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DIFFERENT REFORMULATIONS OF STOCHASTIC
OPTIMIZATION OF THE TRANSVERSE VIBRATION

Eva Žampachová, Pavel Popela*

The applicability of stochastic programming models and methods to PDE constrained
stochastic optimization problem is discussed. The problem concerning the transverse
vibration of a string is chosen. Therefore, the corresponding mathematical model
involves a PDE-type constraint and an uncertain parameter related to the exter-
nal load. A computational scheme for this type of problems is proposed, including
discretization methods for random elements (scenario based two-stage stochastic pro-
gramming) and the PDE constraint (finite difference method). Several deterministic
reformulations are presented and compared using numerical and graphical results.
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1. Introduction

Technical processes are very often governed by partial differential equations (PDEs)
(e.g. [6]). In engineering practice, we usually need to control and optimize such processes.
Consequently, we are facing PDE constrained optimization problems. Strictly speaking, we
obtain optimal control problems. Theory of optimal control problems is very well develo-
ped for constraints in the form of ordinary differential equations (see [3]). However we are
dealing with PDE constrained problems, and therefore, we have to challenge several diffi-
culties. Usually, we have to approximate PDE’s solution by discretization. Then, we can
approximate our initial PDE constrained optimization problem by mathematical programs
(e.g. [9]). Solution methods of these deterministic problems are relatively well developed.

But the real world cannot be approximated by deterministic approach every time, and
therefore, we need to include stochastic behaviour of some elements of the considered prob-
lem. Hence, we obtain a stochastic optimization problem. Because we are interested in
stochastic programming we would like to use its methods for solving such problems.

2. Stochastic optimization problem

As an illustrative example we consider the initial-boundary problem with hyperbolic
equation describing the transverse vibration of a string

∂2v

∂t2
= a2 ∂

2v

∂x2
+ h(x, t) , x ∈ 〈0, l〉 , t ∈ 〈0, T 〉 , (1)

where l is the string length, a2 = σ/μ, σ is the tension in the string [Pa], μ is the mass of the
string per unit length [kgm−1], v(x, t) is the displacement [m], h(x, t) is the load [N kg−1].
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The boundary conditions are

v(0, t) = 0 , v(l, t) = 0 (2)

and the initial conditions are

v(x, 0) = ϕ(x) ,
∂v

∂t
(x, 0) = ψ(x) . (3)

We are interested in nondeterministic problems which are very frequent in practice and
that’s why we assume stochastic load h(ξ, x, t), where ξ : Ξ → � is the random variable,
(Ξ,Σ, P ) is the probability space and h : � × � × �+ → �. We would like to push the
vibrations into the required form therefore our objective will be the following :

z = min
f1

T∫
0

l∫
0

(
v(ξ, x, t) − u(x, t)

)2 dxdt , (4)

where u(x, t) is the required displacement [m] and f1(ξ, x, t) is the control (decision) variable.

This objective together with modified initial-boundary problem results in the underlying
continuous stochastic optimization program :

z = min
f1

T∫
0

l∫
0

(
v(ξ, x, t) − u(x, t)

)2 dxdt , (5)

∂2v

∂t2
(ξ, x, t) = a2 ∂

2v

∂x2
(ξ, x, t) + f1(ξ, x, t) + h(ξ, x, t) , x ∈ 〈0, l〉 , t ∈ 〈0, T 〉 , (6)

v(ξ, 0, t) = 0 , v(ξ, l, t) = 0 , t ∈ 〈0, T 〉 , (7)

v(ξ, x, 0) = ϕ(x) ,
∂v

∂t
(ξ, x, 0) = ψ(x) , x ∈ 〈0, l〉 . (8)

