]−
− Nc,r(t)

EcAc

[
1 + φRH β(fcm)β(t)β(t − t)

]
+

+
Nc,r(t0)
EcAc

[
1 + φRH β(fcm)β(t0)β(t− t0)

]
+

+
1
Ac

t∫
t0

Nc,r(τ)
d
dτ

{
1

Ec(τ)
[
1 + φRH β(fcm)β(τ)β(t − τ)

]}
dτ −

− 1
EaAa

Na,r(t) = r
1

Ea Ia
Ma,r(t) .

(15b)

Since βc(0) = 0 and Nc,r(t0) = 0 for assessment of normal forces Nc,r(t) linear integral
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Volterra equation of the second kind is derived

Nc,r(t) = λN(t)

t∫
t0

Nc,r(τ)
d
dτ

{
1

Ec(τ)
[
1 + φRH β(fcm)β(τ)β(t − τ)

]}
dτ +

+ λN(t)
Nc,0

Ec,0
φRH β(fcm)β(t0)β(t− t0) ,

(16)

where

λN =
[

1
Ec(t)

+
Ac

EaAa
+
Aa r

2

Ea Ia

]−1

. (17)

5.2. Compatibility of curvatures when τ = t

Mc,0

Ec(t) Ic

[
1 + φRH β(fcm)β(t0)β(t − t0)

]−
− 1
Ic

t∫
t0

dMc,r(τ)
dτ

1
Ec(τ)

[
1 + φRH β(fcm)β(τ)β(t − τ)

]
dτ =

=
Ma,0

Ea Ia
+

1
Ea Ia

t∫
t0

dMa,r(τ)
dτ

dτ .

(18)

From
Mc,0

Ec(t) Ic
=
Ma,0

Ea Ia
,

after integrating the equation (18) by parts and using (13) for assessment of the bending
moment Mc,r(t) linear integral Volterra equation of the second kind is derived :

Mc,0

Ec(t) Ic

[
φRH β(fcm)β(t0)β(t− t0)

]−
−
[
Mc,r(τ)
Ec Ic

[
1 + φRH β(fcm)β(τ)β(t − τ)

]]∣∣∣∣∣
t

t0

+

+
1
Ic

t∫
t0

Mc,r(τ)
d
dτ

{
1

Ec(τ)
[
1 + φRH β(fcm)β(τ)β(t − τ)

]}
dτ −

− 1
Ea Aa

Na,r(t) = r
1

Ea Ia
Ma,r(t) ,

(18a)

Nc,0

Ec(t)Ac

[
φRH β(fcm)β(t0)β(t− t0)

]−
− Nc,r(t)

EcAc

[
1 + φRH β(fcm)β(t)β(t− t)

]
+

+
Nc,r(t0)
EcAc

[
1 + φRH β(fcm)β(t0)β(t− t0)

]
+

+
1
Ac

t∫
t0

Nc,r(τ)
d
dτ

{
1

Ec(τ)
[
1 + φRH β(fcm)β(τ)β(t − τ)

]}
dτ −

− 1
EaAa

Na,r(t) = r
1

Ea Ia
Ma,r(t) ,

(18b)
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Since φ(0) = 0 and Nc(t0) = 0 for assessment of normal forces Nc,r(t) linear integral Volterra
equation of the second kind is derived

Mc,r(t) = λM(t)

t∫
t0

Mc,r(τ)
d
dτ

[
1 + φRH β(fcm)β(τ)β(t − τ)

Ec(τ)

]
dτ +

+ λM(t)
Mc,0

Ec,0
φRH β(fcm)β(t0)β(t− t0) − λM(t)

Ic
Ea Ia

Nc,r(t) r ,

in which

λM =
[

1
Ec(t)

+
Ic

Ea Ia

]−1

. (19)

In each of these equations the functions

Nc,0 φRH β(fcm)β(t0)β(t− t0) , Mc,0 φRH β(fcm)β(t0)β(t− t0) ,
d
dτ
[
1 + φRH β(fcm)β(τ)β(t − τ)

]
are given.

