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DEVELOPMENT OF THE BASIC DYNAMICAL MODEL
OF A SQUIRREL CAGE MOTOR

Michal Hajžman, Miroslav Byrtus, Vladimı́r Zeman*

This paper deals with the basic dynamical model of electromotor whose creation was
motivated by problems of electromotor vibrations and its subsequent fatigue. The
model is characterized by a flexible shaft with mounted packet of sheet metals that
are equipped with parallel copper bars connected by end shortcircuit rings. Finite
element analysis is used for the discretization of the shaft, while the sheet metal
packet of cylindrical shape is modelled as a set of rigid bodies joined using chosen
viscoelastic forces and torques. The shortcircuit rings are supposed to be rigid in
this basic dynamical model and the pieces of copper bars are substituted by massless
springs of calculated properties. Problematic model parameters are identified by
means of performed experimental modal analysis.

Keywords : squirrel cage motor, rotor dynamics, finite element method, modal anal-
ysis, parameter tuning

1. Introduction

One of the very interesting examples of rotating systems is a squirrel cage induction motor
that is employed in various machines and means of transport mainly as a traction motor.
The usage of this type of motor in vehicles is connected with possible fatigue problems
because of non-stationary loading and changing operational conditions. General methods
of mechanical system dynamics are suitable approaches to the mathematical modelling of a
rotating part (Figure 1) of a squirrel cage motor. However very simple models (e.g. [1], [3])
are usually used for the dynamical analysis of this type of motors. The presented paper
aims at the development of a more advanced and usable dynamical model.

The structure of the rotor of this studied type of an electric motor is shown in Figure 2.
The rotor consists of a rotor shaft with laminated iron armature mounted in the middle
shaft part. Laminations have the form of thin sheet metals with holes. The squirrel cage is
composed of rotor bars (usually made of copper) that are put through the laminations and
joined by end rings on both ends (also made of copper). The end rings can be constricted by
shrink rings made of certain more stiff material. The short end pieces of rotor bars out of the
armature are deformed during the rotor operation due to rings inertia and electromagnetic
forces. Mentioned fatigue problems can be characterized by ruptures of the end ring and
rotor bar connections. In order to investigate dynamical behaviour and dynamical properties
of a rotor, the computational model was developed and is described in this paper. The model
was created by theoretical way in general and the in-house software tool was implemented
based on this development.
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Fig.1: Rotor of a squirrel cage motor (visualization)

Fig.2: Scheme of the rotor of a squirrel cage motor

The model is called the basic dynamical model in which the end rings and shrink rings are
considered as rigid bodies. It should be suitable for dynamical analyses with low-frequency
excitation and motion. The basic dynamical model is composed of a flexible shaft modelled
by means of 1D shaft finite elements, middle armature modelled as a set of five rigid bodies
connected with translational and torsional springs, end parts of rotor bars modelled as
massless discrete springs connecting the armature rigid bodies with end rings (considered
together with shrink rings) rigid bodies.

2. Model of a rotor of a squirrel cage motor

The basic dynamical model of the rotor of the squirrel cage motor will be described in
more detail in this section.

2.1. Flexible shaft model

The whole shaft of the motor (including the part with mounted sheet metal packet) is
modelled as a flexible body by means of shaft finite elements derived e.g. in [2] or in [5]
on the basis of Rayleigh theory (respecting rotary inertia). It is considered that the shaft
has an undeformable cross-section that is still perpendicular to the deformed shaft centre-
line. The shaft is discretized on 15 finite elements (see Figure 2) with 16 nodes (small
dots with numbers in Figure 2). Motion of the shaft in each node is defined by three
displacements (u, v, w) and three rotations (ϕ, ϑ, ψ). The mass, gyroscopic and stiffness
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matrices M(e) ∈ �12,12, ω0 G(e) ∈ �12,12, K(e) ∈ �12,12 of the shaft element with nodes i
and i+ 1 are derived (see [2], [5]) for configuration space

q(e) = [ui vi wi ϕi ϑi ψi ui+1 vi+1 wi+1 ϕi+1 ϑi+1 ψi+1 ]T . (1)

The vector of generalized coordinates of the whole shaft is

qR = [qT
1 qT

2 . . . qT
16 ]T , (2)

where qi, i = 1, 2, . . . , 16 are nodal vectors qi = [ui vi wi ϕi ϑi ψi ]T. Global mass matrix
MR ∈ �96,96, gyroscopic effects matrix ω0 GR ∈ �96,96 and stiffness matrix KR ∈ �96,96

of the shaft are assembled using element matrices M(e), ω0 G(e), K(e) with respect to the
generalized coordinate vector (2). The global stiffness matrix can be extended by stiffness
matrices of the bearings KR

