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NON-PROPORTIONAL NONLINEAR DAMPING
IN EXPERIMENTAL BLADED DISK

Ladislav Půst, Luděk Pešek*

Paper is concerned with the flexural vibrations of imperfect bladed circular disk by
analytical and numerical solutions. Disk imperfection results from additional two
groups of damping heads fixed on opposite ends of one diameter, which introduces
point imperfections in mass, stiffness and nonlinear damping and non-proportional
distribution of damping properties. The aim of this study is to investigate influence
of friction damping among added bladed heads on decrease of resonance amplitudes.
Examples based on application of equivalent linearized damping show the properties
of such dampers.

Keywords : bladed disk vibrations, dry friction damping, imperfection, non-propor-
tionality, response curves

1. Introduction

In order to quench unwanted and very dangerous vibrations of turbine bladed disks,
various types of dampers are used and the large-scale research on this problem has been
carried out in many institutes and laboratories in the world (e.g. [1–3]). Also in laboratories
IT AVCR, the experimental model of bladed disk is investigated and applied for study of
various damping principle. The presented paper is a contribution to elaboration of basic
theoretical background for analysis of data gained by measurement on real structure or
on experimental model of turbine disks [4, 5]. The investigated experimental dampers for
reduction of undesirable blade vibrations are based on dry friction principle, which due to its
strong nonlinearity cannot be solved by a usual methods of solution used for linear vibrating
system [6–8].

In the first part of this paper, the spectral and modal analysis of a FE model of bladed disc
stationary fixed in its center is applied for ascertaining of several lowest eigenfrequencies and
compared with measurement. Analytical analysis of influence of dry friction element on the
disk behaviour is carried out by means of equivalent linearization. The irregular distribution
of damping heads on the disk circumference results into non-proportional damping and
influences also the dynamic properties.

The possibility how suppress resonance vibrations by using the dry friction element is
shown on examples.

2. FE model of bladed disk

Theoretical analyses of dynamic properties of experimental model consisting of a steel
disk with 60 prismatic models of blades fastened on the perimeter of disk and provided with
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damping heads clustered in two groups of five blades lying on opposite ends of one diameter
were done both by a FE calculation of standing disk and analytically on a simplified model
of rotating disk.

A three dimensional FE-model, shown in Fig. 1, has been developed and used for calcu-
lation of eigenvalues and eigenmodes of vibrations. Damping elements were fixed connected
with the blade ends for modal analysis.

Due to the added masses on ends of selected blades, the bladed disk losses its perfect
circular properties with infinite number of symmetry axis and become imperfect one with
countable number of axis, in our case with two symmetry axes. Perfect disks have double
eigenfrequencies, which split into pairs of close eigenfrequencies at imperfect disks.

Fig.1

Fig.2 Fig.3

As result of this FE analysis are in Fig. 2 and 3 shown calculated modes of lowest pair
of split eigenfrequencies f = 59.016Hz and f = 45.814Hz. One nodal diameter is identical
with axis going through the added masses at higher frequency and the other symmetry axis
is perpendicular to the previous one. The eigenfrequencies of three lowest modes with 1, 2
and 3 nodal diameters and with no nodal circle are given in Table 1, where the abbreviations
NC=Nodal Circle and ND=Nodal Diameter are used.
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FEM calculation experiment
Imperfect disk Perfect disk With fixed dampers

Mode parameters
Eigenfrequency [Hz] Damping [%]

45.814 59.21
ND = 1, NC = 0

59.016 59.21 54.8 0.52
72.696 78.596 71.6 0.37

ND = 2, NC = 0
77.978 78.596 77 0.1
107.19 121.05 102 0.22

ND = 3, NC = 0
120.94 121.06 113 0.11

Tab.1

The calculated frequencies of imperfect disk, where the moving parts of dampers are
fixed to the dampers bodies, are compared with the eigenfrequencies of perfect disk without
dampers and also with the result of the first measurement on the imperfect bladed disk fixed
in its center to the heavy block. This measurement data were gained by modal analysis
based on impact hammer method with use of apparatus PULSE10.0 for data acquisition
and MeSCOPE for global identification.

3. Effect of imperfection

Dampers added in a limited number of blades introduce imperfection. New dynamic
properties of bladed disk, which losses its perfect circular properties, characterized by infinite
number of symmetry axis, is evaluated. The damper heads on a family of five blades are
realized by fixed small masses on blade ends. These heads are mutually connected by friction
contacts via small friction elements, which allow only the axial relative motion between
neighboring heads, but suppress their relative turning and cause an increase of bending
stiffness in circumferential direction.

