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GENERATING NON-PERIODIC MICROSTRUCTURES
OF FIBER COMPOSITES

Tomáš Posṕı̌sil*

Mathematical modeling of composite materials leads to the solving PDEs with
strongly oscillating coefficients. The problem of large number of equations can be
solved using homogenization, that replaces heterogeneous material by an ‘equivalent’
homogeneous one. This approach assumes periodic structure, which is not often true
in reality. The first aim of the paper is to compare results obtained by solving the
model problem describing the torsion of a bar applied to the random medium and
the the periodic one, respectively. The second aim is to present four algorithms gen-
erating samples of random structures of a two-component fibre composite material
similar to the real one.

Keywords : non-periodic structures, homogenization, spatial processes, spatial ran-
domness

1. Introduction

Fiber composite materials consist of at least two different phases, particularly two-phase
fiber composite material consists of the so called stiffening phase in the shape of fibers
included into the second one, called matrix. By various distribution of inclusions we can
develop materials with special properties and that is the reason, why they are intensively
used in many branches of engineering e.g. automobiles, aircraft, space vehicles and many
others. From a design point of view, and in strong contrast to metallic materials, we largely
lack a rational philosophy based on mechanics, mathematics and physics for a prediction
of a damage initiation, propagation and final failure of constructions made out of such
material. Classical approaches which use a continuum description will ultimately fail in
predicting long-term structural degradation of composites, because this process is deeply
influenced by micromechanical events, caused by a random structure.

Solving of boundary-value problems modeling the behavior of composite materials is very
demanding since we have to solve PDEs with highly oscillating coefficients, which leads to
the solving too many equations.

Let us remind a mathematical method called homogenization for solving the problem.
Adopting the assumption of periodic structure of the material, this method enables to com-
pute its effective parameters from the knowledge of properties of the phases and their geo-
metric distribution.

Real composite materials do not have periodic structure–the distribution of the fibres in
the matrix is not periodic, see e.g. [1].
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We introduce four algorithms for generating samples with random structure i.e. random
distribution of fibres of non-constant diameters. Many algorithms generating random struc-
ture are based on the so-called ‘spatial point-processes’, see e.g. [5], [13] or [11]. In our paper
we introduce algorithms to work with non-constant diameter fibres.

The content of the paper is as follows. We start with a characterization of two-phase
composite materials and describe periodic and random structures of composites. In Section 3
we set up the model problem. In Section 4 we show results of numerical simulations for
a stress of both periodic and non-periodic material. A Section 5 deals with the comparisons
of random and periodic samples.

A periodic unit cell (PUC) is introduced in Section 6. The developed algorithms will be
presented in Section 7 and in the Section 8 we arrive to the conclusion.

2. Composite Material Considered

For our experiments we shall use a two-phase carbon–epoxy (C/E) composite material
– epoxy matrix reinforced by very hard carbon fibres. We assume circle–shape fibres. Ac-
cording to [1] we choose a normal distribution of the fibre diameters with expected value of
the diameter 6.78μm, a standard deviation 0.38μm and the volume fraction 56.5%. In our
experiments we adopt these characteristics of the composite materials. Detailed analysis of
real composite materials obtained from the microscope and CCD camera can be found in [1].
The corrected photograph of the real sample of this material we can see in the figure 1. The
photograph is taken from [1].

Fig.1: Real sample of the composite material taken from [1]

3. Model Problem

We shall make computer simulation for the following boundary value problem. We will
assume that linear elasticity is sufficiently accurate for our purposes and that the material
properties of the matrix and the fibres are accurately known. Of course this is not true in
the reality, especially for the fibres. Nevertheless it is possible to assume that sensitivity (of
the goals of our analysis) to this uncertainty is much smaller than to the uncertainty in the
residual stresses of the composites. Let us consider a square-shaped domain and the elliptic
partial differential equation

−
2∑

i=1

∂

∂xi

(
a(x)

∂u

∂xi

)
= 2α in Ω ,

u = 0 on ∂Ω ,
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with non-constant periodic coefficient a(x) with a small period ε. According
to the generated samples, a(x) will take value λ in the circles and value 1
in the complement.

This model problem can be interpreted as follows. Let us consider a bar
made of a composite material reinforced with fibres. The square cross-
section of the bar is the domain Ω shown in the previous section, the circles
mean the fibres. The bar is fixed on one side and screw on the second side.

The described situation leads to the well known (see [10]) problem of
linear elasticity called ‘torsion of a bar’. The model has the form of the
boundary value problem for elliptic partial differential equation, formulated

above. The coefficient a(x) takes the value of inverse value of shear-modulus of each phase.
The solution u(x) is the Prandtl’s potential function. It gives the only non-zero skew com-
ponents of the strain tensor σij by the formulas

σ13 = σ31 =
∂u

∂x2
, σ23 = σ32 = − ∂u

∂x1
.

From the practical point of view we are not interested in values of Prandtl’s function, but
in its gradient magnitude which gives us information about the strain :

|∇u| =

√(
∂u

∂x1

)2

+
(
∂u

∂x2

)2

.

In Figure 2 we show the periodic and random structures.

