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TO THE PARAMETRIC ANTI-RESONANCE APPLICATION

Aleš Tondl*, Ladislav Půst**

A new application of the parametric anti-resonance is discussed. This phenomenon
can be used not only for suppressing self-excited vibration or to reduce the externally
excited vibration but also to suppress the parametric resonance when certain condi-
tions are met. Another aim is to stimulate further investigations and the practical
applications.
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1. Introduction

Let us consider a parametrically excited system which, after transformation into the
quasi-normal form, can be governed by the following equations:

ẍs + Ω2
s xs + ε

[
n∑

k=1

(Θsk ẋk +Qsk xk)

]
= 0 , (s = 1, 2, . . . , n) , (1)

where ε is small parameter, Ωs are the natural frequencies of the abbreviated system and
Θsk, Qsk are periodic functions of the parametric excitation with frequency ω.

Note : Quite similar equations can be obtained when analysing the stability of the exter-
nally excited vibration in the interval of the excitation frequency where due to the nonline-
arity a nonlinear resonance like the subharmonic resonance can occur.

It is well known that the system can be unstable due to the action of the parametric
excitation. This can destabilize the system in certain intervals of frequency ω lying at

ω =
Ωj ± Ωk

N
, (N = 1, 2, . . . ) . (2)

For k = j and for plus sign we speak about the instability interval of the first kind and
Nth order. For k 
= j the combination parametric resonance can be initiated. Due to
the nonlinear progresive damping in the instability intervals limited steady vibrations are
initiated. In [1] the method for determination of these instability intervals was presented
and as an example it was proved the following result :

In the case of parametric excitation only due to the stiffness periodic variation only
for one sign in (2) the instability interval can exist (e.g. for ω ∼= |Ωj + Ωk|). There is
a question what effect occurs for the other sign (e.g. for ω ∼= |Ωj − Ωk|). It was discovered
(see [2], [3]) that in this case the parametric excitation has a stabilization effect resulting
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e.g. in suppressing self-excited vibration. There exist a numerous literature dealing with
this problem where for different systems the influence on self-excited and externally excited
vibration have been analyzed (see especially [4], the references survey is in [5]). It was
proved that the self-excited vibration can be even fully suppressed, which is not the case as
for externally excited vibrations (there only the vibration limiting can be achieved).

In this contribution the attention will be paid to the following question: Is it possible to
suppress the parametric resonance by an additional parametric excitation?

2. Basic analysis

First of all let us suppose that both parametric excitations (original and the additional)
are harmonic. Such a system after transformation into the quasi-normal form is governed
by the following equations :

ẍs+Ω2
s xs+ε

{
n∑

k=1

[Θsk ẋk + cosωt ·Qsk xk + cos ηt · Psk xk]

}
= 0 , (s = 1, 2, . . . , n) , (3)

where ε is a small parameter, ω is the frequency of the acting original parametric excitation
and η is the frequency of the additional parametric excitation which should suppress the
parametric resonance of the original parametric excitation and Psk, Qsk are the coefficients.

Let us suppose that the aim of the additional parametric excitation is to suppress the
parametric resonance of the first kind and first order, e.g. at ω = 2 Ω1.

There is necessary to take into account the following facts :

1) Considering the case cos ηt = 0 the resonance at ω = 2 Ω1 is the parametric resonance
of the first kind. The trivial solution is unstable, unless the following condition is met
(see [1]) : (

Q11

2 Ω1

)2

− Θ2
11 ≥ 0 . (4)

For positive damping is Θ11 positive and so the condition for suppression this para-
metric resonance reads :

Q11

2 Ω1
≤ Θ11 . (5)

2) Considering the case when cosωt = 0, cos ηt = cos(|Ωk − Ω1|)t, then the conditions
to eliminate the effect of the negative linear damping are (see [1] and Appendix) :

Θ11 + Θkk ≥ 0 ,
Q1k Qk1

4 Ω1 Ωk
+ Θ11 Θkk ≥ 0 . (6)

For positive damping the first condition (6) is met and the second is decisive. We
can see that the first term in the second condition (6) can represent the additional
positive damping when Q1k Qk1 is a positive value. For the positive linear damping
the conditions for avoiding the parametric resonance at ω = 2 Ω1 is :

Q1k Qk1

4 Ω1 Ωk
−
(
Q11

2 Ω1

)2

+ Θ2
11 + Θ11 Θkk ≥ 0 . (7)
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For positive damping the sufficient condition of the parametric resonance suppression
at ω = 2 Ω1 reads :

Q1k Qk1

Ωk
− Q2

11

Ω1
≥ 0 . (8)

3. Example

Let us consider a two-mass system with masses m1, m2 resisting on springs with periodi-
cally variable stiffneses k1 = k10 (1 + ε α1 cos�t), k2 = k20 (1 + ε α2 cosχt) (see Fig. 1).