5.3. Basic equations for the constant elasticity modulus of concrete

For constant elasticity module of concrete strain compatibility on the contact surfaces
between the concrete and steel members of composite girder is

εsh(t0) f(t− t0) +
Nc,0

Ec(t0)Ac

[
1 + φRH β(fcm)β(t0)β(t − t0)

]−
− 1
Ec(t0)Ac

t∫
t0

Nc,r(τ)
dτ

[
1 + φRH β(fcm)β(τ)β(t − τ)

]
dτ +

+
Na,0

Ea Aa
− 1
EaAa

t∫
t0

dNa,r(τ)
dτ

=
Ma,0

Ea Ia
r + r

1
Ea Ia

t∫
t0

dMa,r(τ)
dτ

dτ .

(20)
And compatibility of Curvatures when t = τ is

Mc,0

Ec(t0) Ic

[
1 + φRH β(fcm)β(t0)β(t− t0)

]−
− 1
Ec(t0) Ic

t∫
t0

dMc,r(τ)
dτ

[
1 + φRH β(fcm)β(τ)β(t − τ)

]
dτ =

=
Ma,0

Ea Ia
+

1
Ea Ia

t∫
t0

dMa,r(τ)
dτ

dτ .

(21)

After integrating the two equations by parts and using the (12) and (13) for assessment of
normal forces Nc,r(t) and bending moment Mc,r(t) two linear integral Volterra equations of
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the second kind are derived.

Nc,r(t) = λN

t∫
t0

Nc,r(τ)
d
dτ
[
1 + φRH β(fcm)β(τ)β(t − τ)

]
dτ +

+ λNNc,0 φRH β(fcm)β(t0)β(t− t0) + λNNsh β(t− t0) ,

(22)

Mc,r(t) = λM

t∫
t0

Mc,r(τ)
d
dτ
[
1 + φRH β(fcm)β(τ)β(t − τ)

]
dτ +

+ λM Mc,0 φRH β(fcm)β(t0)β(t− t0) − λM
Ec Ic
Ea Ia

Nc,r(t) r .

(23)

in which

λN =
[
1 +

EcAc

EaAa

(
1 +

Aa r
2

Ia

)]−1

, (24)

λM =
[
1 +

Ec Ic
Ea Ia

]−1

. (25)

In each of these equations the functions

Nc,0 φRH β(fcm)β(t0)β(t− t0) , Mc,0 φRH β(fcm)β(t0)β(t− t0) ,
d
dτ
[
1 + φRH β(fcm)β(τ)β(t − τ)

]
are given.

6. Numerical method

The integral equations (22), (23) are weakly singular Volterra integral equation of the
second kind :

y(t) = g(t) + λ

t∫
t0

K(t, τ) y(τ) dτ , t ∈ [t0, T ] , 0 < T0 < T <∞ ,

where

g(t) = λNNc,0 φRH β(fcm)β(t0)β(t− t0) , λ = λN =
[
1 +

EcAc

Ea Aa

(
1 +

Aa r
2

Ia

)]−1

for (22) and

g(t) = λNNc,0 φRH β(fcm)β(t0)β(t− t0) − λM
Ec Ic
Ea Ia

Nc,r(t) , λ = λM =
[
1 +

Ec Ic
Ea Ia

]−1

for (23), and

K(t, τ) =
d
dτ
[
1+φRH β(fcm)β(τ)β(t−τ)] = ϕN

[
β(t− τ)

d
dτ
(
β(τ)

)
+ k(τ)

d
dτ
(
f(t− τ)

)]
.
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The singular kernel function K(t, τ) can be written in the form :

K(t, τ) = L(t, τ) (t− τ)−0.7 ,

where

L(t, τ) =

= −φRH β(fcm)
[

0.2
(0.1 + τ0.2)2

1
τ0.8

t− τ

(804.85 + t− τ)0.3
− 241.455

(0.1 + τ0.2) (804.85 + t− τ)1.3

]
.

