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NUMERICAL SOLUTION OF MODIFIED FOKKER-PLANCK
EQUATION WITH POISSONIAN INPUT

Jǐŕı Náprstek*, Radomil Král*

The paper makes a sketch of an SDOF system response analysis subjected to a ran-
dom excitation having a form of the additive Poisson driven independent random
impulses. A special generalised Fokker-Planck equation having a form of an integro-
differential equation is presented together with boundary and initial conditions. Later
the Galerkin-Petrov process as a method of a numerical solution of the respective
evolutionary integro-differential equation for the probability density function (PDF)
is presented in general. Various analytic and semi-analytic solution methods have
been developed for various systems to obtain results requested. However numerical
approaches offer a powerful alternative. In particular the Finite Element Method
(FEM) seems to be very effective. Shape and weighting functions for purposes of
a numerical solution procedure are carried out and corresponding ordinary differen-
tial system for PDF values in nodes is deduced. As a demonstration particular SDOF
systems are investigated. Resulting PDFs are analysed and mutually compared.

Keywords : Fokker-Planck equation, Poissonian excitation, numerical solution, tran-
sition effects

1. Introduction

External loading affecting mechanical systems includes very often a significant random
component. Papers are mostly oriented to random excitation of Gaussian white noises only.
However, in practice a number of different excitation types emerge, which cannot be modeled
in such a way even if various auxiliary filters are employed. The Poissonian chain of impulses
is one of the most commonly known processes of this type.

Systems investigated are linear and non-linear. Despite the boundary is not very clear, it
can be stated, that conventional methods being based on correlation and spectral approaches
can be used for linear problems with additive Gaussian excitation only. Although also more
complicated cases cannot be ruled out of their application, the utmost caution is necessary to
keep a convergence to a meaningful result giving an answer corresponding with the original
assignment. The Poissonian chain being a part of an excitation process either additive or
multiplicative always implies a heavy complication. Spectral methods are excluded at all and
moreover correlation processes in a classical meaning of the term are related to enormous
difficulties. Their applicability is rather limited to linear systems only. Several attempts
have been made to use a method of decomposition with respect to stochastic moments on
the basis of initial differential system. Some instances can be found in the monograph [1].
Some more papers are worthy to be referenced, e.g. [2–3].
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Many uncertainties can be avoided using Markovian processes, unless the original diffe-
rential system is investigated by means of the direct numerical integration. Their definition
and subsequent application is a bit complicated, as Poissonian excitation part is discon-
tinuous. For exclusively Gaussian excitation a special partial differential equation (PDE)
for the unknown probability density function (PDF) can be inferred. This PDE is usually
called Fokker-Planck (FP) equation. Analogously for combined excitation (Gauss-Poisson)
a similar PDE being called generalized Fokker-Planck (GFP) can be derived as well. Also
other names are in use.

The GFP equation has an integro-differential character and moreover similarly like the
FP has an evolutionary character. Consequently, the GFP is able to describe any transition
process running starting initial conditions as far as the steady state if it exists. If the relevant
solution succeeds to be found, it can be taken as a natural extension of a deterministic result.
It gives the full information about a response random character and enables to deduce also
additional special attributes of the response, such as frequency structure, local stability, etc.

2. Generalized Fokker-Planck equation

A response of the mechanical system results from an external excitation. Basically they
are of deterministic and random character. Authors recently have been dealing with FP
equation under exclusively Gaussian excitation, see e.g. [4]. Let us extend the initial diffe-
rential system by an influence of the Poissonian random chains. Thus the excitation random
part consists now of Gaussian and Poissonian parts. Influence of both random excitation
parts will be introduced as independent. Everyone is included in a form of linear combina-
tions of individual state variables or their functions. The initial differential system can be
expressed with a sufficient generality as follows:

dxj(t)
dt

= fj(x, t) + gjr(x, t)wr(t) + cj · Y (t) , x = [x1, . . . , xn] (1)

Y (t) – Poissonoian chain following the definition : Y (t) =
N(t)∑
i=1

Zi · δ(t− ti),

Zi – sequence of random impulses; impulses are considered ‘rectangular’ with a constant
width and random amplitude; their position on the time coordinate corresponds
with Poissonian distribution with the characteristic value λ.

pz(ζ) – probability density of impulse amplitudes Zi.

ci – constant parameters specifying an influence of the chain Y (t) in individual equations (1);
the chain Y (t) applies in the system (1) as an additive noise only without any
possibility of a deterministic modulation.

wr(t) – Gaussian continuous white noises with a constant cross-density in a meaning of
stochastic moments : Krs = E{wr · ws}; r, s = 1,m.

fj(x,t), gjr(x,t) – continuous deterministic functions of state variables and time j = 1, n;
noises can act as additive as well as multiplicative with possible deterministic
modulation.