Fig.1: Schema of the system

The motion of both masses is positively damped. The damping of mass m1 consists of
a linear viscous component and a progressive component. The latter component is convenient
for numerical solution in order to obtain a limited vibration in case of unstable equilibrium
position; for stability of the equilibrium position can be left out. For mass m2 only linear
damping is considered.

Denoting the deflections of masses as y1, y2 the system is governed by the following
equations :

m1 ÿ1 + k10 (y1 − y2) + ε
[
(b1 + d y2

1) ẏ1 + (k10 α1 cos�t) · (y1 − y2)
]

= 0 .

m2 ÿ2 − k10 (y1 − y2) + k20 y2 +

+ ε
[
b2ẏ2 − k10 α1 (y1 − y2) cos�t+ k20 α2 y2 cosχt

]
= 0 .

(9)

where m1, m2 are the masses, k10, k20 are the average stiffnesses of the springs, b1, b2 are
linear damping coefficients, d is the coefficient of the progressive damping, � frequency
of the harmonic parametric excitation and χ is the frequency of the additional harmonic
parametric excitation.

After rearranging and time transformation (ω1 t = τ , ω1 =
√
k10/m1) the following

equations are obtained :
y′′1 + y1 − y2 + ε

[
(κ1 + δ y2

1) y
′
1 + α1 (y1 − y2) cosωτ

]
= 0 ,

y′′2 −M (y1 − y2) + q2 y2 + ε
[
κ2 y

′
2 −M α1 (y1 − y2) cosωτ + q2 α2 y2 cos ητ

]
= 0 ,

(10)

where

M =
m1

m2
, q2 =

k20

m2

k10

m1

,
k10

m1
= ω2

1 , κ1 =
b1

m1 ω1
,

δ =
d

m1 ω1
, κ2 =

b2
m2 ω1

, ω =
�

ω1
, η =

χ

ω1
.
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Equations (10) can be transformed into the quasi-normal form using equations :

y1 = x1 + x2 , y2 = a1 x1 + a2 x2 (11)

and equations (10) get the form :

x′′1 + Ω2
1 x1 + ε F1 = 0 ,

x′′2 + Ω2
2 x2 + ε F2 = 0 ,

(12)

where

(Ω2)1,2 =
1
2
(
1 +M + q2

)∓ [1
4
(
1 +M + q2

)2 − q2
]1/2

,

F1 =
1

a1 − a2
(−a2 Φ1 + Φ2) , F2 =

1
a1 − a2

(a1 Φ1 − Φ2) ,

Φ1 = κ1 (x′1 + x′2) + α1 [(1 − a1)x1 + (1 − a2)x2] cosωτ ,

Φ2 = κ2 (a1 x
′
1 + a2 x

′
2) −M α1 [(1 − a1)x1 + (1 − a2)x2] cosωτ +

+ q2 α2 (a1 x1 + a2 x2) cos ητ .

Now let us investigate the conditions for suppressing the parametric resonance at
ω = 2 Ω1 when η = Ω2 − Ω1. For simplicity let us consider that no linear damping ex-
ists, i.e. κ1 = κ2 = 0. Then for full suppression of the parametric resonance the following
condition (see (7)) must be met :

Q12Q21

Ω1 Ω2
−
(
Q11

Ω1

)2

≥ 0 , (13)

where

Q12Q21 = −α
2
2 a1 a2 q

4

(a1 − a2)2
, Q11 = −α1 a2 (1 − a1)

a1 − a2
.

Considering that the following relations are met (see [6]) :

0 ≤ a1 ≤ 1 , − a2 ≥ 0 , a1 a2 = −M ,

a1,2 = −1
2
(
M + q2 − 1

)± [1
4
(
M + q2 − 1

)2
+M

]1/2

the condition (13) can be simplified as follows :

α2 ≥ α1
(1 − a1)2 (−a2)

q2
√
M

Ω1

Ω2

= α1 Λ1 . (14)

In the similar way it can be derived that for suppressing of the parametric resonance at
ω = 2 Ω2 (also for κ1 = κ2 = 0) the following condition should be fulfilled :

α2 ≥ α1 Λ2 ,

where

Λ2 =
(1 − a2)2 a1

q2
√
M

Ω2

Ω1

. (15)

In Fig. 2 Λ1(q) is presented for several values of M and similarly Λ2(q) in Fig. 3.
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Fig.2: Parameter Λ1 for suppressing parametric resonance at ω = 2Ω1