This program provides only syntactically correct description because it depends on ξ, and we
cannot compare optimal solutions obtained for different realizations of the random variable.
Therefore, we use deterministic reformulations in order that random elements are correctly
interpreted and the underlying program makes sense. In this paper, we will assume several
deterministic reformulations. At first, the objective function will be optimized on average –
expected objective (EO) reformulation, where the expected value � is taken with respect to
a known probability measure P on (Ξ,Σ). It is clear that expected value does not guarantee
that there are no outliers. Therefore, we will introduce min-max (MM) reformulation that
guarantees avoiding the large fluctuations of the objective function and is therefore more
risk averse. In fact, it minimizes the maximum of fluctuations so it is the most pesimistic
approach. In applications, there can be found various requirements for optimization, e.g.
to increase reliability of some equipment (especially in engineering). Therefore, our last
reformulation will optimize probability – probabilistic objective (PO) reformulation (see
e.g. [7]). The constraints given by equalities (12), (13) and (14) will be understood in the
almost sure sense in all three cases described above.

In our illustrative problem as well as in many real engineering problems, the stage-related
decision structure is more adequate than continuous time like in optimal control. As it is
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often necessary to make decision before a realization of the corresponding random variables
becomes known and after it, two-stage stochastic programming can be used (see [10], [11]
for the first corresponding models). It means that control function f1(ξ, x, t) is replaced by
two types of the decision functions f(x) and g(ξ, x, t), where f(x) is the first-stage decision
variable (here-and-now approach because it does not depend on a realization of ξ) and
g(ξ, x, t) is the second-stage decision variable (wait-and-see approach, e.g. [8]).

Hence, we will solve three continuous stochastic optimization programs with one of the
following objective functions :

zEO = min
f, g(ξ)

� (F (ξ, f, g(ξ))) = min
f, g(ξ)

�

T∫
0

l∫
0

(
v(ξ, x, t) − u(x, t)

)2 dxdt , (9)

zMM = min
f, g(ξ)

max
ξ
F (ξ, f, g(ξ)) = min

f, g(ξ)
max

ξ

T∫
0

l∫
0

(
v(ξ, x, t) − u(x, t)

)2 dxdt , (10)

zPO = min
f, g(ξ)

P (F (ξ, f, g(ξ)) > b) = min
f, g(ξ)

P
( T∫

0

l∫
0

(
v(ξ, x, t) − u(x, t)

)2 dxdt > b
)
, (11)

where b ∈ � is a certain upper bound for the optimal objective function value that we do
not want to exceed.

The constraints are given by these equalities :

∂2v

∂t2
(ξ, x, t) = a2 ∂

2v

∂x2
(ξ, x, t) + f(x) + g(ξ, x, t) + h(ξ, x, t) , x ∈ 〈0, l〉 ,

t ∈ 〈0, T 〉 , a.e. ξ ∈ Ξ ,
(12)

v(ξ, 0, t) = 0 , v(ξ, l, t) = 0 , t ∈ 〈0, T 〉 , a.e. ξ ∈ Ξ , (13)

v(ξ, x, 0) = ϕ(x) ,
∂v

∂t
(ξ, x, 0) = ψ(x) , x ∈ 〈0, l〉 , a.e. ξ ∈ Ξ . (14)

3. Approximations in the stochastic program

We are not able to solve the above continuous stochastic optimization problems without
proper approximations. At first, we need to deal with the random data therefore we use the
scenario based approach (see e.g. [1]). Then, we must approximate continuous solution of
PDE by the space and time discretization.

We consider that the random variable ξ has a discrete distribution with a finite number R
of possible realizations ξs (scenarios) with the uniformly distributed corresponding proba-
bilities ps = P (ξ = ξs) = 1

R . In this case, � (F (ξ, f, g)) =
∑R

s=1 ps F (ξs, f, g). Because of the
easier numerical solution we introduce so-called nonanticipativity constraints (see [2]). It
means that we relax the above programs by replacing the first stage decision function f(x)
by possibly different functions f(ξs, x) and we add f(ξs, x) =

∑R
k=1 pk f(ξk, x), s = 1, . . . , R.

Nonanticipativity ensures that the first-stage decision variable does not depend on the second
stage realization of the random variable.