In principal even more general formulation of the system (1) are possible. The com-
ponents of the random excitation can be considered inside of one non-linear functional
prescription on a right side of the respective equation. Nevertheless such cases are very
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seldom to see. Even mathematical literature devote oneself to those only rarely. Indeed,
even non-linear input of random processes can be mostly handled extending the original
system in such a way that finally the type of system (1) with a linear input of both types
of random processes is regained. The general formulation would claim a more complicated
mathematical background. Anyway, the contribution for tasks of theoretical mechanics and
physics would be very small in comparison with the linear formulation. However special
cases exist being treated using dedicated procedures.

The GFP equation for the unknown PDF of the response in variables x, t can be assigned
to the system (1). The FP equation (without Poissonian chains) together with detailed
derivation and analysis of various attributes can be found in a number of monographs, see
for instance [2], [5–6] and many others. The GFP completed by an influence of Poissonian
chains is devoted in [6] for constant as well as randomly variable impulse amplitudes inclu-
ding special cases. On the theory of general processes affecting on the input of stochastic
differential systems dwells the monograph [7]. All subsequent papers dealing with Poissonian
processes are referencing this one. The respective GFP equation corresponding with the
system (1) can be written with respect to [8–9] in the form :

∂p(x, t)
∂t

= − ∂

∂xj
(κj(x, t) · p(x, t)) +

1
2

∂2

∂xj ∂xk
(κjk(x, t) · p(x, t)) −

− λp(x, t) + λ

∞∫
−∞

p(x − c · ζ, t) pz(ζ) dζ ,
(2)

drift coefficients : κj(x, t) = fj(x, t) +
1
2
Krs · gls(x, t)

∂gjr(x, t)
∂xl

,

difusion coefficients : κjk(x, t) = Krs · gjr(x, t) gks(x, t) .
(3)

There is a question what solution method of the GFP in case of a specific mechanical system
should be selected. Unlike the Gaussian excitation the literature concerning the Poissonian
excitation is not by far so rich. Also special cases which allow to be solved analytically either
in closed or approximative form are very rare. Apart from cited monographs [1], [6] and
primarily [7] a few papers exist devoted to various semi-analytic approximative procedures.
Their structure usually corresponds with a character of a result which is pursued. Let us
quote papers [9–16], or possibly one chapter in the monograph [1]. However these studies
are rather dealing with basic analytic problems of Poissonian processes implementation into
systems of the type (1). Moreover their conclusions are not in a full agreement.

Among semi-analytic techniques striving for a solution of a non-steady problem of Eq. (2)
some procedures being based on eigen-functions and eigen-values of the FP operator should
be mentioned, see e.g. [10]. Several asymptotic method have been applied especially in the
domain of first excursion problem, see monograph [18].

Anyway a very powerful tool for the FP and GFP equations reveal to be numerical
methods. On the basis of their own research and of other references authors showed in [4]
the compass of the FEM application solving the FP equation. Despite the purely numerical
solutions inevitably suffer from many shortcomings, several important PDF features non-
identified by other methods succeeded to be found.

The comprehensive overview regarding the application of numerical methods for the FP
equation analysis including also the GFP equation has been published in 1997, see [19].
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Before and after this date a number of papers have appeared dealing with FEM applications
on the FP equations. The first attempts at the FEM applications on the FP equation analysis
get to seventieth. Let us mention for instance [20–24], etc. Despite their contribution is
indisputable, the number of authors getting on is still rather limited.

The GFP operator is not self-adjoint. In order to overcome this and other obstacles
the variational methods being based on orthogonalization principles should be employed.
Thus as a basis of further analysis the Galerkin-Petrov method has been selected. Various
aspects of special variants of the FEM related with the Galerkin method adaptation and
implementation for the FP equation have been studied by many authors. Problems of
steady-state solutions are widely studied for instance in [25–26], multiscale implementation
among others [27], etc.

The efficiency of the FEM in the FP equation analysis seems to be large. It applies
particularly to some detailed features of the PDF in transition phases where the FEM is
hardly replaceable, see e.g. [28]. To formulate a solution when some state variables can gain
values only within a given limited interval and being subdued to more complicated boundary
conditions doesn’t represent difficulties. The tool of FE enables to abandon an assumption
of Gaussian inputs to system (1) without serious troubles, which is very complicated when
using other approaches. Provided that the FP equation succeeds to compose even for other
input noises, e.g. Poissonian chains, the method is working quite reliably, see for instance [11]
with the link to additional papers, e.g. [12–13], [17].