There are eight friction contacts between the blade heads and small friction elements
pressed into the wedge-shaped gaps by a centrifugal force. Due to this very complicated
nonlinear structure of cluster of damped blades it is necessary to introduce a simple model
of damping heads cluster for computational purposes.

This model consist of added mass Δm, additional
damping Δb and also additional stiffness Δc concen-
trated into one point at the ends of corresponding di-
ameter – symmetry axis of imperfect disk.

Fig.4

These imperfections influence the individual or-
thogonal eigen-modes splitting in different way. These
different influences are demonstrated on the simple
split modes with one modal diameter shown in Fig. 4.
When the disk vibrates by the sine mode with the
node-line going through this imperfection at eigenfre-

quency Ω10s (Fig. 4a) the additional masses Δm do not move and therefore they have no
influence on vibrations. But the shear forces between the damping heads at this mode are at
sine mode the biggest, the amplitudes of neighbouring blades are very different and therefore
the increase of damping influences on this sine mode is strong.

In the second split cosine mode (Fig. 4b) of the eigenfrequency Ω10c the imperfections
vibrate in the antimode positions, where amplitudes of neighbouring blades are maximum
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but approximately equal, the damping is minimum, but as the amplitudes and curvature in
anti-node are greatest, the influence of added masses and bending circumferential stiffness
are important for cosine mode.

With respect to these properties, the motion equations of imperfect disk with damping
heads in the frequency range ω near a single pair of split eigenfrequencies Ω10s and Ω10c are
as follows :

mred q̈s + (bred + 2 Δb) q̇s + cred qs = Kf(r) sinϕF0 cosωt sin(λ) ,

(mred + 2Deltam) q̈c + bred q̇c + (cred + 2 Δcb) qc = Kf(r) cosϕF0 cosωt cos(λ) ,
(1)

where mred, bred, cred are reduced values of perfect disk masses, damping and stiffness.
Function f(r) denotes the form of vibrations in the radial direction. Kf(r) is a function
depending on the structure and mass distribution of disk vibrating with the mode of one
nodal parameter and no nodal circle (Ω10). Expression F0 cosωt is single point exciting
force. Angle λ expresses the position of this force on the periphery of stationary disk.
Variable qs, qc are the normal coordinates corresponding to the split sine and cosine mode of
disk vibration with one nodal diameter and no nodal circle. The equations (1) are linear, but
the additional damping force 2 Δb q̇s in the real bladed disk with friction dampers is strongly
nonlinear due to the dry friction. Influence of added mass Δm on dynamic behaviour of
disk does not change the linearity of investigated system, as well as the additional bending
stiffness Δc, which can be explained as influence of partial shroud of five blades.

4. Dry friction damping

As mentioned in previous chapter, the behaviour of friction connection between blades
has strongly nonlinear characteristic and its influence on dynamic properties of bladed disk
must be taken into account. Dry friction is very complicated process and the generally used
Coulomb model is only the first approximation of real properties. For better description of
friction process, the micro-slips at the very low velocity v has to be introduced, as well as
the friction force increase or decrease at higher velocity. The micro-slips at the very low
velocity v can be modelled by a linear increase of friction force, as shown in Fig. 5. Sign vr is

Fig.5
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a velocity at which the micro-slip motion changes into full relative motion, Ft0 is Coulomb
friction force, proportional to the normal pressure Ft0 = f FN, where FN varies with the
centrifugal force.

This basic dry-friction model can be completed by further functions expressing the be-
haviour at higher relative velocities. For our purposes it is sufficient to use simple linear
function so that the friction characteristic is described by equation:

Ft = Ft0
v

vr
[1 −H(|v| − vr)] +

{
Ft0

v

|v| + b1[v − vr sign(v)]
}
H(|v| − vr) , (2)

where H is Heaviside function

H(x) =
{

0 for x ≤ 0 ,
1 for x > 0

and b1 expresses the increasing (b1 > 0) or decreasing (b1 > 0) friction force.

