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DISASTER PROPAGATION MODELS

Gejza Dohnal*

To build a general model for the propagation of destructive events during disasters,
we consider a networked system. The model involves network nodes as single objects
and delayed interactions along directed links.

In this work, a disaster is understood as a sequence of dynamic destructive events
which cause nonreversible changes, spreading in cascade-like manner. We define a glo-
bal state of the system and suppose that the Markovian property holds. Hence, we
can describe any object‘s first affect using the phase type distribution. This model can
be used to improve disaster awareness and anticipated disaster response management.
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1. Introduction

This work deals with some type of events, which we can denote as ‘disasters’. In opposite
to an usual failure, disaster has the ability of dynamic spreading, however as a rule it causes
nonreversible changes (it is nonrepairable) and not least, consequences are often deep-going.
There are no doubts that an impact of disasters on human society is very important.

In what follows, we present a model for the dynamic spreading of disastrous events in
networked systems. We consider a disaster as a time sequence of single events, which spreads
from a focus to other nodes of the network in a cascade-like manner. The complex network
can represent some production system, factory, organization, infrastructure or communica-
tion system, geographic area and so on. As the nodes we assume system components as
buildings, storehouses, tubes, conduits, servers, communication lines, but also natural ob-
jects as forest, underground water, river or air. In contrast to epidemic infection networks,
interaction and infrastructure networks are often directed networks. Links between nodes
in the network describe possible interactions or the functional and structural dependencies
between components, causal dependence from the point of view of possible disastrous events.

While the occurrence of disasters comes mostly unexpected, we postulate that its propa-
gation can be described using mathematical model (see e.g. [1], [2], [3], [5], [6]). In this paper,
we consider a disaster occurrence within the framework of some complex system of objects,
which border upon one another or are mutually connected by any way. The system of ob-
jects creates an oriented network. The objects are nodes and the oriented edges represent
the directions of possible events propagation (transitions). The disaster starts by a strong
initial event on some one of these objects and it spreads with some probability to an other
contiguous object during a random time. This propagation continues in a cascade-like man-
ner to other objects. Often, it reminds of a domino-effect. From another point of view, the
disaster propagation can be consider as a random process, the states of which represents
a number of attached objects along with the level of their deterioration.
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The transition probabilities of disastrous events from one given node to another depend on
the global state of the network in time and not on the way, by which the system approached
this state – the history of system. Evidently, this assumption is not general, but acceptable
in most cases.

We suppose that the behavior of the system can be described by a Markov process
with irreducible transition intensity matrix. This assumption provides us to use the phase-
type distribution for description of the behavior of the first passage time. The phase-type
distribution has been introduced by Neuts in 1975, along with a detailed discussion of its
properties (see [7]). In studied case, we obtain an explicit formula for evaluation of the
probability that the system, which occurs in an operational state, will reach some of the
failure states at time t. Some notes on evaluation of phase-type distribution can be found
in [4].

2. The models

Consider a system of objects (appointments), which can be or may not be mutually
connected. In the following, we consider a random event, which occurs on these objects in
succesive steps, on each object only once. The state of this system at the time t can be
characterized by n-dimensional vector

ω(t) = (ω1(t), ω2(t), . . . , ωn(t)) , t ≥ 0 ,

where ωi(t) = 0 if the event did not occur on i-th object until time t, ωi(t) = 1 in the case
when the event occurred on ith object at the time t already. Recall that n is the number of
objects in the system.

In the our model, the disaster propagation process is realized by the following manner :

a) At the beginning, the system is in the state (0, . . . , 0).

b) The process starts by deterioration of an object i with probability πi, i = 1, 2, . . . , n.

c) When at a time t an object i was affected, there was a random time period τ after
which the event moved onto some of the unaffected objects.

d) The process moves to the next object with a probability which depends only on the
recent state, not on the path leading to the recent state (the time sequence of events).

The assumption d) enables us to use a Markov model for description of the disaster
propagation process. Although the assumption represents some kind of ‘memorylessness’, it
means an independence of the future on the history in the following sense: the probability
of future event depends only on the set of already affected objects in the past but not on
the time ordering of disastrous events. This assumption is acceptable in a lot of situations.