The difference equations are derived from the partial differential equation via the finite
differences method (e.g. [4]) with the uniform grid spacing xi = i d, i = 0, . . . , N , d = l/N
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and tj = j τ , j = 0, . . . ,M , τ = T/M . For convenience we use the following notation:
v(ξs, xi, tj) = vs,i,j , f(ξs, xi) = fs,i, g(ξs, xi, tj) = gs,i,j , h(ξs, xi, tj) = hs,i,j , ϕ(xi) = ϕi

and ψ(xi) = ψi. The central-difference formulas for approximating ∂2v(ξ, x, t)/∂x2 and
∂2v(ξ, x, t)/∂t2 are

∂2v

∂x2
(ξs, xi, tj) =

vs,i+1,j − 2 vs,i,j + vs,i−1,j

d2
+ O(d2) , (15)

∂2v

∂t2
(ξs, xi, tj) =

vs,i,j+1 − 2 vs,i,j + vs,i,j−1

τ2
+ O(τ2) . (16)

We drop the terms O(τ2) and O(d2) and use the approximation Vs,i,j ≈ vs,i,j .

The difference formulas (15) and (16) are substituted into (12) and we get the difference
equation of the transverse vibration for i = 1, . . . , N − 1, j = 1, . . . ,M − 1, s = 1, . . . , R :

Vs,i,j+1 − 2Vs,i,j + Vs,i,j−1

τ2
= a2 Vs,i+1,j − 2Vs,i,j + Vs,i−1,j

d2
+ fs,i + gs,i,j + hs,i,j . (17)

The substitution r = a τ/d is introduced in (17) and we obtain the relation

Vs,i,j+1 = (2− 2 r2)Vs,i,j + r2 (Vs,i+1,j +Vs,i−1,j)−Vs,i,j−1 + τ2 (fs,i + gs,i,j + hs,i,j) . (18)

This method is explicit therefore to guarantee stability in formula (18), it is necessary that
r ≤ 1.

The values for i = 0 and i = N are given by the boundary conditions (13) :

Vs,0,j = 0 , Vs,N,j = 0 , j = 0, . . . ,M , s = 1, . . . , R . (19)

The values corresponding to j = 0 and j = 1 must be supplied in order to use (18) to
compute the values for j = 2. From the initial condition (14) we get

Vs,i,0 = ϕi , i = 0, . . . , N , s = 1, . . . , R . (20)

The values for j = 1 are constructed via the Taylor formula of order 2 :

Vs,i,1 = Vs,i,0 + V̇s,i,0 τ +
V̈s,i,0 τ

2

2
. (21)

Hence, we obtain the following equation:

Vs,i,1 = ϕi + ψiτ +
r2

2
(ϕi+1 − 2ϕi + ϕi−1) +

τ2

2
(fs,i + gs,i,0 + hs,i,0) ,

i = 1, . . . , N − 1 , s = 1, . . . , R .
(22)

Concerning the objective functions we need to modify the probabilistic objective equiva-
lent into the form suitable for computational purposes. For discrete finite probability dis-
tribution of ξ the following mixed-integer program solves (11) with constraints (12), (13)
and (14) :

min
z, f, g(ξ)

{
z
∣∣∣F (ξs, f, g(ξs)) ≤ b+M(1−δs),

R∑
s=1

ps(1−δs) = z, δs ∈ {0,1}, s = 1, . . . , R
}
, (23)

where F (ξs, f, g(ξs)) − b is bounded from above by M for ∀ξs ∈ Ξ and f , g(ξs) which
satisfy (12), (13) and (14).
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From numerical results in the section 5, namely from the figure 8, one can see that the
optimal value of the first-stage function strongly violates the smoothness which we would
like to achieve. Therefore, we will slightly modify corresponding objective function by the
additional demand on course of the first-stage function as follows.

zPOmod = min
f(ξ), g(ξ)

P
( T∫

0

l∫
0

(
v(ξ, x, t) − u(x, t)

)2 dxdt+

l∫
0

(
f(ξ, x) − w(x)

)2 dx) > b
)
, (24)

where w is the required form of the first stage variable. In our case we will demand course of w
similar to the optimal values of the first-stage functions from EO and MM reformulations.