For numerical calculation of the disk motion it is suitable to replace the piecewise-linear
function, assuming that q ≈ q0 sinωt, q̇ = v ≈ q0 ω cosωt = v0 cosωt, by equivalent linear
damping function be(v0) q̇ with the damping coefficient [6]

be(v0) =
1
π v0

2π∫
0

Ft(v0 cosωt) cos τ dτ , (3)

where v0 = q0 ω is a velocity amplitude. For the basic Coulomb dry friction (b1 = 0),
vibration v = v0 cos τ , τ = ω t reaches the value v = vr at dimensionless time τr when

vr = v0 cos τr . (4)

Inserting function (2) for b1 = 0 into formula (3) gives :

b0(v0) =
Ft0

π v0

2π∫
0

{
v0 cos τ
vr

[1 −H(|v0 cos τ | − vr)] +

+
v0 cos τ
|v0 cos τ | H(|v0 cos τ | − vr)

}
cos τ dτ .

(5)

This integral should be solved in several parts of time intervals with a boundary τr, which
position is shown in Fig. 6. One period of motion is drawn there in relative values : relative
velocity v(τ)/vr and dimensionless time τ = ω t. vr is boundary velocity, at which the full
slip motion passes into micro-slip motion, and τr is corresponding dimensionless time.

Boundary time τr is
τr = arccos

vr
v0

. (6)

The equivalent damping coefficient be(v0) for small micro-slip vibrations, when v0 < vr, is
constant

be(v0) =
Ft0

vr
. (7)
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Fig.6

For higher amplitudes v0 of velocity is cos τr = vr/v0 smaller than 1, boundary time τr is
real, smaller than π/2 and equivalent linear damping coefficient is

be(v0) =
Ft0 4
π v0

τr∫
0

cos τ dτ +
Ft0 4
π vr

π
2∫

τr

cos2 τ dτ =

=
Ft0 4
π vr

[
vr
v0

sin τr +
π

4
− τr

2
− 1

2
sin τr cos τr

]
± b1 ,

(8)

where the linear damping coefficient ±b1 is added.

After replacing boundary time τr by relative velocity amplitude v0/vr (see (6)) we get

be(v0) =
Ft0 2
π vr

⎡⎣π
2
− arccos

(
vr
v0

)
+
vr
v0

√
1 −
(
vr
v0

)2 ⎤⎦± b1 . (9)

Graphical representation of this function is shown in Fig. 7, where br = Ft0/vr is the
micro-slip gradient. After crossing boundary velocity vr, the equivalent linear damping
coefficient be(v0) decreases roughly according to the hyperbolic law.

The limitation of equivalent linear damping coefficient be(v0) corresponds to the real
friction contact properties and is very useful also at numerical solution, as for classical
Coulomb law be → ∞ for v0 → 0.

5. Vibration of stationary imperfect disk with nonlinear damping

Perfect circular disk vibrate by many modes, characterized by number n of nodal diam-
eters (ND) and number l of nodal circles (NC). The forms of these modes belonging to one
eigenfrequency Ω(n,l) can be described by

z(n,l)(r, ϕ) = qs fl(r) sin(nϕ+ α(n,l)) + qc fl(r) cos(nϕ+ α(n,l)) (10)

where qs, qc are amplitudes of two orthogonal, sinus and cosines circumferential forms,
fl(r) express the form of deformation in radial direction. Roots rl of equation fl(r) as-
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Fig.7

certain radii of nodal circle. Angle α(n,l) gives the position of nodal diameter at eigenfre-
quency Ω(n,l). This angle is arbitrary at each mode being given by the initial conditions and
distribution of external excitation.

Groups of damping heads added to a diameter at ϕ = 0 transform the perfect disk into
imperfect one. At small weight of damping heads, the modes of vibrations can be supposed
unchanged and the equation (10) is valid as well, but the positions of nodal diameters

are not arbitrary and both orthogonal forms have fixed nodal
diameters at α(n,l) = 0. Sine-form has one nodal diameter
passing through the position of added masses, while in cosine-
form lie these masses on one antinodal diameter.

Fig.8

Let us suppose that an external harmonic transverse force
F0 sinωt acts on the periphery of an imperfect disk in a point
given by angle λ (Fig. 8). Disk is damped by dry friction ele-
ments. If the exciting frequency ω is close to the split frequen-
cies Ω(n,l)s and Ω(n,l)c we can neglect the influence of other
nonresonant frequencies and the response can be describe only
by these two predominate modes of vibrations.

