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NUMERICAL SIMULATION
OF UNSTEADY COMPRESSIBLE

LOW MACH NUMBER FLOW IN A CHANNEL

Petra Punčochářová-Poř́ızková*, Karel Kozel**, Jaromı́r Horáček**, Jǐŕı Fürst*

This study deals with the numerical solution of a 2D unsteady flow of a compressible
viscous fluid in a channel for low inlet airflow velocity. The unsteadiness of the flow
is caused by a prescribed periodic motion of a part of the channel wall with large
amplitudes, nearly closing the channel during oscillations. The channel is a simplified
model of the glottal space in the human vocal tract and the flow can represent a
model of airflow coming from the trachea, through the glottal region with periodically
vibrating vocal folds to the human vocal tract.

The flow is described by the system of Navier-Stokes equations for laminar flows.
The numerical solution is implemented using the finite volume method (FVM) and
the predictor-corrector MacCormack scheme with Jameson artificial viscosity using
a grid of quadrilateral cells. Due to the motion of the grid, the basic system of
conservation laws is considered in the Arbitrary Lagrangian-Eulerian (ALE) form.

The authors present the numerical simulations of flow fields in the channel, acquired
from a program developed exclusively for this purpose. The numerical results for
unsteady flows in the channel are presented for inlet Mach number M∞ = 0.012,
Reynolds number Re∞ = 5×103 and the wall motion frequency 100 Hz.

Keywords : CFD, Finite Volume Method, unsteady flow, low Mach number, viscous
compressible fluid

1. Introduction

Fluid-structure interaction problems can be treated in numerous engineering and other
applications. This study presents a numerical solution of compressible viscous flows in
a channel that represents a model of glottal spaces in the human vocal tract.

In current publications such flow models are mostly based on the Bernoulli equation [1]
or 1D models for an incompressible inviscid fluid [2]. Acoustic wave propagation in the
vocal tract is usually modeled separately using linear acoustic perturbation theory, the wave
equation for the potential flow [3] or the Lighthill approach on sound generated aerody-
namically [4]. A current challenging question is a mathematical and physical description of
the mechanism for transforming the airflow energy in the glottis into the acoustic energy
representing the voice source in humans. The voice source signal travels from the glottis
to the mouth, exciting the acoustic supraglottal spaces, and becomes modified by acous-
tic resonance properties of the vocal tract [1]. Also, it is not clear so far how to model
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the separation point on a moving surface in a small gap. This is usually approximated by
quasi-steady formulas deduced from steady flow solutions in divergent channels [5], yet the
validity of this procedure for higher frequencies is questionable. The airflow in the glottis
described by the 2D Navier-Stokes equations for an incompressible laminar flow was studied
in [6] using FVM and in [7] using Finite Element Method (FEM). FIDAP software was used
in [8] for 3D modeling of the flow in the glottis by FEM using the Navier-Stokes equations
for an incompressible fluid.

The authors present a flow model based on the Navier-Stokes equations for a compressible
viscous fluid. In reality, the airflow coming from the lungs causes self-oscillations of the vocal
folds, and the glottis completely closes in normal phonation regimes, generating acoustic
pressure fluctuations. In this study, the periodic changes of the channel cross-section are
prescribed; the channel is harmonically opening and nearly closing in the narrowest cross-
section of the channel as a first approximation of reality, making the investigation of the
airflow field in the glottal region possible. A mathematical model of a compressible viscous
fluid is used because when the glottis is closing, the local airflow velocity reaches quite
high values in the narrowest part of the airways and where the viscous forces are important
as well. For an inviscid incompressible flow, the maximum flow velocity would be very
high (tends to infinity) just before the glottis closes. For phonation of vowels, the airflow
volume velocity in the vocal tract is in the range 0.07–0.85 l s−1 i.e. the airflow velocity in
the trachea approximately in the range of 0.3–5.2m s−1 taking into account the tracheal
diameter in humans in the range 14.5–17.6mm [3]. In this numerical simulation, a uniform
inflow Mach number M∞ = 0.012 (air velocity 4.12m s−1) is assumed. Particular attention
is paid to the analysis of the position of the flow separation point on the vibrating surface,
and to the interrelations between the flow velocity, flow rate and pressure waveforms and
the motion of the oscillating glottal orifice.