Fig.3: Parameter Λ2 for suppressing parametric resonance at ω = 2Ω2

Comparing the course of Λ1(q) and Λ2(q) we can see that Λ1(q) is an increasing function
with increasing q while the opposite is true concerning Λ2(q), which is a decreasing function.
It should be noticed that Λ2 is significantly higher than Λ1. Consequently to suppress
the parametric resonance at ω ∼= 2 Ω1 is much easier than the parametric resonance at
ω ∼= 2 Ω2. Even the optimal value of q is different. The diagrams of Λ1(q), Λ2(q) help
to select the convenient system tuning considering the possibilities and to decide whether
only one parametric resonance (e.g. at ω ∼= 2 Ω1) or both parametric resonances (also at
ω ∼= 2 Ω2) should be suppressed. For example for M = 1, q = 1 is Λ1

∼= 0.38 but Λ2
∼= 2.6,

i.e. the first resonance can be suppressed provided the additional parametric excitation with
frequency η = Ω2−Ω1 with the amplitude nearly one third of the amplitude of the parametric
excitation with frequency ω. Approximately the relation Λ1 = Λ2 is valid for M = 1, q = 2.
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4. Numerical examples

The numerical solution of selected cases is used for verification of analytically gained
result.

Time history of motions y1, y2 of both masses is solved by Runge-Kutta procedure
according to the equations (10). System tuning was selected in the centers of the first
parametric instability region, which corresponds following values : M = 1, q = 1, ε = 0.1,
κ1 = 0, κ2 = 0, ω = 1.236 . Limitation of amplitudes in this instability domain is reached
by nonlinear progressive damping coefficient δ = 0.001 . Very small appr. (10−5 xmax) but
not zero initial conditions were applied to excite the increase of displacements y1, y2 during
acceptable time of transient processes.

Fig.4: Increase of oscillations at only one parametric excitation – α1 = 2, α2 = 0

Fig.5: Form of parametric oscillations in stationary state – α1 = 2, α2 = 0
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The evolution of parametric oscillations and following stabilization of y1(t), y2(t) up to
t = 3000 is shown in Fig. 4 for only one parametric excitation α1 = 2, α2 = 0.

In Fig. 5 is ZOOM view in time interval t ∈ (2700, 3000), where the approximately
harmonic form of oscillations y1(t), y2(t) is evident.

If on the parametrically excited system with frequency ω = 1.236 acts also auxiliary
parametric oscillation with frequency η = Ω2 − Ω1 = 1 and with small amplitude α2 = 0.3,
the destabilizating effect of the first parametric excitation is partially suppressed. It is seen
from Fig. 6, where the evolution of oscillation is delayed to time interval t ∈ (1000, 1500).
The consolidated motion is not yet harmonic, but contains small chaotic component as seen
also in Fig. 7, where the ZOOM course is drawn in time interval t ∈ (2700, 3000).

Fig.6: Increase and stabilization of oscillations at low auxiliary
parametric excitation – α1 = 2, α2 = 0.3

Fig.7: Non-harmonic oscillations at low auxiliary
parametric excitation – α1 = 2, α2 = 0.3
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Further increase of auxiliary excitation to α2 = 0.7 changes the evolution stage oscilla-
tions into quasi-beats motion, Fig. 8. Detail of such kind of oscillation is shown in Fig. 9,
again in time interval t ∈ (2700, 3000).

When the level of auxiliary parametric excitation is set up on α2 = 1 (at α1 = 2), the
oscillations y1, y2 of both masses are completely suppressed, as shown in Fig. 10.

Fig.8: Transient and quasi-beats oscillations at higher auxiliary
parametric excitation – α1 = 2, α2 = 0.7

Fig.9: ZOOM time history of quasi-beat oscillations at α1 = 2, α2 = 0.7



Engineering MECHANICS 143

Fig.10: Fully suppressed oscillations at sufficient level of auxiliary
parametric excitation – α1 = 2, α2 = 1

5. Conclusion

It was shown that the parametric excitation using the phenomenon of the parametric
anti-resonance has a broader field of application for suppressing undesirables vibrations. Not
only self-excited vibrations but also parametric resonance can be suppressed by an additional
parametric excitation when certain conditions are met. The parametric excitation can also
be used for the full suppressing of typically non-linear externally excited resonances like
the subharmonic ones. Indeed when analyzing the stability of externally excited nonlinear
system, the relevant differential equations including perturbations have periodic variable
coefficients.

The presented analysis is the first step to further analytical as well as numerical analyses
intended for the optimal tuning conditions development and their practical applications.

6. Appendix

Let us consider a system with a harmonic parametric excitation, which in quasi-normal
form is governed by the following equations :

ẍs + Ω2
s xs +

n∑
k=1

(Θsk ẋk +Qsk xk cosωt) = 0 , (s, k = 1, 2, . . . , n) . (16)

To stabilize the system in the neighborhood of

ω = ω0 = |Ωj − Ωk| (17)
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the following conditions must be met (see example in [1]) :

Θjj + Θkk ≥ 0 ,
Qjk Qkj

4 Ωj Ωk
+ Θjj Θkk ≥ 0 .

(18)
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