Equations of motion are after dividing by reduced masses are :

q̈s + βs(q̇s) q̇s + Ω2
s qs = Ks f(r) sinnϕF0 sinωt sinλ ,

q̈c + βc q̇c + Ω2
c qc = Kc f(r) cosnϕF0 sinωt cosλ ,

(11)

where

βs(q̇s) =
bred + 2 Δb(q̇s)

mred
, βc =

bred
mred + 2 Δm

,

Ω2
s =

cred
mred

, Ω2
c =

cred + 2 Δcb
mred + 2 Δm

,

Ks =
K

mred
, Kc =

K

mred + 2 Δm
.

(12)



244 P̊ust L. et al.: Non-Proportional Nonlinear Damping in Experimental Bladed Disk

All these parameters are constant, with the exception of nonlinear damping βs(q̇s), where
expression 2 Δb(q̇s)/mred is equivalent linear damping coefficient described by a function
similar to (9), see Fig. 7.

Dynamic properties of such nonlinearly damped system are demonstrated on an example
of imperfect disk excited in the frequency range including first eigenfrequency n = 1, which
according to Table 1 is

f ∈ (40, 70)Hz , ω ∈ (250, 450) s−1 .

If the exciting force acts at the end of nodal diameter NDc i.e. λ = n/2 then only sine mode
(frequency Ω(1,0)s = 370 s−1) can arrise.

Resonance curve of such case is shown in Fig. 9 where the damping coefficient is given by

β = β0 + α
2
π

[
π

2
− arccos

(vr
v

)
+
vr
v

√
1 −
(vr
v

)2 ]
, (13)

β0 is damping of steel structure, α denotes the intensity of friction force, proportional to
the centrifugal force.

Curves in Fig. 9 were calculated for the force amplitude Ks f(r)F0 = 100 and for different
friction force characterize by parameter α = 20, 50, 100.

Fig.9

6. Rotating imperfect disk with friction dampers

Dynamical properties of disk rotating with angular velocity v are influenced by increasing
stiffness due to the centrifugal forces. Revolutions of experimental equipment in IT AS CR
are comparatively low and therefore this influence can be neglected in following analysis.

May a harmonic force F0 sinωt acts in fixed space position (ϕa = 0) on the rotating disk.
In the coordinate system r, ϕ related with rotating disk, this force moves in the negative
direction ϕ and excites all modes of vibration.
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Provided the initial condition is ϕ = ϕa = 0 in t = 0, then the position of force on the
rotating disk is λ = −v t. The dynamic properties of rotating disk excited by an in-space-
standing force can be investigated by the same equations (2, 3), but with a substitution
λ = −v t :

q̈s + βs(q̇s) q̇s + Ω2
s qs =

K f(r)F0

mr
sinϕ sinωt sin(−v t) ,

q̈c + βc q̇c + Ω2
c qc =

K f(r)F0

mr
cosϕ sinωt cos(−v t) .

(14)

It is convenient to replace the products of time functions on the right sides of these equations
by sums of harmonic functions

sinωt sin(−v t) =
1
2

[cos(ω + v)t− cos(ω − v)t] ,

sinωt cos(−v t) =
1
2

[sin(ω + v)t+ sin(ω − v)t] .
(15)

Using decomposition (15) and a new designation Q = K f(r)F0/(2mr), the solution of (14)
can be written in a following form :

qs0 =
Q sinϕ cos[(ω + v)t− Ψs1]√

[Ω2
s − (ω + v)2]2 + β2

s (q̇s0) (ω + v)2
− Q sinϕ cos[(ω − v)t− Ψs2]√

[Ω2
s − (ω − v)2]2 + β2

s (q̇s0) (ω − v)2
,

qc0 =
Q cosϕ sin[(ω + v)t− Ψc1]√
[Ω2

c − (ω + v)2]2 + β2
c (ω + v)2

+
Q cosϕ sin[(ω − v)t− Ψc2]√
[Ω2

c − (ω − v)2]2 + β2
c (ω − v)2

,

q(ϕ, t) = qs + qc .

(16)

The phase angles are

Ψs1 = arctan
βs(q̇s0) (ω + v)
Ω2

c − (ω + v)2
, Ψs2 = arctan

βs(q̇s0) (ω − v)
Ω2

c − (ω − v)2
,

Ψc1 = arctan
βc (ω + v)

Ω2
c − (ω + v)2

, Ψc2 = arctan
βc (ω − v)

Ω2
c − (ω − v)2

,

(17)

where q̇s0 is amplitude of velocity of the sine mode in the resonance zone around the eigen-
frequency Ωs.