2. Mathematical model

To describe the unsteady laminar flow of a compressible viscous fluid in a channel, the
2D system of Navier-Stokes equations was considered as a mathematical model. The Navier-
Stokes equations were transformed to non-dimensional form. The transformation of dimen-
sional variables (marked with the accent hat) to non-dimensional variables is defined as
follows :

ρ→ ρ̂

ρ̂∞
, (u, v) → (û, v̂)

ĉ∞
, (x, y) → (x̂, ŷ)

L̂r

, t→ t̂ ĉ∞
L̂r

,

p→ p̂

ρ̂∞ ĉ2∞
, e→ ê

ρ̂∞ ĉ2∞
, η → η̂

η̂∞
, T → T̂

T̂∞
,

(1)

where ρ denotes density, u and v are the components of the velocity vector, p denotes pressure
and e is the total energy per unit volume. The reference variables in this case are inflow
variables (marked with the infinity subscript) : the speed of sound ĉ∞ = 343 ms−1, density
ρ̂∞ = 1.225 kgm−3, temperature T̂∞ = 293.15K, dynamic viscosity η̂∞ = 15×10−6 Pa s
and a reference length L̂r = 0.02m. The system of Navier-Stokes equations is expressed in
non-dimensional conservative form [9] as :

∂W
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)
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where

W = [ρ, ρ u, ρ v, e]T , (3)

F = [ρ u, ρ u2 + p, ρ u v, (e+ p)u]T , (4)

G = [ρ v, ρ u v, ρ v2 + p, (e+ p) v]T , (5)
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W is the vector of conservative variables, F and G are the vectors of inviscid fluxes, R
and S are the vectors of viscous fluxes. General Reynolds number in (2) is computed from
reference variables Re = ρ̂∞ ĉ∞ L̂r/η̂∞. The static pressure p is expressed by the state
equation in the form

p = (κ− 1)
[
e− 1

2
ρ
(
u2 + v2

)]
. (8)

The non-dimensional dynamic viscosity in the dissipative terms (6) and (7) is a function
of temperature in the form η = (T/T∞)3/4. The heat transfer coefficient is expressed as
k = η κ/[Pr (κ− 1)], where Pr = 0.7 is the Prandtl number and κ = 1.4 is the ratio of the
specific heats (the Poisson coefficient).

3. Computational domain and boundary conditions

The bounded computational domain D, used for the numerical solution of flow field in
the channel, is shown in Figure 1. The domain is a symmetric channel, the shape of which is
inspired by the shape [10] of the trachea (inlet part of the channel), vocal folds, false vocal
folds and supraglottal spaces (outlet part). The upper and the lower boundaries are the
channel walls. A part of the wall changes its shape between the points A and B according
to a given function of time and axial coordinate:

w(x, t) = (a1 + at)
[
sin
{

3π
2

+ π
x− xA

xC − xA

}
+ 1
]

+ d , x ∈ 〈xA, xC〉 ,

w(x, t) = 2 (a1 + at) cos
(
π

2
x− xC

xB − xC

)
+ d , x ∈ (xC, xB〉 ,

at = a2 sin(2πft) , t ∈ 〈0, 2π〉 ,

(9)

where f = 5.83×10−3 is the dimensionless frequency, which corresponds to the real frequency
100Hz, typical for normal male voice. Base amplitude a1 = 0.18 (3.6mm) and amplitude
of time oscillation a2 = 0.015 (0.3mm) are set according to maximum and minimum gap.
The gap g = 2 {(d + h) − w (xC, t)} is the narrowest part of the channel (in point C).
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The considered dimensions of the domain are summarized in Table 1. The gap width was
oscillating between the minimum gmin = 0.4mm and maximum gmax = 2.8mm, not closing
the channel completely.