The literature appraisal proved, that unlike the FP the direct FEM solution of the GFP
equation probably nobody attempted until now. A certain complication when including
the Poissonian excitation represents the convolution in the second part of the GFP equa-
tion (2). Sometimes authors eliminate this one using Fourier transform in coordinates where
Poissonian excitation is employed, see e.g. [8]. This step results in the system of ordinary
differential equations, which is subsequently solved by means of the network method. The
solution is obtained in a form of the Fourier transform, which reveals to be a significant
disadvantage of this procedure. Provided the result is not satisfactorily described by the
characteristic function of the PDF, then the inverse Fourier transform should be done indis-
pensably.

Let us take that the missing Gaussian part of excitation leads to significant simplifica-
tion of Eq. (2), as the diffusion terms (κjk = 0) vanish, see e.g. [16]. In case that amplitudes
of Poissonian impulses get to be constant (time sequence only remains random), the den-
sity pz(ζ) reduces to the Dirac function with non-zero value in point ζ0. The respective
convolution degenerates to an ordinary member with a shifted argument λ · p(x − c · ζ0).

Let us remember some shortcomings of the FEM in this application. To introduce a ge-
nuine deterministic initial condition for PDF in a form of the Dirac function is hardly
possible. However it doesn’t matter so far. Some worse is a problem with rising number of
independent variables with increasing degrees of freedom of the system (1). Anyway also
analytic methods suffer from this fact. Here proves this pitfall by a necessity to evaluate
the integrals over finite elements in a space with high number of dimensions (n degrees of
freedom represents 2n space dimensions). An extent of the ordinary differential system
which emerges discretizing the expression on the right side of Eq. (2) growth exponentially.
A bit problematic can become the solution of the steady-state problem (zero left side of
Eq. (2)) notably at the infinite multidimensional domain.
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Fig.1: Domain splitting into finite elements with respect to displacement x1 and
velocity x2; outline of the PDF approximation within one finite element

For all it seems that strengths probably prevail weaknesses in many important cases and
the FEM could be able to provide an important effective tool of the FP equation analysis.
In following sections several demonstrating examples of SDOF systems with an additive
Poissonian excitation will be presented. However, before that several special properties of
finite elements and methods of numerical integration used should be noticed.

The GFP equation is linear and in individual cases they will be discussed (SDOF systems)
only in two phase coordinates x1, x2 (displacement, velocity) and with an additive excita-
tion. Therefore the problem of a significant multi-dimensionality of elements falls away and
conventional methods of integration can be used. Taking into account that the GFP is of
the second order in space coordinates, elements with linear approximation between nodes
are sufficient. In order to avoid any secondary inhomogeneity the domain has been split up
into rectangular elements of identical size without any adaptations of more ‘dramatic’ PDF
changes.

Following nomenclature has been introduced in accordance with Fig. 1 :

xe
1, x

e
2 – local coordinates within one finite element with respect to its center,

x1, x2 – global coordinates,

x1k, x2l – global coordinates of the element center (k, l),

pe
i (x

e
1, x

e
2) – shape functions; i = 1, 4,

P e
i – PDF values in element nodes; subscript has a local meaning; i = 1, 4,

h1, h2 – finite element dimensions.

where it holds:
x1 = xg

1k + xe
1 , x2 = xg

2l + xe
2 . (4)

Functions gjr, see Eqs (1), (3) became constants as follows: g11 = g1 = 0, g21 = g2 = 1.
Let us accept an assumption that the Poissonian excitation will be applied in coordinate x2

only. Thus a model of an SDOF system excited by random impulses is prepared.

The operator of Eq. (2) is of the second order. In order to warrant a convergence in
the mean when using a procedure of Galerkin type the linear approximation is satisfactory.
Respecting conventions as mentioned one can introduce within a domain of the rectangular
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finite element usual approximation functions in a following form, see Fig. 1 :

pe(xe
1, x

e
2) =

4∑
i=1

P e
i · pe

i (x
e
1, x

e
2) , pe

i (x
e
1, x

e
2) = pe

i ,

pe
1 =

(h1 + 2 xe
1) (h2 + 2 xe

2)
4 h1 h2

, pe
2 =

(h1 − 2 xe
1) (h2 + 2 xe

2)
4 h1 h2

,

pe
3 =

(h1 + 2 xe
1) (h2 − 2 xe

2)
4 h1 h2

, pe
4 =

(h1 − 2 xe
1) (h2 − 2 xe

2)
4 h1 h2

.