So in our case discontinuous kernel function K(t, τ) has an infinite singularity of type
(t− τ)γ−1, γ > 0. In order to solve (1), we use the idea of product integration by con-
sidering the special case of :

y(t) = g(t) + λ

t∫
t0

L(t, τ) (t− τ)γ−1 y(t) dτ , t ∈ [t0, T ] , 0 < t0 < T <∞ , (26)

where the given functions g(t) and L(t, τ) are sufficiently smooth which guarantee the exis-
tence and uniqueness of the solution (see Yosida (1960), Miller & Feldstein (1971)).

To solve (26) we use the method called product trapezoidal rule.

Let n ≥ 1 be an integer and points {tj = t0 + j h}n
j=0 ∈ [t0, T ]. Then for general

y(t) ∈ C[t0, T ] we define

(
L(t, τ) y(τ)

)
n

=
1
h

[
(tj − τ)L(t, tj−1) y(tj−1) + (τ − tj−1)L(t, tj) y(tj)

]
(27)

for tj−1 ≤ τ ≤ tj , t ∈ [t0, T ].

This is piecewise linear in τ and it interpolates L(t, τ) y(τ) at τ = t0, . . . , tn. Using
numerical approximation (27) we obtain the following method for solving the integral equa-
tion (26) :

ỹ(ti) = g(ti) + λ

i∑
j=0

ωn,j(ti)
[
L(ti, tj) ỹn(tj)

]
for i = 0, 1, . . . , n , (28)

with weights

ωn,0(ti) =
1
h

t1∫
t0

(t1 − τ) (ti − τ)γ−1 dτ ,

ωn,n(tn) =
1
h

tn∫
tn−1

(τ − tn−1) (tn − τ)γ−1 dτ ,

ωn,j(ti) =
1
h

tj∫
tj−1

(τ − tj−1) (ti − τ)γ−1 dτ +
1
h

tj+1∫
tj

(tj+1 − τ) (ti − τ)γ−1 dτ ,

for i = 0, 1, . . . , n.
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Calculating analytically the weights, we compute the approximate solution values yn(ti)
from the system (28).

Theorem 1. Consider the numerical approximation defined with piecewise linear interpo-
lation (18). Then for all sufficiently large n, the equation (17) is uniquely solvable and
moreover if y(t) ∈ C2

[t0, T ], then we have

||y − yn|| ≤ ch2

8
max

t0≤t, τ≤T

∣∣∣∣∂2L(t, τ) y(τ)
∂τ2

∣∣∣∣ . (29)

Since L(t, ·) ∈ C2
[t0, T ], t0 ≤ t ≤ T the estimate (20) is immediate consequence of theorem

4.2.1 in Atkinson [4].

7. Numerical example

The method presented in the previous paragraph is now applied to a simply supported
beam, subjected to a uniform load, whose cross section is shown in Fig. 2.

On the basis of numerous solved examples the optimal step of one day for solving the
integral equations (22), (23) is found. The elapsed time for solving the problem (28) is about
up to ten minutes.