Fig.1: Computational domain D

x [–] y [–] x̂ [mm] ŷ [mm]
A 9.75 0.4 195 8
B 10.4 0 208 0
C 10.3 w(xC, t) 206 w(xC, t) · 20

gmin — 0.02 — 0.4
gmax — 0.14 — 2.8

L 16 — 320 —
h — 0.4 — 8
d — 0.4 — 8

Tab.1: Dimensions of computational domain D

The boundary conditions are considered in the following formulation :

1. Upstream conditions : u∞ = M∞ cos(α) = M∞, v∞ = M∞ sin(α) = 0, ρ∞ = 1, p∞ is
extrapolated from domain D and α = 0 is the angle of the incoming flow.

2. Downstream conditions : p2 = 1/κ, (ρ, ρ u, ρ v) are extrapolated from D.

3. Flow on the wall : (u, v) = (uwall, vwall) and ∂T
∂�n = 0. (T = κ p/ρ is the temperature).

If the problem with the boundary conditions is related to known values of the inlet
velocity and length, than the real flow field is simulated and the Reynolds number at the
inlet is computed from the inflow variables Re∞ = ρ̂∞ û∞ Ĥ/η̂∞, where Ĥ = 2 h L̂r is the
inflow width of the channel (see Figure 1) and û∞ = M∞ ĉ∞ is inflow air-velocity. Than
the general Reynolds number is Re = Re∞.

Fig.2: Finite volume Di,j and

dual volume V ′
k

4. Numerical solution

The numerical solution uses FVM in con-
servative cell-centered form on the grid of
quadrilateral cells, see e.g. [9].

The bounded domain is divided into mu-
tually disjoint sub-domains Di,j (i.e. quadri-
lateral cells). The system of equations (2)
is integrated over the sub-domains Di,j using
the Green formula and the Mean value theo-
rem. In the time-changing domain, the inte-
gral form of FVM is derived using the ALE
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formulation. The ALE method defines homeomorphic mapping of the reference domain
Dt=0 at initial time t = 0 to a domain Dt at t > 0 [11].

The explicit predictor-corrector MacCormack (MC) scheme in the domain with a moving
grid of quadrilateral cells is used. The scheme is 2nd order accurate in time and space [9] :
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(10)

where Δt = tn+1 − tn is the time step, μi,j =
∫∫

Di,j
dxdy is the volume of cell Di,j , Δx

and Δy are the steps of the grid in directions x and y, vector sk = (s1, s2)k represents the
speed of edge k (see Figure 2). The physical fluxes F, G, R, S on the edge k of the cell Di,j

are replaced by numerical fluxes (marked with tilde) F̃, G̃, R̃, S̃ as approximations of the
physical fluxes.

The approximations of the convective terms sWk and the numerical viscous fluxes R̃k, S̃k

on the edge k are central. The higher partial derivatives of velocity and temperature in
R̃k, S̃k are approximated using dual volumes V ′

k (see [9]) as shown in Figure 2. The inviscid
numerical fluxes are approximated by the physical fluxes from the cell on the left side of the
current edge in the predictor step and from the cell on the right side of the current edge in
the corrector step.

The last term used in the MC scheme is the Jameson artificial dissipation [12] :

AD(Wi,j)n = C1 γ1

(
Wn

i+1,j − 2Wn
i,j + Wn

i−1,j

)
+

+ C2 γ2

(
Wn

i,j+1 − 2Wn
i,j + Wn

i,j−1

)
,

(11)

where C1, C2 ∈ R are constants, in our case C1 = 1.7, C2 = 1.5, and the variables γ1, γ2

have the form :

γ1 =
|pn

i+1,j − 2 pn
i,j + pn

i−1,j |
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, γ2 =

|pn
i,j+1 − 2 pn
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Since the artificial dissipation term is of third order, the overall accuracy of the scheme is
of second order. The vector of conservative variables W can be computed at a new time
level tn+1 :

Wn+1
i,j = W

n+1

i,j +AD(Wi,j)n . (13)

The stability condition of the scheme (on the regular orthogonal grid) limits the time step :
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where c denotes the local speed of sound, umax and vmax are the maximum velocities in the
domain, and CFL < 1 for non-linear equations [13].

The grid used in the channel has successive refinement cells near the wall. The minimum
cell size in y-direction is Δymin ≈ 1/

√
Re to capture the boundary layer effects. Figure 3

shows the detail of the grid in domain D in the narrowest channel cross-section at the middle
position of the gap.