L ∈ �6,6 and KL
L ∈ �6,6 on the positions corresponding to q3 and

q14. A comprehensive approach to the roller-bearings modelling was presented in [6]. The
conservative model of the flexible shaft is finally of the form

MR q̈R(t) + ω0 GR q̇R(t) + KR qR(t) = 0 , (3)

where ω0 is angular velocity of the rotor. Damping is not described in this paper, but it
is easy to extend the model with the orthotropic damping of bearings, external isotropic
environment damping and the internal material damping.

2.2. Laminated iron armature model

The whole laminated iron armature packet (composed of sheet metals with copper bars
passing through) is mounted in the middle part of the shaft. It is modelled by a set of rigid
bodies connected by flexible couplings that represent the influence of continuous copper bars
inside the packet. Five rigid bodies (see Figure 2) are set in the shaft nodes 6 to 10. The
mass matrices of particular rigid bodies are written as

M6 = M7 = M8 = M9 = M10 = diag (mD, mD, mD, I0D, ID, ID) (4)

and matrices of gyroscopic effects as

ω0 G6 = ω0 G7 = ω0 G8 = ω0 G9 = ω0 G10 = ω0

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 I0D
0 0 0 0 −I0D 0

⎤⎥⎥⎥⎥⎥⎦ , (5)

where mD is the mass of one body and I0D and ID are its moments of inertia. The diagonal
mass and block diagonal gyroscopic matrices of the whole laminated iron armature packet
are

MD = diag (01, 02, . . . , 05, M6, M7, . . . , M10, 011, 012, . . . , 016) , (6)

ω0 GD = ω0 diag (01, 02, . . . , 05, G6, G7, . . . , G10, 011, 012, . . . , 016) , (7)

where 0i are square zero matrices of order 6.
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In order to introduce the flexible behaviour between parts (rigid bodies) of discretized
sheet metals packet resulting from the continuous cooper bars, it is necessary to develop also
the stiffness matrix of the coupling between described rigid bodies. After simple derivation
such stiffness matrix between two rigid bodies can be written as

Ki,i+1
C,D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kax 0 0 0 0 0 −kax 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 kt 0 0 0 0 0 −kt 0 0
0 0 0 0 koh 0 0 0 0 0 −koh 0
0 0 0 0 0 koh 0 0 0 0 0 −koh

−kax 0 0 0 0 0 kax 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −kt 0 0 0 0 0 kt 0 0
0 0 0 0 −koh 0 0 0 0 0 koh 0
0 0 0 0 0 −koh 0 0 0 0 0 koh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

where kt is torsional coupling stiffness, kax is axial stiffness and koh is bending stiffness.
Particular values of these stiffnesses can be estimated using elementary expressions of elas-
ticity or they can be identified on the basis of certain measurement (as will be shown in
next section of this paper). The whole stiffness matrix KC,D ∈ �96,96 of the discretized
laminated iron armature package is composed of matrices Ki,i+1

C,D for i = 6, 7, 8, 9, placed as
the submatrices on the positions corresponding to mounting nodes (see Figure 2).

2.3. Model of end and shrink rings

The end rings strengthened by shrink rings are connected with the copper bars ends in
the outer sides of the rotor. Each set of end ring and shrink ring (on the left and on the right
side) is considered as a rigid body with 6 degrees of freedom whose motion is described by
6 generalized coordinates. Therefore two new nodes (number 17 and 18) identical with ring
gravity centres are added into the model (Figure 2). Their generalized coordinate vectors
are

q17 = [u17 v17 w17 ϕ17 ϑ17 ψ17 ]T , q18 = [u18 v18 w18 ϕ18 ϑ18 ψ18 ]T . (9)

Mass and gyroscopic matrices of the rings are

MPL = MPR = diag (mP, mP, mP, I0P, IP, IP) (10)

and

ω0 GPL = ω0 GPR = ω0

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 I0P
0 0 0 0 −I0P 0

⎤⎥⎥⎥⎥⎥⎦ , (11)

wheremP is the mass of the end ring (including shrink ring) and I0P and IP are corresponding
moments of inertia.
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2.4. Coupling of end rings and laminated armature packet

In order to connect end rings (including shrink rings) with the laminated iron armature
packet the stiffness matrix representing free ends of copper bars should be developed. The
couplings are considered massless and the appropriate end bar masses are added partly to
the end rings and partly to the outer bodies of discretized sheet metal packet.