The denominators of fractions in (16) reach their lowest magnitudes at zero values of
first great brackets – at excitation frequencies :

ω = Ωs − v , ω = Ωs + v , ω = Ωc − v , ω = Ωc + v , (18)

where the resonance peaks in response curves q(ω) at constant disk revolutions occur.

7. Response curves of rotating imperfect disk with friction dampers

The total response of rotating disk on a standing single point harmonic excitation consists
of four harmonic components (16, 17) with different frequencies, amplitudes, phase angles
being also dependent on position on disk determined by angle ϕ. The calculation and also
graphical demonstration of this response is difficult.

However, the steel bladed disks are only lightly damped and resonance peaks are very
sharp and so the separate solving of single resonances is acceptable. Sum of these amplitudes
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gives the maximal possible amplitudes at given frequency ω. Let us according to measure-
ment on the experimental bladed disk IT choose the lowest eigenfrequency Ωs = 260 rad/s,
Ωc = 380 rad/s. If angular velocity of rotating disc is v = 30 rad/s then resonances are at
ω = 230, 290, 350 and 410 rad/s.

Response of rotating disk on the standing harmonic excitation is shown in Fig. 10, where
the amplitude of velocity q̇0 = (dq/dt)max = q0 ω calculated from equation (16) for genera-
lized force Q = K f(r)F0/(2mr) = 50 is plotted versus frequency ω. Damping coefficient
for the cosine mode is constant βc = 2 and therefore for sine mode holds :

βs(q̇0) = 2 + α
2
π

⎡⎣π
2
− arccos

(
vr
q̇0

)
+
vr
q̇0

√
1 −
(
vr
q̇0

)2 ⎤⎦H(|q̇0| − vr) +

+ α
q̇0
vr

[1 −H(|q̇0| − vr)] .

(19)

Parameter α representing a level of friction damping is variable. In Fig. 10 there are drawn
three alternatives for α = 10, 20, 40. Friction dampers change the sine modes and decrease
the split resonances, but on the cosine modes they have no influence.

Fig.10

Fig.11

8. Non-proportional damping

Equations (11) or (14), were compiled at the as-
sumption, that the additional damping Δb influences
the modes of vibration in the similar way as bred, i.e.
as uniformly distributed damping within all elements
of investigated disk. This assumption causes that the
height of resonant peaks continuously decreases for
increasing coefficient α of friction force as it can be
seen in Fig. 9 and 10. However this feature is in con-
tradiction with the real behavior of friction dampers
fixed only on limited number of blades. Indeed the
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very high friction does not allow any relative motion, and consequently the stiffness of cor-
responding part of disk increases, but the additional damping approaches to zero. Therefore
there exists some optimum damping, where the friction dampers are the most effective.

For modeling of such properties, the up to now applied vibrating system outlined in
Fig. 11a should be replaced by system in Fig. 11b, where friction damper influences only γ
part of vibrating system – elastic disk.

Equations of motion of disk in a frequency range of first split eigenfrequency instead
of (11) are as follows :

mred q̈s + bred q̇s +
cred

1 − γ
(qs − qf) = Kf(r)F0 sinϕ sinωt sinλ ,

(qs − qf)
cred

1 − γ
=
cred
γ qf

+ α be(q̇f0) q̇f ,

(mred + 2 Δm) q̈c + bred q̇c + (cred + 2 Δc) qc = Kf(r)F0 cosϕ sinωt cosλ ,

(20)

where q̇f0 is the amplitude of velocity q̇f in the upper-point of dry friction element (see
Fig. 11). For simplicity let us suppose that the additional damping is linear be(q̇f0) = be.
Introducing following abbreviations :

β0 =
bred
mred

, Ω2 =
cred
mred

, K̃ =
Kf(r)F0

mred
sinϕ sinλ , bet =

be
cred

and replacing sinωt by eiωt, the first two equations (20) are

q̈s + β0 q̇s +
Ω2

1 − γ
(qs − qf) = K̃ eiωt ,

qs =
qf
γ

+ α bet q̇f
1 − γ

cred
.