Fig.3: Grid of quadrilateral cells in part of domain D
at the middle position of the gap width

5. Numerical results

The numerical results were obtained (using a specifically developed program) for the
following input data : Mach number M∞ = 0.012 (û∞ = 4.116m s−1), Reynolds number
Re∞ = 5378, atmospheric pressure p2 = 1/κ (p̂2 = 102942Pa) at the outlet, and wall
oscillation frequency f̂ = 100Hz. The computational domain contained 450×100 cells in D.

The computation has been carried out in two stages. First, a numerical solution is
obtained, when the channel between points A and B has a rigid wall fixed in the middle
position of the gap width. Then this solution is used as the initial condition for the unsteady
simulation (see [14]).

Fig.4: The initial condition; computed in D – M∞ = 0.012, Re∞ = 5378, p2 = 1/κ,
450×100 cells, Mmax = 0.190; results are mapped by iso-lines of Mach number
and by streamlines (the inlet part of the channel is abridged
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Fig.5: Convergence to the steady state solution – M∞ = 0.012,
Re = 5378, p2 = 1/κ, 450×100 cells

Figure 4 shows the initial condition for unsteady computation of the flow field in do-
main D. The maximum Mach number computed in the domain was Mmax = 0.190. The
pictures display non-symmetric flow developed behind the narrowest channel cross-section.
Figure 5 shows the convergence to the steady state solution computed using the L2 norm of
momentum residuals (ρ u). The graph indicates the non-stationary solution which is caused
probably by eddies separated in the unmovable glottal orifice and floating away.

The numerical simulation of the air-flow computed in domain D over the fourth cycle of
the wall oscillation is presented in Figure 6 Part A, Part B, Part C showing the unsteady flow
field in ten time instants during one vibration period. The chosen time instants (a)–(j) are
marked in Figure 7. Large eddies are developing in supraglottal spaces and a ‘Coandă’ effect
is apparent in the flow field pattern. The absolute maximum of Mach number M = 0.270
(corresponding to the dimension velocity 92.61m s−1) in the flow field during fourth cycle
was achieved at time t = 36.12 s behind the narrowest channel cross-section (see Figure 6(g)).

Figure 8 shows the following dimensional quantities computed in real time in two selected
points of the flow field: the prescribed oscillation of gap width, the pressure registered at
the inlet, the absolute airflow velocity at the distance xC on the channel axis and flow rate
calculated in the narrowest channel cross-section (at xC). The phase shift (time delay)
between the minimum glottal gap and the maximum of velocity (Mach number) is 3.62ms,
and similarly, the time delays in the pressure fluctuations and flow rate are about 2.5ms and
4.3ms, respectively. The flow behavior is remarkably different during opening and closing
phases of the gap. The small pressure disturbances and the local peaks seen on the flow
velocity graphs are caused by separated vortices and by the oscillating jet direction (‘Coandă’
effect). The minimum of airflow velocity and flow rate corresponds to the minimal gap width
due to a dominant effect of viscous fluid forces in a very narrow gap. The flow becomes
practically periodic after the first period of oscillations.
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Fig.6: Part A – The unsteady numerical solution of the airflow in D – f̂ = 100 Hz,
M∞ = 0.012, Re∞ = 5378, p2 = 1/κ, 450×100 cells; data computed during
the fourth oscillation cycle; results are mapped by iso-lines of Mach number
and by streamlines (the inlet part of the channel is abridged
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Fig.6: Part B – The unsteady numerical solution of the airflow in D – f̂ = 100 Hz,
M∞ = 0.012, Re∞ = 5378, p2 = 1/κ, 450×100 cells; data computed during
the fourth oscillation cycle; results are mapped by iso-lines of Mach number
and by streamlines (the inlet part of the channel is abridged
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Fig.6: Part C – The unsteady numerical solution of the airflow in D – f̂ = 100 Hz,
M∞ = 0.012, Re∞ = 5378, p2 = 1/κ, 450×100 cells; data computed during
the fourth oscillation cycle; results are mapped by iso-lines of Mach number
and by streamlines (the inlet part of the channel is abridged