The end copper bars are characterized by translational stiffnesses kξ in axial direction, kη

in radial direction and kζ in tangential direction and analogical rotation stiffnesses kξξ, kηη

and kζζ . Real values of these stiffnesses are the most problematic elements of the dynamic
model because of the wear contact between the soft copper bars and sheet metal edges. The
stiffness values can be either estimated or tuned on the basis of certain experimental data.

The compressed stiffness matrix of the i-th coupling (i-th end bar) on the left side is

Ki,L =

⎡⎢⎢⎢⎣
K̃ti K̃tiR

T
i,L −K̃ti −K̃tiR

T
i,17

Ri,LK̃ti Ri,LK̃tiR
T
i,L + K̃ri −Ri,LK̃ti −Ri,LK̃tiR

T
i,17 − K̃ri

−K̃ti −K̃tiR
T
i,L K̃ti K̃tiR

T
i,17

−Ri,17K̃ti −Ri,17K̃tiR
T
i,L − K̃ri Ri,17K̃ti Ri,17K̃tiR

T
i,17 + K̃ri

⎤⎥⎥⎥⎦∈ �12,12 ,

(12)
where matrices

K̃ti =

⎡⎣ kξ 0 0
0 kη C

2
i + kζ S

2
i kη Ci Si − kζ Si Ci

0 kη Ci Si − kζ Si Ci kη S
2
i + kζ C

2
i

⎤⎦ , (13)

K̃ri =

⎡⎣ kξξ 0 0
0 kηη C

2
i + kζζ S

2
i kηη Ci Si − kζζ SiCi

0 kηη Ci Si − kζζ SiCi kηη S
2
i + kζζ C

2
i

⎤⎦ (14)

are the local diagonal stiffness matrices of one end bar transformed into the global coordinate
system rotated by angle βi (Ci = cosβi, Si = sinβi). Matrix

Ri,X =

⎡⎣ 0 −zi yi

zi 0 −xi

−yi xi 0

⎤⎦
X

, X = L, 17, i = 1, 2, . . . , 62 (15)

is composed of coupling point coordinates [xi, yi, zi]X on the lamination packet (Ri,L) and
on the end ring (Ri,17). Similar expressions hold also for the stiffness matrices Ki,R of right
end bars.

The whole stiffness matrix KV ∈ �108,108 of all end copper bars is composed of described
matrices Ki,L and Ki,R whose blocks are placed on the positions corresponding to generalized
coordinate vectors q6, q10, q17 a q18.

2.5. Motion equations of the basic dynamical model of the electromotor rotor

After introduction of the global generalized coordinate vector of the whole rotor

q = [qT
R qT

17 qT
18 ]T = [qT

1 qT
2 . . . qT

16 qT
17 qT

18 ]T , (16)
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the basic dynamical model of the rotor of the squirrel cage motor is of the form⎡⎣MR + MD 0 0
0 MPL 0
0 0 MPR

⎤⎦ q̈(t) + ω0

⎡⎣GR + GD 0 0
0 GPL 0
0 0 GPR

⎤⎦ q̇(t) +

+

⎛⎝⎡⎣KR + KC,D 0 0
0 0 0
0 0 0

⎤⎦+ KV

⎞⎠q(t) = 0 .

(17)

Real parameter values were obtained using drawings and models from a motor producer and
on the basis of additional calculations.

3. Tuning of the model parameters

The most problematic values of the rotor model parameters are the stiffnesses of end
copper bars connecting the shortcircuit end rings with the laminated iron armature packet
and the stiffness representing the flexible behaviour of the packet. The experimental modal
analysis of the real rotor was performed (see [4]) and therefore the results can be used for
the dynamic model parameter identification.

Optimization parameters for the parameter tuning problem are chosen as

p = [ p1 p2 p3 ]T , (18)

while
p1 =

kT1

kT1,0
, p2 =

kT2

kT2,0
, (19)

where kT1 is torsional stiffness between parts 6 and 7 and parts 9 and 10 of the discretized
sheet metal packet with continuous copper bars, kT2 is torsional stiffness between parts 7
and 8 and parts 8 and 9 of the discretized sheet metal packet and kT1,0 and kT2,0 are
their initial estimated values. It holds that KC,D = KC,D(p1, p2). The last optimization
parameter p3 is the ratio

p3 =
l

l0
, (20)

where l0 is initial end bar length and l is actual end bar length between the rings and
laminated armature. The change of this length causes the change of the end bar stiffnesses

kξ(p3) =
kξ0

p3
, kη(p3) =

kη0

p3
3

, kζ(p3) =
kζ0

p3
3

,

kξξ(p3) =
kξξ0

p3
, kηη(p3) =

kηη0

p3
, kζζ(p3) =

kηη0

p3
,

(21)

according to the basic elasticity theory. This dependency can be generally written for
coupling stiffness matrix as KV = KV(p3).