(21)

Particular solution is qs = A eiωt, qf = B eiωt where complex amplitudes A, B satisfy equation⎡⎢⎣
Ω2

1 − γ
− ω2 + iω β0 − Ω2

1 − γ

1 − 1
γ
− iω α bet

1 − γ

cred

⎤⎥⎦[A
B

]
=
[
K̃
0

]
. (22)

Determinant of the system matrix reads :

D =
ω2 − Ω2

γ
+ ω2 αβ0 bet

1 − γ

cred
− iω

[
β0

γ
+ α bet

(
Ω2

1 − γ
− ω2

)
1 − γ

cred

]
(23)

and hence amplitudes

A =
(
− 1
γ
− iω α bet

1 − γ

cred

)
K̃

D
,

B = −K̃
D

,

q̇f0 = ω |B| = ω
K̃

|D| .

(24)
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Squaring the last equation (24), we obtain after a rearrangement[
ω2 − Ω2

γ
+ ω2 αβ0 bet

1 − γ

cred

]2
+

+ ω2

[
β0

γ
+ αβ0 bet

(
Ω2

1 − γ
− ω2

)
1 − γ

cred

]2
− ω2 K̃2

q̇2f0
= 0 .

(25)

Eq. (25) provides for given system parameters Ω, γ, α, β0, K̃ the dependence between
frequency ω and velocity amplitude q̇f0. For better convenience, the above relationship in
a polynomial form should be written :

aω6 + b ω4 + c ω2 + d = 0 , (26)

where

a =
(
α bet

1 − γ

cred

)2
,

b =
(

1
γ

+ β0 α bet

)2
− 2α bet

1 − γ

cred

(
β0

γ
+

Ω2

1 − γ
α bet

1 − γ

cred

)
,

c =
(
β0

γ
+

Ω2

1 − γ
α bet

1 − γ

cred

)2
− 2 Ω2

γ

(
1
γ

+ β0 α bet
1 − γ

cred

)
− K̃2

q̇2f0
,

d =
Ω4

γ2
.

(26a)

Difference between response curves of systems drawn in Fig. 11a and 11b can be shown
for linear additional damping Δb ≈ α be q̇f where be is constant (see Fig. 12). Other system
parameters let be :

mred = 1 kg , cred = 104 kg s−2 , bred = 10 kg s−1 ,

K̃ = Kf(r)F0 sinλ = 104 N , Δb = α be = α 100 kg s−1 .

Let the damping parameter α varies in a large range from α = 0 to α = 500. Parameter
γ = 0.2 of partial damping corresponds to the system in Fig. 11b, value γ = 1 corresponds
to the system in Fig. 11a.

Fig.12
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Fig.13

From the responses of motion qs of mass mred on the harmonic excitation K̃ eiωt for
increasing damping parameter in Fig. 12, it is evident that the greater is damping at γ = 1,
the lower is resonance amplitude.

Another situation occur when the damping is distributed non-proportional to the elastic
property and acts only on a part of elastic spring. The set of response curves for γ = 0.2
and α = 0, 2, 4, 10, 20, 50, 100 and 500 is drawn in Fig. 13.

It is evident that in the amplitudes for values α ∈ (0, 5) decrease with increasing damping,
but an optimal system damping exists (approximately for α = 6 thick line), where the
resonance peak is lowest. Further increase of damping (α > 6) causes again the rise of
resonance amplitudes, related also with increase of resonance frequency.

9. Conclusion

Up to now, the research developing the theoretical support of experimental investigation
of rotating model of bladed disk which has been carried out in Institute of Thermomechanics
ASCR with the aim to investigate the influence of elastic, mass and damping imperfections
on the dynamic behavior of turbine disks was based on linear model. The used dry friction
damping elements in the added heads have strong nonlinear characteristics, which consider-
able influence the vibrations properties of the whole bladed disk.

Analysis of dynamic response of both standing and rotating imperfect disk excited by an
external in space fixed harmonic transversal force shows great sensitivity of resonance peak?s
height on the level of pressure in the friction contact area expressed in presented analysis
by a parameter α. This influence is find out at the resonance peaks corresponding to the
sine mode with the nodal diameter passing through imperfections originating from added
damper heads, while the other split resonance peaks corresponding to the cosine mode with
the perpendicular nodal diameter didn’t prove changes at all.

Non-proportional distribution of damping induces an existence of an optimal damping,
at which the resonance amplitude is minimum. The further increase of damping heightens
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amplitude of vibration. The entire system is getting stiffer and corresponding resonance
peak shifts to the higher frequency.

Analysis using equivalent linearization method of solution was in this article limited on
the lowest modes with one nodal diameter without any nodal circle. However, the developed
method of solution can be applied on every higher, more complicated modes of vibrations.
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