In what follows, we shall consider two models. The first model describes a situation, in
which an affected object cannot be repaired or replaced in relatively short time. For example,
when a river is contaminated by toxic material, there will take a long time to ‘repair’ it, from
the point of view of the velocity of spreading disastrous events. The second model assumes
that an affected object can be repaired or replaced by as-new one in a short random period.
Already affected and repaired object can be affect once again. In both models, we assume
that the time period τ has the exponential distribution with the intensity δ.
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Model 1

Assumptions :

(i) at the beginning (at the time 0), a disastrous event affects i-th system’s object with
probability πi, i = 1, 2, . . . , n,

(ii) an event can only affect one object at a time,

(iii) an event can only occur once on a particular object,

(iv) states of the system in time t create a Markovian process {X(t), t ≥ 0} in continuous
time. Values of this process lie within the set Ω = {0, 1}n − {(0, 0, . . . , 0)}.

The process X(t) finishes always in the state ωN = (1, 1, . . . , 1), which is at the same
time an absorption state. All else states are transient. The process can be understood as
the process of event spreading in the system.

The set Ω consists of totally N = 2n − 1 elements. Hence, a transient intensity matrix S
of the process X(t) is of size N×N . Let us denote that |ω| = ω1 +ω2 + · · ·+ωn. |ω| gives us
the number of objects, on which some disastrous event holds yet. We can call this number
a size of deterioration of the system.

Proposition 1. Let us order states of the system in ascending order by the size of deteri-

oration. Then, under assumptions (i)–(iv), the transition intensity matrix Q of the process

{X(t), t ≥ 0} is upper triangular of the size (2n − 1) × (2n − 1). The matrix Q can be

written in the block-form as

Q =

⎛⎜⎜⎝
D1,1 P1,2 O1,3 · · · O1,n

O2,1 D2,2 P2,3 · · · O2,n

...
...

...
. . .

...
On,1 On,2 On,3 · · · 0

⎞⎟⎟⎠
where Pi,j is a rectangular matrix of size

(
n
i

)×(
n
j

)
, the symbol Oij denotes a null matrix

and Dii are square diagonal matrices for i = 1, . . . , n. Moreover,

−Di,i = eP′
i,i+1 Ii,i

where Ii,i is the unit matrix of size i, e is the row vector of
(
n
j

)
ones.

The set of all possible states Ω can be decomposed into n disjoint subsets Ω1, . . . ,Ωn,
which involve states with |ω| = 1, . . . , n. It means, that the set Ωj contains all states, in
which the pursued event holds exactly on j objects. The number of such states is equal
to

(
n
j

)
. The i-th column of the matrix Q corresponds to states from Ωi.

When the process X(t) is in the state ω ∈ Ωj , then under assumptions (ii) and (iii), in
the oncoming time it can either to stay in the state ω or to move in any of states of the
set Ωj+1. From it follows that

– blocks Oj,j−l, l = 1, . . . , j are null matrices,
– matrix Djj is diagonal and
– matrices Oj,j+k, k = 2, . . . , n− j are null matrices.

Moreover, the time period τ , for which the process stay in k-th state ωk ∈ Ωj before
it moves to another state in Ωj+1, has the exponential distribution with the parameter
δ = (Djj)kk, the k-th diagonal element of Djj .



376 Dohnal G. et al.: Disaster Propagation Models

Model 2

Assumptions :

(i) at the beginning (at the time 0), the system is in the state ω0 = (0, 0, . . . , 0),

(ii) an event can only affect one object at a time,

(iii) states of the system in time t create a Markovian process {X(t), t ≥ 0} in continuous
time. Values of this process lie within the set Ω = {0, 1}n.

The process X(t) can be considered as a random walk between sets Ω0, . . . , Ωn. When
the process in in a state ω ∈ Ωj , 0 < j < n, the only transitions to some states in Ωj−1

or Ωj+1 are allowed, whereas ω0 and ΩN are reflection states. In the model, all states are
transient. The process can be understood as the process of event spreading in the system
with repair.