Fig.7: Time instants (a)–(j) for which the flow field patterns are presented
in Fig. 6 during fourth period of the glottal gap oscillation cycle
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Fig.8: Periodic motion of the gap width (top graph), the pressure registered at the
inlet (second graph), numerically simulated absolute airflow velocity at the
narrowest cross-section on the channel axis (third graph) and the flow rate
calculated in the narrowest channel cross-section (bottom graph); the data

were computed in real time during the fourth oscillation period (f̂ = 100 Hz,
M∞ = 0.012, Re∞ = 5378, p2 = 1/κ, 450×100 cells)
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Fig.9: Periodic motion of the gap width (top graph), the separation point area ratio
As/Amin computed on the upper (solid line) and lower (dot-dashed line) walls
of the channel during the fourth oscillation cycle (middle graph) and distance
Δl of the separation point from narrowest channel cross-section point computed
on the upper (solid line) and lower (dot-dashed line) walls (bottom graph)

(f̂ = 100 Hz, M∞ = 0.012, Re∞ = 5378, p2 = 1/κ, 450×100 cells)
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Figure 9 shows the oscillation of gap width, the separation point area ratio As/Amin

computed on the upper and lower oscillating walls of the channel and distance Δl of the
separation point from narrowest channel cross-section point on the upper and lower walls
(see Figure 10). As and Amin denote separation and minimum orifice areas, respectively,
which are equivalent to orifice height for two-dimensional unit-depth simulation as shown
in Figure 10. The minimum pressure on the wall is the criterion for the occurrence of the
separation point. The values of the ratio vary from As/Amin = 1.02, corresponding to the
instant of maximum glottal gap width, to As/Amin = 8.74, corresponding to the instant just
after the gap opening phase started. The difference between upper and lower wall is very
small. The wave form of separation ratio is skewed, the flow separation point moves on the
vibrating wall differently in closing and opening phase, see bottom graph Δl in Figure 9.
The jumps in the graph of the distance Δl are caused by changes in the flow field pattern
in the model of the laryngeal cavity when pattern is changing from an axisymmetric to
unsymmetric.

Fig.10: Measured widths As, Amin and distance Δl

6. Discussion and conclusions

Special program code has been developed for numerical simulation of the airflow in
a channel with vibrating walls for 2D unsteady viscous compressible fluid.

The results obtained for a simplified model of the glottal region are comparable with
the results published in article [15], where the separation point and the glottal flow rate
in a geometrically different channel were computed for a vibration frequency of 447Hz
using FE model of the vocal folds and incompressible Navier-Stokes equations. In [15],
the separation area ratio has been found out to be in the range As/Amin = 1.3−9.7 . The
maximum flow rate and maximum glottal width were in phase and the minimum pressure
lagged by approximately 1/10 of a period. It does not correspond to our findings, where
maximum flow rate and pressure are delayed against the minimum gap. Comparing to our
study this might have been caused by neglecting fluid compressibility and considering very
high oscillation frequency not typical for normal voice. From the position of the sudden
jumps in the ratio As/Amin during the opening and closing phases (see Figure 9), it can be
deduced that the flow separation point has been shifted stream-wise in the closing phase, as
compared to the glottis opening phase.
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The numerical solution in the channel showed large vortex structures developed in the
supraglottal space moving slowly downstream and decaying gradually. It was possible to
detect a ‘Coandă phenomenon’ in the computed flow field patterns. A similar generation of
large-scale vortices, vortex convection and diffusion, jet flapping, and general flow patterns
were experimentally obtained in physical models of the vocal folds by using PIV (Particle
Image Velocimetry) method in [16], [17] and [10].

The results show that some numerical results of viscous flow in a symmetric channel
using a symmetric grid and scheme can be non-symmetrical, depending on the geometry and
the Reynolds number. This effect was observed also for laminar transonic flow computation,
see [18]. The assumption of the axisymmetry solution for the axisymmetry channels (see [19])
excludes modeling the ‘Coandă’ effect and large vortex structures of the size comparable with
the cross-section of the channel.
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