Fig.2: Composite beam with cross-section characteristic

Ec = 3.2×104 MPa , Ea = 2.1×105 MPa , Ac = 8820 cm2 , Aa = 383.25 cm2 ,

n =
Ea

Ec
= 6.56 , Ic = 661500 cm4 , Ia = 1217963.7 cm4 , rc = 23.039 cm ,

ra = 80.829 cm , r = 103.868 cm , Ai = 2453.05 cm2 , Ii = 4536360.758 cm4 ,

M0 = 1237 kNm , Nc,0 = 846.60 kN , Mc,0 = 27.56 kNm , Ma,0 = 330,13 kNm ,

λN =
[
1 +

EcAc

EaAa

(
1 +

Aa r
2

Ia

)]−1

= 0.060545358 ,

λM =
[
1 +

Ec Ic
Ea Ia

]−1

= 0.922950026 ,
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h0 =
2AC
u

= 300 mm ,

βH = 150

[
1 +

(
1.2

80
100

)18
]
h0

100
+ 250 = 915.82 < 1500 ,

β (fcm) =
5.3(

fcm
10

)0.5

∣∣∣∣∣∣∣
fcm=30

= 3.06 ,

β (t0) =
1

0.1 + (t0)
0.2

∣∣∣∣∣
t0=60

= 0.4223 ,

φRH = 1 +
1 − RH

100

0.46 3

√(
h0
100

)
∣∣∣∣∣∣
RH=80, h0=300

= 1.3014 ,

φ0 = φRH β(fcm)β(t0) = 1.6817 ,

βc(36500− 60) = 0.9925811 ,

φt=36500 = φ0 βc(36500 − 60) = 1.669242 .

8. Stress histories in midspan section according the received numerical results

In the concrete plate the normal component Nc(t∞) and the bending moment Mc(t∞)
decrease by effect of creep. In the steel beam, the normal component Na(t∞) decreases and
the bending moment Ma(t∞) increases by the effect of creep.

The decrease of the stresses in concrete slab is accompanied by a gradual migration of
stresses from the concrete slab to the steel beam.

This result in a very strong increase in the upper flange and a small increase of the stress
in the bottom flange (less than 8% of the initial stress) which is illustrated in Figures 8
and 9. Figure 8 shows how the stress at the top fibers of the steel section undergoes strong
increases in time : the final values are four to six times higher than the initial values.

Consequently, the stress history in the top flange of the steel beam becomes the most
interesting aspect of this study.

These graphs also shows how important is the age of concrete at loading.

Considering the stresses in the top flange of the steel beam, for low values of parameter
t0 = 28 days and t0 = 60 days, we see that stresses increase more for young concrete and
a little for old one.

Above all the influence of concrete age at loading time t0 is significant only when its
values are very low (i.e. with young concrete).

For the two standard cases assumed by CEB model code No 190 (‘CEB-FIP’ 1988)
RH = 50% corresponding to dry conditions (inside) and RH = 80% corresponding to
humid conditions (outside).

9. Time development of deflections

When the distribution of the bending moments in steel section Ma,r(t∞) = Mc,r(t) +
+Nc,r(t) is known, it is possible to calculate the change of the vertical deflections in time t.
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Fig.3: Values of normal forces Nc,r(t) = Na,r(t) in time t when loading
is applied in time t0 = 28, 60, 90, 180, 365 and 730 days

Fig.4: Values of bending moments Mc,r(t) in time t when loading
is applied in time t0 = 28, 60, 90, 180, 365 and 730 days
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Fig.5: Values of bending moments Ma,r(t) in time t when loading
is applied in time t0 = 28, 60, 90, 180, 365 and 730 days

Fig.6: Values of normal stresses in upper fiber of concrete plate σup
c (t) in time t∞

when loading is applied in time t0 = 28, 60, 90, 180, 365 and 730 days
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Fig.7: Values of normal stresses in down fiber of concrete plate σdown
c (t) in time t∞

when loading is applied in time t0 = 28, 60, 90, 180, 365 and 730 days

Fig.8: Values of normal stresses in upper fiber of steel girder σup
a (t) in time t∞

when loading is applied in time t0 = 28, 60, 90, 180, 365 and 730 days
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Fig.9: Values of normal stresses in down fiber of steel girder σdown
a (t) in time t∞

when loading is applied in time t0 = 28, 60, 90, 180, 365 and 730 days

Humidity = 80% Humidity = 70 % Humidity = 60% Humidity = 50%

Mc,r 15206 15154 15148 15147
Ma,r 94772 95258 95302 95304
Nc,r 76602 77121 77169 77172
σup
c −1.15315 −1.15375 −1.15383 −1.1538321

σdown
c −0.59288 −0.59111 −0.59091 −0.590901
σup
a −11.16974 −11.21910 −11.22359 −11.22387

σdown
a 41.59561 41.60671 41.60768 41.60774

Tab.1: Values of normal forces, bending moments and normal stresses in time t∞
when loading is applied in time t0 = 60 for different humidity

The Figure 10 shows the values of deflection in midspan section of composite beams in
time t∞. As it can be observed the change of the initial time t0 when the loading momentM0

is applied, has very considerable influence in the time development of deflections.