The objective functions are discretized via the composite Simpson’s rule (a0 = 1 = aN ,
a2k+1 = 4, a2k+2 = 2, b0 = 1 = bM , b2k+1 = 4, b2k+2 = 2 and N,M are even numbers) :

zEO = min
R∑

s=1

M∑
j=0

N∑
i=0

ps
d τ

9
ai bj (Vs,i,j − ui,j)2 , (25)

zMM = min
{
z
∣∣∣ z ≥ M∑

j=0

N∑
i=0

d τ

9
ai bj (Vs,i,j − ui,j)2, s = 1, . . . , R

}
, (26)

zPO = min
{ R∑

s=1

ps (1 − δs)
∣∣∣ δs ∈ {0,1}, s = 1, . . . , R,

M∑
j=0

N∑
i=0

d τ

9
ai bj (Vs,i,j − ui,j)2 ≤ b+M(1 − δs)

}
,

(27)

zPOmod = min
{ R∑

s=1

ps (1 − δs)
∣∣∣ δs ∈ {0, 1},

M∑
j=0

N∑
i=0

d τ

9
ai bj (Vs,i,j − ui,j)2 +

+
N∑

i=0

d

3
ai (fs,i − wi)2 ≤ b+M (1 − δs), s = 1, . . . , R

}
.

(28)

Finally, we set discretized nonanticipativity constraints

fs,i =
R∑

k=1

pk fk,i , i = 0, . . . , N , s = 1, . . . , R (29)

and add the following constraints for the second-stage variable :

gs,i,0 = 0 , i = 0, . . . , N, s = 1, . . . , R . (30)

4. Approximating mathematical programs

After realization of the above approximations, we obtain large deterministic quadratic
programs in case of EO and MM reformulation and mixed integer program in case of PO re-
formulation, which we summarize in matrix formulation. All constraints must be satisfied
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for s = 1, . . . , R.

zEO = min
R∑

s=1

M∑
j=0

N∑
i=0

ps
d τ

9
ai bj (Vs,i,j − ui,j)2 , (31)

zMM = min z , (32)

z ≥
M∑

j=0

N∑
i=0

d τ

9
ai bj (Vs,i,j − ui,j)2 , (33)

zPO = min
R∑

s=1

ps (1 − δs) , δs ∈ {0, 1} , (34)

M∑
j=0

N∑
i=0

d τ

9
ai bj (Vs,i,j − ui,j)2 ≤ b+M (1 − δs) , (35)

zPOmod = min
R∑

s=1

ps (1 − δs) , δs ∈ {0, 1} , (36)

M∑
j=0

N∑
i=0

d τ

9
ai bj (Vs,i,j − ui,j)2 +

N∑
i=0

d

3
ai (fs,i − wi)2 ≤ b+M (1 − δs) , (37)

Vs,0,j = 0 , Vs,N,j = 0 , j = 0, . . . ,M , (38)

Vs,i,0 = ϕi , i = 0, . . . , N , (39)

�s,1 = Φ + τ Ψ +
1
2
� 1 Φ +

τ2

2
�s,0 , (40)

where Φ = (ϕ1 . . . ϕN−1)T, Ψ = (ψ1 . . . ψN−1)T and

� 1 =

⎛⎜⎜⎜⎜⎝
−2 r2 r2 0 · · · 0
r2 −2 r2 r2 · · · 0

...
0 · · · r2 −2 r2 r2

0 · · · 0 r2 −2 r2

⎞⎟⎟⎟⎟⎠ ,

�s,j+1 = � �s,j − �s,j−1 + τ2
�s,j , j = 1, . . . ,M − 1 , (41)