Parameter tuning is considered as an optimization process. Initial model parameter
values are defined by estimated values of the stiffnesses which corresponds to the relative
optimization parameter vector p = [1, 1, 1]T. The objective function is chosen in the form

ψ(p) =
3∑

i=1

(
1 − f̂i

fi(p)

)2
, (22)
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ν fν0 [Hz] fν [Hz] eigenmode character

1 0 0 rigid body mode

2 96.0 96.0 axial, bearings

3 111.9 111.9 shaft bending

4 115.9 115.9 shaft bending

5 454.8 454.3 shaft bending

6 495.7 494.9 shaft bending

7 740.8 739.7 shaft bending

8 812.4 795.0 torsion

9 826.6 824.6 shaft bending

10 957.9 957.4 shaft bending

14 1476.2 1284.0 torsion

15 1692.3 1429.2 rings and shaft bending

16 1692.3 1429.2 rings and shaft bending

19 1885.5 1563.0 torsion

Tab.1: Eigenfrequencies of the rotor model before (fν0) and after (fν) parameter tuning

Fig.3: Value of the objective function in the course of optimization process.

Fig.4: Values of the optimization parameters in the course of optimization process..
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where fi(p) are actual values of eigenfrequencies corresponding to the first three eigen-
modes with dominant torsional deformation and f̂i are measured eigenfrequencies (795Hz,
1284Hz and 1563Hz) corresponding to these eigenmodes (see [4]). Chosen calculated eigen-
frequencies of the rotor model before and after the parameter tuning are in Table 1. The
dependancies of the objective function value and values of the optimization parameters in
the course of optimization process are shown in Figures 3 and 4.

Fig.5: Measured eigenmode characterized by dominant torsional deformation with
eigenfrequency 795 Hz (taken from [4])

Fig.6: Measured eigenmode characterized by dominant torsional deformation with
eigenfrequency 1284 Hz (taken from [4])
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Fig.7: Measured eigenmode characterized by dominant torsional deformation with
eigenfrequency 1563 Hz (taken from [4])

Fig.8: Eigenmode characterized by dominant torsional deformation and by frequency
795 Hz calculated by means of tuned basic dynamic model
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Fig.9: Eigenmode characterized by dominant torsional deformation and by frequency
1284 Hz calculated by means of tuned basic dynamic model

Fig.10: Eigenmode characterized by dominant torsional deformation and by frequency
1563 Hz calculated by means of tuned basic dynamic model

For the illustration chosen measured eigenmodes are shown in Figures 5 to 7. Calculated
eigenmodes corresponding to the measured modes are pointed out in Figures 8 to 10. Black
nodes correspond to the shaft and grey nodes correspond to the rings. Figure 8 contains
also chosen coordinates (see Figure 2) of the eigenvector for the comparison of torsional
and translational displacement values. It is clear that the dominant deformation of this
eigenmode is only torsional. Translational displacements were omitted in Figures 9 and 10.

4. Conclusion

This paper presents the basic dynamical model of the rotor of the squirrel cage elec-
tromotor. The model is characterized by the rigid end and shrink rings and therefore it
is suitable rather for low-frequency analysis, where bending and torsional behaviour of the
shaft is more dominant. The created computational model can be used for many types of
dynamical analyses. The most important ones are modal analysis, steady-state response
analysis and non-stationary time integration of motion equations. The excitation can be
defined mainly on the basis of electromagnetic field calculation. Future work will be aimed
at these analyses and successive output for stress and fatigue investigation. The model can
be improved by means of flexible end rings that are discretized by solid finite elements. The
basic dynamical model of the rotor can be further used for the component optimization and
as a part of more complex drive systems e.g. in rail vehicle dynamics.



Engineering MECHANICS 235

Acknowledgement

This work was supported by the research project MSM4977751303 of the Ministry of
Education, Youth and Sports of the Czech Republic and by the MPO ČR 2A-2TP1/139 of
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[6] Zeman V., Hajžman M.: Modeling of shaft system vibration with gears and rolling-element

bearings. In: Colloquium Dynamics of Machines 2005, Institute of Thermomechanics AS ČR,
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