Proposition 2. In the model 2, the transition intensity matrix Q of the process {X(t),
t ≥ 0} has the following block-form

Q =

⎛⎜⎜⎜⎜⎝
D0,0 P0,1 O0,2 O0,3 · · · 0
R1,0 D1,1 P1,2 O1,3 · · · O1,n

O2,0 R2,1 D2,2 P2,3 · · · O2,n

...
...

...
...

. . .
...

0 On,1 On,2 On,3 · · · Dn,n

⎞⎟⎟⎟⎟⎠
where Pi,j is a rectangular matrix of size

(
n
i

)×(
n
j

)
, Rj,i is a rectangular matrix of size(

n
j

)×(
n
i

)
, the symbol Oij denotes a null matrix and Dii are square diagonal matrices for

i, j = 1, . . . , n. Moreover,

−Di,i = (ei R′
i−1,i + ei+1 P′

i,i+1) Ii,i

where Ii,i is the unit matrix of size i, ej is the row vector of
(
n
j

)
ones.

Example 1. Let us suppose a system of objects with a chemical factory in their centre.

We consider a situation, where an explosion occurs in the factory and the following fire

endanger a near-by forest. Simultaneously, we can expect a deterioration of factory’s tubes

and an outflow of toxic material into air and a contiguous river. As a consequence, there

would be a contaminated drinking water source (aqueduct), which represents a big danger

for towns of people, who are dependent on this water source. A chicken farm supplied from

the same water source is in danger as well. For the example, there is reasonable to assume

the model 1.
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Let us set up the objects into the sequence in the following order :
1. chemical factory
2. forest
3. factory’s tubes
4. river
5. city’s aqueduct
6. citizens
7. chicken farm

Among all 27 system states, several of them never will occur. For example, the state
(0001000) represents the situation in which the river will be contaminated without pre-
ceding deterioration of any other object. It is clear, that such situation cannot occur in our
example. The set of possible states involves the following vectors :

(1000000), (1100000), (1010000), (1110000), (1011000), (1111000), (1011100),

(1111100), (1011110), (1011101), (1111110), (1111101), (1011111), (1111111).

Hence, the matrix of transient intensities is of the size 14×14 and the initial probability
vector is equal to π = (1, 0, 0, 0, 0, 0, 0). The transient intensity matrix S is in the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u a b 0 0 0 0 0 0 0 0 0 0 0
0 −c 0 c 0 0 0 0 0 0 0 0 0 0
0 0 v d e 0 0 0 0 0 0 0 0 0
0 0 0 −f 0 f 0 0 0 0 0 0 0 0
0 0 0 0 w g h 0 0 0 0 0 0 0
0 0 0 0 0 −i 0 i 0 0 0 0 0 0
0 0 0 0 0 0 x j k 0 0 0 0 0
0 0 0 0 0 0 0 −l 0 0 l 0 0 0
0 0 0 0 0 0 0 0 y 0 m 0 n 0
0 0 0 0 0 0 0 0 0 z 0 p q 0
0 0 0 0 0 0 0 0 0 0 −r 0 0 r
0 0 0 0 0 0 0 0 0 0 0 −s 0 s
0 0 0 0 0 0 0 0 0 0 0 0 −t t
0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The transition intensity matrix has to fulfill the condition of Se = 0. This makes u = −a−b,
v = −d− e, w = −g − h, x = −j − k, y = −m− n, z = −p− q. There remains 19 unknown
parameters in all. These parameters correspond to conditional transient intensities :

a = i(1 → 2|1) ;

b = i(1 → 3|1) ;

c = i(1 → 3|1, 2) ;

d = i(1 → 2|1, 3) ;

e = i(3 → 4|1, 2) ;

f = i(3 → 4|1, 3) ;

g = i(1 → 2|1, 3, 4) ;

h = i(4 → 5|1, 3, 4) ;

i = i(4 → 5|1, 2, 3, 4) ;

j = i(1 → 2|1, 3, 4, 5) ;

k = i(5 → 6|1, 3, 4, 5) ;

l = i(5 → 6|1, 2, 3, 4, 5) ;

m = i(1 → 2|1, 3, 4, 5, 6) ;

n = i(5 → 7|1, 3, 4, 5, 6) ;

p = i(1 → 2|1, 3, 4, 5, 7) ;

q = i(5 → 6|1, 3, 4, 5, 7) ;

r = i(5 → 7|1, 2, 3, 4, 5, 6) ;

s = i(5 → 6|1, 2, 3, 4, 5, 7) ;

t = i(1 → 2|1, 3, 4, 5, 6, 7)

where i(a → b|c) means the conditional intensity of transition from object a to object b,
conditioned by previous affection of object c. In the case, where transitions between objects
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are independent of the previous path, the whole system can be reduced to 6 unknown para-
meters a, b, e, h, k, n. These hold

a = d = g = j = m = p = t , b = c , e = f , h = i , k = l = q = s , n = r .