(5)

Further adaptations in the meaning of the Galerkin-Petrov method should be applied pri-
marily to the differential part (left side and then the first, second and third member on the
right side of Eq. (2), see e.g. [4]. To introduce the approximation (5) into Eq. (2) means in
compliance with known algorithms to replace the sought-after function p(x1, x2, t) in the
whole definition area by a complicated broken function. It employs in a domain of a par-
ticular element by force the product of the approximation (5) and an expression composed
of Heaviside functions (‘unit window’). This function attains one inside of this element
and zero elsewhere. Consequently, after substitution of approximation (5) into Eq. (2) the
next step consists in an individual multiplication by every of four shape functions including
the relevant ‘unit window’ and in an integration over the whole domain. The unit window
brings about that the integration provides non-zero results only within limits of the respec-
tive element. Individual terms of the Eq. (2) give matrices (4×4) in local coordinates. Thus
matrices Me, Se (4×4) are obtained for one finite element (k, l). Individual matrix elements
can be evaluated using formulae:

M e
ij =

∫
Ω

pe
i (x

e
1, x

e
2) p

e
j(x

e
1, x

e
2) dxe

1 dxe
2 , Ω – integration domain of one element , (6)

Se
ij =

∫
Ω

[
pe

i (x
e
1, x

e
2) p

e
j(x

e
1, x

e
2)
(
∂f1(x1, x2, t)

∂x1
+
∂f2(x1, x2, t)

∂x2

)
+

+ pe
i (x

e
1, x

e
2)
(
f1(x1, x2, t)

∂pe
j(x

e
1, x

e
2)

∂xe
1

+ f2(x1, x2, t)
∂pe

j(x
e
1, x

e
2)

∂xe
2

)
+

+ Kaa
∂pe

i (x
e
1, x

e
2)

∂xe
2

∂pe
j(x

e
1, x

e
2)

∂xe
2

]
dxe

1 dxe
2 .

(7)

Fig.2: Argument shift
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Fig.3: Outline of local matrices emplacement into global ones

To evaluate the integration in (7) it is necessary to respect that f1, f2 are functions of
global coordinates corresponding to (4). These functions are approximated in the framework
of one element either by function values in point (xg

1k, x
g
2l), or more precisely by a linear

functions in a proximity of these function values. The matrix Se includes an influence of
the first two terms on the right side in Eq. (2).

The next step consisting in deposition to the global matrices is apparent due to the
network in use. The transformation to global coordinates in this case is very easy. For every
finite element local matrices Me, Se accordingly to Eqs (6), (7) are modified with respect
to position (xg

1k, x
g
2l) of the particular element and then they are added onto corresponding

places of global matrices M, S, see Figs 2, 3. The scheme in Fig. 3 corresponds to nodes
numbering following x2, or l and in upper level cycle following x1, or k respectively. Sub-
matrices Me

11, M
e
12, etc. are of the type 2×2 and they represent the mean upper-left or upper

right quarter of the original matrix Me. If the general numbering is used, then depositing
into global matrices should be done individually taking separately each of 16 elements of
matrices Me, Se.

Thus all finite elements should be processed. Finally we obtain the system of ordinary
differential equations for unknowns P(t) being functions of time. This procedure has been
used for exclusively Gaussian excitation in the paper [4]. In general it is widely known and
for operators without argument shifting is worked out very precisely.

Let us take the convolution part in Eq. (2). Let us suppose that pz(ζ) is non-zero only
within the interval ζ ∈ (ζd − h2/(2c), ζh + h2/(2c)), whereas the interval limits ζd, ζh are
integer multiples of h2/c. The given PDF pz(ζ) should be distributed along the axis x2 into
sections coinciding with the division into finite elements along the axis x2. It means that the
global coordinate ζ is described within one finite element by the transforming expression :

ζ = ζg
r + ζe , ζe ∈

(
−h2

2 c
,
h2

2 c

)
(8)

where c · ζg
r denotes the coordinate of the center and c · ζe the local coordinate inside the

element. The subscript r of this element implies the shift to right from the initial position l
to the resulting value l + r.
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Let us admit for a while that pz(ζ) is non-zero only within one finite element r getting
constant value pzr. Under these conditions the integral in Eq. (2) vanishes and it is substi-
tuted by a multiplication of the integrand by value pzr · h2/c. In Eq. (2) the unknown with
a shifted argument x2 − c · ζg

r appears. Therefore the ‘unit window’ positioned in point x2l

(intended to multiply Eq. (2)) matches with the unknown approximated accordingly with
Eq. (5) only when the x2 shifts by c · ζg

r . Result of the integration over one finite element
doesn’t change as in the integrand no coefficients f1, f2 are presented, however the unknowns
superscript l increases accordingly along x2 by value r = c · ζg

l /h2. It implies that the local
matrix Ler (corresponding to the matrix Me, see Eq. (6)) should be multiplied by λ ·h2 and
deposited by r places right from the main diagonal of the global matrix S. It represents
one finite element and an impulse loading the amplitude of which is given by the uniform
distribution (except the multiplier c) within one finite element.