In practice the deflection in time t0 is determined by the following formulae :

δ(t∞) =
5
48

M0 L
2

Ea Ii,y
=

5 · 1237×106 · 340002

48 · 210000 · 35.289×109
= 20.10 mm

according to [51].

According to the described above numerical method we get the following formulae for
calculating the deflection. If the moment M0 and the inertia moment Ii,y are replaced with
Ma(t∞) and Ia respectively we get :

δ(t∞) =
5
48

Ma(t∞)L2

Ea Ia
=

5 · (330.13 + 94.7724)×106 · 340002

48 · 210000 · 12.079×109
= 20.17 mm .
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In every case considered above the elastic deflection δ(t) in time t0 is the same we receive
from the formulas :

δ(t0 = 0) =
5
48

M0 L
2

Ea Ii,y(t0)
=

5 · 1237×106 · 340002

48 · 210000 · 45.260×109
= 15.671929 mm ,

according to [51],

δ(t0 = 0) =
5
48

Ma,0 L
2

Ea Ia
=

5 · (330.13)×106 · 340002

48 · 210000 · 12.079×109
= 15.6718879 mm

according to our proposal.

Fig.10: Values of deflection of steel girder (composite steel-concrete) δ(t) in time t∞
when loading is applied in time t0 = 28, 60, 90, 180, 365 and 730 days

10. Comparision with effective modulus methods (EMM)

This method uses the Dischinger’s idea for applying in the calculation the ideal (fictitious)
modulus of elasticity [52, 53] :

Eci =
Ecm

1 + ψL φt
=

Ecm

1 + 1.1φt
,

where ψt is a final creep coefficient of concrete.

It is applied by Doleǐs [51] to solve practical case shown in Figure 2. The results obtained
by Doleǐs are illustrated in Tables 2 and 3.
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Type of beams steel Composite Composite
(in t0 = 0) (in t = ∞)

height hi 1500 1800 1800 mm

area Ai 38325 172725 85689 mm2

Static moment to down surface Sy0 23428688 245188688 101578534 mm3

Gravity center etop 888.7 380.5 614.6 mm

Gravity center ebottom 611.3 1419.5 1185.4 mm

Moment of inertia Ii,y 12079015497 45260127815 35288674132 mm4

Section modulus Wi,y,ct −118959133 −57420939 mm3

Section modulus Wi,y,cb −562462122 −1121183853 mm3

Section modulus Wi,y,at −13592026 −562462122 −1121183853 mm3

Section modulus Wi,y,ab 19759036 31883835 29768446 mm3

Tab.2: Dimensions of steel and composite beams

Stress in time t0 t0 = 60 days Stress in time t∞ t∞ = 36500 days

M0 1237 M0 1237

n0 = Ea/Ecm 6.36 nL = n0(1 + ψL φt) , ψL = 1.1 18.62

σtop
c = M/Wi,y,ct/n0 −1.6 σtop

c = M/Wi,y,ct/nL −1.20

σbottom
c = M/Wi,y,cb/n0 −0.3 σbottom

c = M/Wi,y,ct/nL −0.60

σtop
a = M/Wi,y,at −2.2 σtop

a = M/Wi,y,at −11.0

σbottom
a = M/Wi,y,ab 38.8 σbottom

a = M/Wi,y,ab 41.5

Tab.3

11. Conclusion

A numerical method for time-dependent analysis of composite steel-concrete sections
according EUROCODE-4 is presented. Using MATLAB code a numerical algorithm was
obtained and subsequently applied to a simple supported beam. These numerical procedures,
suited to a PC, are employed to better understand the influence of the creep of the concrete
in time-dependent behavior of composite section.