3. The life time of the system

Let T as the time of the total deterioration of the system. It means the length of time,
in which the process X(t) will attach the state ωN . During this time, the pursued events
will pass through all objects of the system.

Proposition 3. In the model 1, the time T to the system deterioration is a random

variable, which has phase type probability distribution with initial probability vector π =
(π1, π2, . . . , πn, 0, 0, . . . , 0) and upper triangular transition intensity matrix

S =

⎛⎜⎜⎝
D1,1 P1,2 O1,3 · · · O1,n−1

O2,1 D2,2 P2,3 · · · O2,n−1

...
...

...
. . .

...
On−1,1 On−1,2 On−1,3 · · · Dn−1,n−1

⎞⎟⎟⎠ .

Recall that the phase type distribution is the probability distribution of the random vari-
able W , which represents the time until absorption in a finite irreducible markov process
with (n−1) transient states and one absorption state. We shall denote the phase type distri-
bution (PH-distribution) as PH(π,S). The tuple (π,S) is usually called the representation
of PH-distribution. (see [7], [4]). The cumulative distribution function of PH-distribution
PH(π,S) has the form of

F (w) =
{

1 − π exp(Sw) e′ w ≥ 0 ,
0 w < 0 ,

It is clear that F (w) is continuous if
∑
πi = 1. The density function of PH(π,S) has the

form

f(w) =
{

π exp(Sw)S0′ w ≥ 0,
0 w < 0 ,

where S0 = Se′, e = (1, 1, . . . , 1). If S is a regular matrix, it can be shown, that the random
variable W has all its moments finite and they can be expressed in the following form

E(T k) = (−1)k k! π S−k e′ , k ∈ N.

Whereas in the model 1, the state ωN is absorption state, the life time of the system is
well-defined. In the model 2 the situation is more complicated. One possibility is to say,
that the system is totally deteriorated when reaches the state ωN . In the case, the state ωN

can be assumed as absorbing and the following proposition holds.

Proposition 4. In the model 2, the time T to the system deterioration is a random

variable, which has the phase type probability distribution with initial probability vector

π = (1, 0, . . . , 0) and transition intensity matrix

S =

⎛⎜⎜⎜⎜⎝
D0,0 P0,1 O0,2 · · · O0,n−1

R1,0 D1,1 P1,2 · · · O1,n−1

O2,0 R2,1 D2,2 · · · O2,n−1

...
...

...
. . .

...
On−1,0 On−1,1 On−1,2 · · · Dn−1,n−1

⎞⎟⎟⎟⎟⎠ .
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Another possibility is to define totally deteriorated system as the system, in which the
given state ω∗ is affected by disastrous event. The ω∗ must not be equal to ωN . This
situation is discussed in the following section.

4. First affect time

Let us consider the ith object, say ‘aqueduct’. We are interested in a first passage time
probability distribution for this object. Using the knowledge of this distribution, we will be
able to predict for example the mean time to attack the object or the probability that the
object will not be affected until some given time and others characteristics.

Denote Si
0 = {ω ∈ Ω : ωi = 0} the set of states of the system, in which the i-th object is

not affected. Similarly, let Si
1 = {ω ∈ Ω : ωi = 1} consists of the states, in which the i-th

object is affected. The sets Si
0 and Si

1 are disjoint and Si
0 = Ω − Si

1 stays.