Provided that pz(ζ) is positive on an interval larger than one finite element, the procedure
should be repeated, but the shift from the main diagonal has to be modified accordingly.
The shifting index rises within the interval r = c · ζd/h2, c · ζh/h2. The whole algorithm is
outlined in Figs 2 and 3. So the complementing matrix L can be expressed as follows :

L =
c·ζh/h2∑

r=c·ζd/h2

Lr (9)

where Lr corresponds to the global matrix complement for the r-th part of pz(ζ) inclu-
ding the relevant emplacement, or in other words including the transformation into global
coordinates and deposition to the global matrix after multiplication by coefficients λ, h2.
Consequently, summation in Eq. (9) has rather a symbolic meaning.

The system of ordinary differential equations for PDF values in the mesh nodes can be
expressed in a symbolic way :

M
dP
dt

= (S − λM + λ · h2 L)P (10)

where P is a vector of unknown values PDF.

As the method of numerical integration of the system of ordinary differential equa-
tions (10) proved the best the procedure of predictor-corrector type based on the Adams
algorithm, see e.g. [28].

3. Linear system with additive Poissonian excitation

Let us pay attention to a single degree of freedom (SDOF) system with a random exci-
tation of Poissonian type :

ẍ+ 2ωb ẋ+ ω2
0 · x = c · Y (t) ⇒ ẋ1 = x2 ,

ẋ2 = −ω2
0 x1 − 2ωb x2 + c · Y (t) .

(11)

The process Y (t) is a stationary Poissonian chain, where it has been put c1 = 0, c2 = c.
Diffusion coefficients are vanishing, because in Eq. (7) no Gaussian excitation processes are
employed. For this reason the member with second derivatives in Eq. (2) disappears. Drift
coefficients follow immediately from formulae (3) :

κ1 = x2 , κ2 = −ω2
0 x1 − 2ωb x2 . (12)
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Introducing Eq. (12) into Eq. (2) the relevant FP equation can be obtained from its
general form after an adequate modification :

∂p(x1, x2, t)
∂t

= −∂[x2 p(x1, x2, t)]
∂x1

+
∂[(ω2

0 x1 + 2ωb x2) p(x1, x2, t)]
∂x2

−

− λ p(x1, x2, t) + λ

∞∫
−∞

p(x1, x2 − c · ζ, t) pz(ζ) dζ
(13)

Probability density pz(ζ) is assumed to be constant with an amplitude q within the
interval ζ ∈ (D1, D2), where D1 = ζd − h2/(2c), D2 = ζh + h2/(2c), as it coincides with
an explanation in the previous part. Therefore impulses are altogether positive and each of
them containes a finite energy.

The unknown p(x1, x2, t) should be approximated in compliance with (5). The further
procedure follows Galerkin-Petrov method. The result of integration for one finite element
of the domain is a system of four ordinary differential equations of the first order.

For the numerical solution of Eq. (9) following parameter values have been selected :
ω2

0 = 1.0, ωb = 0.1, Kaa = 0.0, Kab = Kbb = 0.0 . The excitation is started in the point
t = 0. We suppose that the system is in a standstill in this moment.

The initial condition for the PDF is selected in a form :

p(x1, x2, 0) = N · exp
(
−ω

2
0 (x1 − x1,0)2

σ2

)
exp
(
− (x2 − x2,0)2

σ2

)
(14)

where N = 1/2 π σ2, σ2 = 1/9. For a small value σ2 the initial condition (14) approaches to
the Dirac function requested earlier. The approximation (14) admits that the movement of
the system (11) doesn’t start with certainty in the point (x1,0, x2,0 as it would correspond
to the Dirac function, but a small scatter of the response initial state in the neighborhood of
this point is allowed. The apex of the function (14) will be emplaced for the linear system
to the origin (x1,0 = 0, x2,0 = 0).

Fig.4: Response PDF of a linear system with an additive Poissonian excitation;
(a) contour diagram; (b) axonometric view; (c) vertical sections in the
surface apex following axes x, ẋ

Assembling partial approximations mentioned above the differential system of the
type (10) can be composed. The integration domain size should be adequately large, simi-
larly like in [4], in order that the p(x1, x2, t) value on its boundary can be put zero. Thus
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the value p(x1, x2, t) = 0 on the domain boundary can be used as the boundary condition
for every t. When loading local matrices Le into the global matrix, see Eq. (10), some ele-
ments fall outside defined field of the global matrix in its peripheral parts. Influence of
these elements is neglected. In order to be entitled to accept this approach, the meshing has
to be satisfactorily fine and boundaries far away places of important PDF changes. These
parameters cannot be determined exactly. The task should be evaluated several times in-
serting small variations into the boundary position and the nodes distribution with respect
to oscillator parameters and an interval of Poissonian excitation.