where

� =

⎛⎜⎜⎜⎜⎝
2 − 2 r2 r2 0 · · · 0
r2 2 − 2 r2 r2 · · · 0

...
0 · · · r2 2 − 2 r2 r2

0 · · · 0 r2 2 − 2 r2

⎞⎟⎟⎟⎟⎠ ,

�s,j =

⎛⎜⎝ Vs,1,j

...
Vs,N−1,j

⎞⎟⎠ , �s,j =

⎛⎜⎝ fs,1 + gs,1,j + hs,1,j

...
fs,N−1 + gs,N−1,j + hs,N−1,j

⎞⎟⎠ ,

fs,i =
R∑

k=1

pk fk,i , (42)

gs,i,0 = 0 , i = 0, . . . , N . (43)
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5. Solution

The numerical solution was found using optimization software GAMS and solvers CPLEX
which can solve quadratic programming problems and BONMIN which can solve mixed-
integer nonlinear programs. Vizualization of the solution for the constants l = 1 m, a = 2 s−1,

Fig.1: The load h(ξ,x,t)

Fig.2: The first stage variable fEO(x)

Fig.3: The second stage variable gEO(ξ, x, t)
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Fig.4: The displacement vEO(ξ, x, t)

T = 0.5 s, b = 200, N = 8, M = 8, R = 10, initial conditions ϕ(x) = sinπx, ψ(x) = 0,
u(x, t) = 0 and load h(ξ, x, t) = −2 b ξ sin 2πx(t+ τ), ξ ≈ U(−5, 10) are in the figures 1–11.
For modified objective function in case of PO reformulation, we consider the following form
of the required first stage variable: w(x) = −c sinπx, where c = 430 which is between the
values given by EO and MM reformulations.

If we want to know how useful is the application of the stochastic programming ap-
proach we have to solve three problems. At first, we solve the stochastic programming
problem mentioned above with the objective function (9) and we obtain the following value
zEO = 0.0119 . Then, the deterministic optimization approach is used when the random
variable ξ is replaced by its mean E ξ and we solve the following optimization problem :

zEV = minF
(
E ξ, f, g(E ξ)

)
. (44)

zEV = 0.0104 and the optimal value of the first stage decision variable is fEV
min, where EV

means expected value. Finally the problem

zEEV = minE(F (ξ, fEV
min, g(ξ))) (45)

is solved and the solution is zEEV = 0.0119 .

Fig.5: The first stage variable fMM(x)
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Fig.6: The second stage variable gMM(ξ, x, t)

Fig.7: The displacement vMM(ξ, x, t)

Fig.8: The first stage variable fPO(x)



348 Žampachová E. et al.: Different Reformulations of Stochastic Optimization . . .

Fig.9: The first stage variable fPOmod(x)

Fig.10: The second stage variable gPO(ξ, x, t)

Fig.11: The displacement vPO(ξ, x, t)
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Then, the value of stochastic solution VSS = zEEV − zEO is the criterion for comparing
stochastic and deterministic approach. The larger is this value the better is using stochastic
approach. In our case, VSS = 0 so the deterministic and stochastic approaches give the
same results.

For the second reformulation we obtain optimal value zMM = 0.0139 which is greater
than optimal value for EO reformulation because this approach is more pessimistic and
gives us the value of the objective function for the worst scenario.

Concerning the probabilistic reformulation we get zPO = 0 = zPOmod. These valu-
es are the smallest from considered equivalents therefore it may seem that probabilistic
reformulation is the best choice.

But the choice of the reformulation depends on the requirements which arise from practice
and reformulation with larger objective value may give better results. In our case, the
optimal solutions are very similar for all reformulations but for real engineering problems
the differences may be larger. Furthermore, solution quality can be determined via Monte
Carlo method as can be found in [12].

6. Conclusions

We proposed the numerical approach for solving PDE constrained stochastic optimization
problem based on two-stage scenario based stochastic programming and simple discretization
method. Several deterministic reformulations were presented with numerical and graphical
results.

In the future, we would like to apply the presented approach to the engineering problems
associated with reliability especially in the civil engineering (e.g. [5]).
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