First, let us consider the model 1. Reordering states in both of these sets in ascending
order according to |ω|, we can write the transition intensity matrix in the following block
form:

Si
0 Si

1

Si
0

Si
1

(
A C
O B

)
It can be easily shown that the matrices A and B are upper triangular square matrices of
the same type as in the proposition 1, O is the null matrix and A is a square matrix of size
(2n−1 − 1) × (2n−1 − 1), whereas B is of size 2n−1 × 2n−1. In the following, let us denote
(2n−1)-dimensional vector πi = (π1, . . . , πi−1, πi+1, . . . , πn−1, 0, . . . , 0, πi).

Proposition 5. The first affect time Ti for an object i in the system is the random variable

with the phase type probability distribution with representation (πi,A).

The situation is slightly more complicated in the model 2. After reordering of states we
obtain the transition intensity matrix

Si
0 Si

1

Si
0

Si
1

(
A C
G B

)
where G is not null matrix.

In the example above, let us consider the 5th object, i.e. aqueduct. The matrix A has
the form of ⎛⎜⎜⎜⎜⎜⎝

−(a+ b) a b 0 0 0
0 −c 0 c 0 0
0 0 −(d+ e) d e 0
0 0 0 −f 0 f
0 0 0 0 −(g + h) g
0 0 0 0 0 −i

⎞⎟⎟⎟⎟⎟⎠ .

Using the formula for first moment of PH-distribution, we obtain the mean time to attack
this object as

E(τ) = −πA−1e′ .

and variation
var(τ) = 2 π A−2 e′ − (π A−1 e′)2 .
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5. Renewal period

Under the assumptions of model 2, the process can be understood as a renewal process.
The renewal occurs when the process reaches the state ω0 and the renewal period covers the
time which the process needs to return to the state ω0 first, after it started in ω0. In what
follows, we try to describe the distribution of renewal period using PH-distribution.

For this purpose, we shall consider the state ω0 in two manners : first, as a starting state,
what means that the initial distribution π0 will be assumed to be equal to (1, 0, . . . , 0) and,
second, as an absorption state after the process will move to it form another state.

Proposition 6. In the model 2, the distribution of renewal period can be described by

PH-distribution with the representation (π0,W), where

W =

⎛⎜⎜⎜⎜⎝
D0,0 P0,1 O0,2 O0,3 · · · 0
O1,0 D1,1 P1,2 O1,3 · · · O1,n

O2,0 R2,1 D2,2 P2,3 · · · O2,n

...
...

...
...

. . .
...

0 On,1 On,2 On,3 · · · Dn,n

⎞⎟⎟⎟⎟⎠ .

6. Conclusion remark

In this paper a Markovian model of disaster propagation was presented. The model
provides the probability distribution of the first affect time, especially, of the life time of
the system or of the lenght of renewal period. Two cases are taken into consideration. In
the first one, we consider all objects as nonrepairable. This represents ‘one-way’ model, in
which the only disastrous event is spreading from one object to to another, until it affects
all objects in the system. The second model allows repairs of objects. It means that the
state of an object in the system can be changed not only from 0 (unaffected) to 1 (affected)
as in the first model, but also in the opposite direction from 1 (affected) to 0 (repaired ‘like
unaffected’).

Both of these models can be described by a continuous time Markovian proces, the states
of which represent ‘global states’ of the whole system. The most frequent question in such
cases is : how much time we have until affection of some object? What is the time after
which we must evacuate people, material and technique? In the presented model, we describe
this time as a random variable with a phase type probability distribution. It allows us to
compute all its moments and interval estimators.

Acknowledgement

I gratefully acknowledge support from the project No. 1M06047 of the Ministry of Edu-
cation and Youth of the Czech republic, The Research Center for the Quality and Reliability.

References
[1] Aven T., Jensen U.: Stochastic Models in Reliability. Applications of mathematics, Springer-

Verlag New York (1999)
[2] Buzna L., Peters K., Helbing D.: Modelling the dynamics of disaster spreading in networks,.

Physica A 363 (2006), 132–140
[3] Dhillon I.B.S., Singh C.: Engineering Reliability: New Techniques and Applications, John

Wiley, New York (1981)



Engineering MECHANICS 381

[4] Dohnal G., Meca M.: Fitting Distribution of Nonnegative Random Variable with PH-distri-

butions, In: Proceedings of conference ROBUST 2002, JŽ ’lMF Praha (2002), 87–94 (in Czech)
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