As a testing example a classical linear system following Eq. (1) with parameters ω2
0 = 1.0,

ωb = 0.1 together with excitation parameter c = 1 has been selected. Intensity of the Pois-
sonian chain varies within the interval λ = 1.0, . . . , 10.0 . The amplitude complies with the
element where the positive probability of acting impulses occurs. These zones are adopted
either successively for individual ζg

r corresponding with r = 2, . . . , 9, or accumulatively like
broader intervals r = 1 ÷ 2, r = 1 ÷ 3, . . . , r = 1 ÷ 7. The integration domain of Eq. (13)
is introduced as follows : x = x1 ∈ (−20, 20), ẋ = x2 ∈ (−20, 20); the domain is divided in
every direction into 200 elements, e.g. h1 = 0.2, h2 = 0.2 .

The general overview of the PDF character concerning the steady-state after transition
effect disappears can be made observing Fig. 4, see pst(x, ẋ). Response mathematical mean
shifted from the origin (initial condition) along the x, or x1. It reached this point following
a sharp spiral. Position of the mathematical mean indicates, that the displacement will be
positive and the velocity vanishing with a high probability. The contour diagram shows
a modest skewness towards the origin. The axonometric view and vertical sections demon-
strate that the PDF in both coordinates resembles the Gaussian character despite the third
and fourth moments are getting to move away a bit.

Results of more detailed investigation of the response PDF character concerning the
above SDOF system are demonstrated in Figs 5–7. The layout of these pictures is analo-
gous. Part (a) represents the vertical section of the PDF in a steady-state along the axis
x-displacement, denoted pst(x, 0). Everyone of these sections is normalized. In part (b)
under identical conditions the vertical sections following the axis ẋ-velocity are plotted, de-
noted pst(0, ẋ). Horizontal scales in all parts (a) are identical, the same is valid concerning
parts (b).

Fig.5: Response PDF of a linear system under excitation in a domain of elements ζg
r ,

r = 2, 3, . . . , 9; density λ = 2.0; ω0 = 1.0, ωb = 0.1; (a) vertical sections along
axis x = x1-displacement; (b) vertical sections passing the surface apex along
axis ẋ = x2-velocity
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Fig.6: Response PDF of a linear system under excitation in a domain of elements ζg
r ,

r = 1÷ 2, r = 1÷ 3, . . . , r = 1÷ 7; density λ = 2.0; ω0 = 1.0, ωb = 0.1; (a) ver-
tical sections along axis x = x1-displacement; (b) vertical sections passing the
surface apex along axis ẋ = x2-velocity

Fig.7: Response PDF of the linear system under excitations with densities
λ = 2, 3, . . . , 10; area of the element ζg

r , r = 4; ω0 = 1.0, ωb = 0.1;
(a) vertical sections along axis x = x1-displacement; (b) vertical
sections passing the surface apex along axis ẋ = x2-velocity

Vertical sections regarding zones r = 2, . . . , 9 are depicted in Fig. 5. They reflect con-
ditions when impulse amplitudes vary only in a very small range of one finite element and
therefore they can be taken as constant. Therefore the intensity of an adequate Poissonian
excitation process is adopted as constant value λ = 2.0 . The part (a) makes obvious that
the response mathematical mean rises with increasing r. Maximum of the PDF drops while
response variance increases. The skewness of the pst(x, 0) is mildly positive, nevertheless
it doesn’t disturb the symmetry of the curve too much with respect to the mathematical
mean. Anyway this tendency is a follow-up to the initial condition (14). The velocity PDF is
symmetric in this series having a zero mathematical mean. Its maximum drops and variance
rises.

A similar trend can be observed in the Fig. 6. The PDF section series corresponds to
excitation given by impulses with amplitudes driven by a uniform distribution in area r = 1
and 2, later in area r = 1 ÷ 3 until area r = 1 ÷ 7. The impulse amplitude density is
in the last case positive and constant in the interval r = 1, . . . , 7 and vanishing elsewhere.
Absolute values of system response are in such a case significantly larger in comparison with
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λ M1 M2c M3c MG
3c M4c MG

4c
(1) (2) (3) (4) (5) (6) (7)

2.0 0.764 1.159 0.318 0.0 8.017 7.544
3.0 1.580 3.221 0.650 0.0 31.898 31.130
4.0 2.285 4.847 0.977 0.0 71.670 70.490
5.0 3.199 6.474 1.300 0.0 127.340 125.750
6.0 3.982 8.120 1.628 0.0 200.000 197.820
7.0 4.798 9.752 1.948 0.0 287.580 285.340
8.0 5.607 11.381 2.226 0.0 390.490 388.570

Tab.1: Stochastic moments of the displacement in
a steady-state for the increasing λ, r = 4

individual r. It is obvious from the grafical demonstration in the figure (a), that the response
mathematical mean shifts higher in comparison with Fig. 5(a). The quantitative difference
in displacement amplitudes is not visible too much as all PDF curves are normalized.