For the service load analysis, this method makes it possible to follow with great precisions
the migration of the stresses from the concrete slab to the steel beam, which occurs gradually
during the time as a result of creep of the concrete. At the same time, it is possible to
calculate the deflections in the midspan section according to EUROCODE-4. Both these
effects have a considerable importance in time-dependent response of composite beams.

The parametric analysis results are characterized by the following effects: the state of
stress in the concrete slab depends on the age of the concrete at loading time t0; the stress
in the top flange of the steel section increases strongly with time, while the stress in the
bottom flange undergoes small variations; the stress increases more for young concrete and
less for old one.

Relative humidity causes not considerable variations in the final stress (see Table 1).

The most important conclusion of our investigation is that considering the creep effect
and using the integral equations (22) and (23) an universal numerical method has been
elaborated for statically determinate bridge composite plate girder. This method allows the
use of a perfect linear theory of concrete creep i.e. the theory of the viscoelastic body of
Boltzman-Volttera-Maslov-Arutyunyan-Trost-Bazant.
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According to our results based on numerous practical examples we can state that ma-
ximum values of the stressed in concrete or steel in time t∞ are reached after about eight
years in comparison with the period of hundred years obtained by the EM Method [51, 52].

The results, obtained by this numerical method, are completely comparable with the
results derived by Doleǐs [51] based on EMM proposed by EUROCODE-4.

Finally, creep effect must be carefully evaluated in order to fully understand the behavior
of the structure. The numerical methods proposed in this paper can be used to control the
deflection in every test in composite beams sustained at service loads during the time t. It
means that we can prove the regulars of the theory of the concrete creep.
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[13] Bažant Z.P., Baweja S.: Justification and refinement of model B3 for concrete creep and shrin-
kage, 2. Updating and theoretical basis, Materials and Structures (RILEM), (1995), Vol. 28,
pp. 488–495
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[25] Bažant Z.P., Panula L.: Practical prediction of time-dependent deformations of concrete, Ma-
terials and Structures (RILEM), Part II, Basic creep, Vol. 11, (1978), pp. 317–328
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[27] Bažant Z.P., Prasannan S.: Solidification theory for aging creep, Cement and Concrete Re-
search, Vol. 18, No. 6, (1988), pp. 923–932
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E&FN Spon, London, (1993), pp. 805–829
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[52] ENV 1992-1-1:1991; EUROCODE 2 – Design of Concrete Structures, part 1 : General rules

and rules for buildings
[53] ENV 1994-1-1:1994; EUROCODE 4 – Design of Composite Steel and Concrete Structures,

CEN, 1994
[54] Esslinger M.: Schwinden und Kriechen bei Verbundträgern, Der Bauingenieur, Vol. 27,
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[56] Fröhlich H.: Einfluss des Kriechens auf Verbundträger, Der Bauingenieur, Vol. 24, (1949),
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Z.P.), Chapter 2 in Mathematical Modeling of Creep and Shrinkage of Concrete, ed. Bažant
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turk O.), Chapter 2 in Mathematical Modeling of Creep and Shrinkage of Concrete, ed.
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Journal of Structural Eng., (1992), Vol. 118, No. 8, pp. 2063–2081

[96] Trost H., Auswirkungen des Superpositionsprinzips auf Kriech- und Relaxationsprobleme
bei Beton und Spanbeton, Beton und Stahlbetonbau, West Berlin, Vol. 62, H.10, (1967),
pp. 230–238, H.11, pp. 261–269

[97] Trost H.: Zur Berechnung von Stahlverbundträgern im Gebrauchszustand auf Grund neuerer
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