Influence of the rising density λ of the exciting Poissonian process is depicted out in Fig. 7.
The PDF evolution of the displacement for values λ = 2, . . . , 10 and constant value r = 4 is
demonstrated in part (a), concerning velocity in part (b). The rising density has an evident
influence on the mathematical mean value increase, local PDF maximum diminishing and
variance growth. Selected results of numerical evaluation are also given in Tab. 1. For rising
λ there are taken out first four moments enabling a rough comparison with an influence of
a common Gaussian process :

M1 – mathematical mean value, or the most probable displacement of the system dis-
cussed in a steady-state;

M2c – central second moment, or displacement variance;

M3c – third central moment, or displacement skewness;

MG
3c = 0.0 – displacement skewness due to Gaussian excitation;

M4c – fourth central moment, or displacement sharpness;

MG
4c = 3 ∗M2

2c – displacement sharpness due to Gaussian excitation.

It follows out of the second column of Tab. 1 and of Fig. 7(a) how a certain ‘effective’
displacement is rising with rising intensity of the excitation process. Interpretation of the
displacement variance in the third column is obvious. The fourth (skewness) and sixth
(sharpness) columns can be used to indicate the difference from results due to Gaussian
excitation. A skewness of the Gaussian process vanishes as we can see in the fifth column.
The actual skewness in the fourth column is non-negligible. Let us assess the sharpness. If
the process is Gaussian, then the sharpness should provide values following the seventh col-
umn. However values in the sixth and seventh columns differ. Despite that we can conclude
that the result doesn’t differ significantly from the Gaussian process. Hence an important
implication of the central theorem is validated and in particular that the non-Gaussian pro-
cess being filtered throughout the linear system with constant coefficients approaches to
Gaussian process.

If some rough qualitative estimates are sufficient, then the displacement can be taken
Gaussian in a certain class of input parameters. However quantitative analysis doesn’t
cope with that approximation. It refers particularly to cases where statistics of large dis-
placements should be investigated along with the theory of reliability. Anyway at least the
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above approximate test should be used even if simple estimates are concerned. However,
sophisticated tests being offered by mathematical statistics are recommended to be used.

4. Non-linear system of Duffing type with additive Poissonian excitation

The Duffing equation in a basic and in a normal form under an additive Poissonian
excitation can be written as follows :

ẍ+ 2ωb ẋ− ω2
0 · x (1 − α2 x2) = c · Y (t) ⇒

⇒ ẋ1 = x2 ,

ẋ2 = ω2
0 x1 (1 − α2 x2

1) − 2ωb x2 + c · Y (t) .

(15)

Drift and diffusion coefficients can be derived using formulae (3) :

κ1 = x2 , κ2 = ω2
0 x1 (1 − α2 x2

1) − 2ωb x2 , (16)

Eqs (15), (16) enable to write down the GFP equation :

∂p(x1, x2, t)
∂t

= −∂[x2 p(x1, x2, t)]
∂x1

− ∂[(ω2
0 x1(1 − α2 x2

1) − 2ωb x2) p(x1, x2, t)]
∂x2

−

− λ p(x1, x2, t) + λ

∞∫
−∞

p(x1, x2 − c · ζ, t) pz(ζ) dζ
(17)

Eq. (15) can give a true picture of the Mieses frame under Poissonian excitation. Stiffness
linear part is negative and so the system shows an unstable stationary point in the origin
(0,0). Positions of two stable stationary points are Si ≡ (x1 = ±1/α, x2 = 0), i = 1, 2. The
repulsivity ratio in the origin depends on a relation of linear/non-linear parts of stiffness
and on the Poissonian chain intensity.

The domain division into finite elements and other conditions are analogous to the pre-
vious case: ω2

0 = 1.0, ωb = 0.1 and non-linearity ratio α2 = 0.1 . As far as in the Duffing
SDOF system the cubic stiffness part and the damping are positive, then under Poissonian
excitation an existence of the steady-state solution of the GFP Eq. (7) can be presumed.
Moreover extensive numerical analyses affirmed, that this solution is unique and indepen-
dent from a position of the initial point (x1,0, x2,0). The results character is given predom-
inantly by internal structure of impulse amplitudes. If impulses are always unidirectional
whatever is the width of uniform distribution of impulse amplitudes, the response PDF in
the steady-state pst(x, ẋ) always concentrates around stationary point S1 or S2 according
to the effective impulse direction. We reach this conclusion even if the opposite stationary
point is selected as an initial system state.

Selected results of computation are exhibited for the response steady-state cases in
Fig. 8. Results corresponding with following excitation parameters are plotted successively
on four rows : 1st row λ = 4, r = 6 – Fig. 8 parts (1a)–(1c); 2nd row λ = 6, r = 6
– Fig. 8 parts (2a)–(2c); 3rd row λ = 10, r = 1 – Fig. 8 parts (3a)–(3c); 4th row – Fig. 8
parts (4a)–(4c); arrangement in every row : (a) contour diagram; (b) axonometric view;
(c) vertical sections through exes x, ẋ. Columns (a) and (c) imply that the velocity PDF
remains symmetric with respect to origin. Impulse amplitudes are positive. It is obvious
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Fig.8: Response PDF of the Duffing system ω2
0 = 1.0, ωb = 0.1, α2 = 0.1 in

a steady-state under Poissonian excitation; results are exhibited for four
excitation parameters λ, r in individual rows; within every row : (a) contour
diagram; (b) axonometric view; (c) vertical sections through the surface
apex following axes x, ẋ
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Fig.9: Time evolution of the response PDF of the Duffing system ω2
0 = 1.0, ωb = 0.1,

α2 = 0.1, excitation parameters λ = 10.0, r = 1; there are presented six shapes
in the moments t = 0.0, 2.3, 13.0, 30.0, 45.0, 70.0; individual shapes are arranged
in pairs (a)–(f), every pair consists of a contour diagram (upper picture) and
axonometric view (lower picture)
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that the point S2 affects as a concentrator of the displacement PDF, nevertheless a distinct
deviation in the positive direction is visible. This type of deviation is general and it should
be taken into account in applications. Under strong amplitudes r = 6 (1st and 2nd rows)
the influence of the point S1 is perceptible, as the PDF drop in S1 neighborhood (the left
part of the PDF) is visibly expressed. Nevertheless there didn’t succeed to compose such
structure of excitation and initial conditions that the result would have at least a slight bi-
modal character. Anyway we can conclude that the response PDF of the Duffing oscillator
under Poissonian excitation has basically different character from those being produced by
Gaussian white noise, see e.g. [8], [4].

The time evolution of PDF is not too interesting when starting at a positive impulse
orientation from the initial condition (14) for the point S2, or (1/α, 0). When moving with
the initial condition from S2 towards S1, the transition process is getting more dramatic. An
example is shown in Fig. 9, for the initial point S1 ≡ (−1/α, 0). A series of individual snaps
of the Duffing system response PDF evolution (λ = 10.0, r = 1 – 3rd row in Fig. 8) is drawn
for six instances with approximately logarithmic distances : t = 0.0, 2.3, 13.0, 30.0, 45.0, 70.0.
Each of these instances is characterized by one pair (a)–(f). Each pair consists of a contour
diagram (upper picture) and of an axonometric view (lower picture). Starting the simulation
process the PDF leaves the initial rotating shape of the initial condition (14). It gains
a slightly elongated form and quickly decreases the hight. In the next phase the system
breaks through the energetic barrier with important frequency and starts to ‘flow around’
the point S2. The PDF starts later to concentrate to the vicinity of the point S2, nevertheless
in a small neighborhood of this point remains a certain concave area. However the S1

point neighborhood is still important. In the last but one phase the PDF dominant part
concentrates already around S2. In the last period the PDF assumed the steady-state shape.

5. Conclusion

The study is a follow-up to earlier publications by authors of this paper. It relates to
a number of references involved in FEM oriented numerical solution of either FP equation
for Gaussian white noise or the GFP equation for additive Poissonian excitation. The
GFP equation for the response PDF of a non-linear system remains linear just like the FP
equation. It includes all difficulties similarly like the FP equation, as for instance a large
number of space variables, exponentially increasing extent of the differential system for time
evolution of PDF in nodes, etc.

Furthermore the GFP has an integro-differential character. This fact complicates an
assembling of relevant finite elements. The reason of these troubles is a non-local character
of the integro-differential operator of the convolution type. Whereas this problem has been
bypassed in earlier papers using the Fourier transform in space coordinates, the authors
decided to follow a direct way of FEM discretizaton. This approach eliminates the need of
the inverse Fourier transform to the original. On the other hand there is necessary to work
with unknowns with shifted variables where the processing of this shifting is ruled by the
intensity and probability composition of the particular Poissonian excitation.

Numerical results demonstrate that the Poissonian additive excitation applied on linear
systems leads to the PDF which can compared with the PDF of the Gaussian type, if a rough
qualitative estimate of the result is satisfactory. When the quantitative analysis should be
done it is necessary to realize the non-zero skewness of the resulting PDF and consequently
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the non-symmetric character of displacement statistics. Also sharpness differs from the
Gaussian one. These differences should be respect especially when small probabilities are
analysed for high values of space coordinates. It is the case when dealing with the reliability
problems, first excursion problems, etc.
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