Fig.2: Periodic sample (left) and random sample (right)

The size of each sample is 50μm×50μm. The density and the number of fibres in the case
of periodic sample were chosen such that the volume fraction is the same as in the simulated
samples. The value of volume fraction is 56.5% and the number of fibres is 39.07 . The
diameter of fibres in the periodic sample is the expected value of random ones, i.e. 6.78μm,
see [1]. According to [B], [BL], [Fr1], [Fr2] we took for the demonstration the values of the
coefficient a(x) as follows :

a(x) =
{

1 for a matrix ,
1

114 for a fibre .

We computed solutions for this boundary-value problem. For computations the finite ele-
ment method with a finite triangle-shaped element was used. We looked for the solution in
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the form of piecewise linear function i.e. first order polynom on each triangle. The triangu-
lation was very fine (about 20000 elements) to obtain solution as accurate as possible.

4. Numerical Simulations

In this section we present solutions for both periodic and random media. We compute the
homogenized solution for the periodic sample. Since the structures of computed samples are
different, the pointwise comparison of gradients is meaningless. Therefore for each solution
a diagram showing volume distribution of gradient magnitude was created.

In the following figures the solution and distribution of its gradient magnitude for the
periodic sample is shown.

Fig.3: Prandtl’s potential function (left) and gradient magnitude
diagram (right) for the periodic sample

Let us mention that in the case of the periodic material all characteristics are symmetric,
i.e. the solution, gradient magnitude and its distribution in the sample.

Now, we present the results obtain by homogenization theory for the periodic sample.

We start with the homogenized solution with the constant coefficient a0, whose value was
computed using homogenization theory, see e.g. [2], [3], [4]. Its value is a0 = 0.2402 . Let us
remark that averages yield bad values: the arithmetic mean is 0.5044 and the harmonic one
is 0.0174 .

The homogenized solution has no local peaks
which is due to the constant coefficient, while the
solution to the periodic problem has peaks on the in-
terface of the phases. Homogenization theory solves
the problem by correctors, see [2], [3], [4], [6] or [7].
The homogenized solution with the second corrector
approximates the periodic solution better, it approx-
imates even the local peaks as can be seen on the
neighbouring figure. Since the so called cut-off func-
tions were not used, the approximation close to the
boundary is not so good.

In the case of random media, due to lack of symmetry in the random structure both
solution and its gradients are not symmetric. The behavior of the solution and gradient
magnitude for the random media we can see in the next figure.
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Fig.4: Prandtl’s potential function (left) and gradient magnitude
diagram (right) for the random sample

5. Comparisons of solutions

We compare solutions of a model problem for twenty random samples and for ‘equivalent’
period one.

5.1. Comparison of effective values—homogenized coefficients

For the periodic sample, the homogenization theory yields the homogenized coefficient a0

which serves as an effective value. To compare it with the random samples we need to find
its counterpart. For the random sample with non-periodic distribution the effective value
will be computed as follows.

Since the homogenized problem depends linearly on the coefficient, the solution with
a coefficient ak is an ak multiple of the solution with the coefficient 1. Thus by the least
square method we can approximate the solution un of the simulated random sample by
a multiple of solution u∗ of the problem with constant coefficient 1.

−Δu∗ = 2 in Ω ,

u∗ = 0 on ∂Ω .

More precisely for each random sample (n = 1 . . . 20) with solution un we minimize

‖un − u0n‖2 → min ,

where u0n is the solution of the problem with constant coefficient an. Since u0n = an u
∗

replacing the norm by the sum of nodal differences, we obtain standard least square problem
for value an.

The arithmetic average of all twenty values an for non-periodic samples is equal to 0.2123 .
For the periodic sample, we obtain value 0.2280 . The homogenized coefficient a0 computed
by homogenization theory is 0.2402 . Thus the average value 0.2123 is 88% of the homoge-
nized coefficient a0 and for the periodic sample it is 95%. The difference between these two
values is 7% which can be taken as acceptable; for higher number of fibres the difference
will be smaller.

5.2. Comparison of gradients

We have computed exact solutions for twenty random sample problems and to the ‘equi-
valent’ periodic one. Since every generated sample is of different structure, a pointwise
comparison of gradients is meaningless.
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Next figure shows behavior of a strain (gradient magnitude) in matrix and fibres. The
dashed shadow curves denotes strain in the random material (the arithmetic average of
twenty samples) and the black ones refer to the material with a periodic structure.

Fig.5: Curves of strain in periodic and random samples

The curves for random and periodic samples exhibits different behavior. Maximum value
in the case of periodic sample is about 500, while in the case of random samples they are
about 800. Fibres, which are nearest to the edge of the sample are much more stressed than
the ones in the middle of the bar. The maxima are also influenced by a distance between
neighboring fibres. Thus it is very important to keep minimum distance of neighboring fibres
not close to zero, particularly to avoid contact of fibres in the material from the practical
viewpoint.

From the preceding it follows, that omitting real, i.e. non-periodic structure of the ma-
terial structure leads to the incorrect result. This fact was demonstrated in the previous
example in the problem of the torsion of a bar. Therefore, studying and analyzing random
structures has its right meaning.

6. Periodic Unit Cell

Due to the complexity of the microstructure, the analysis is usually left to rely on in-
complete geometrical information about the composite microstructure. The problem is not
successfully resolved even when considering a large sample of composite.

An essential ingredient of the present model applicable to both elastic and inelastic
problems is a carefully selected material representative volume element (RVE) replacing

Fig.6: Geometry of the periodic unit cell
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the real microstructure. Such a RVE is represented here by a periodic unit cell (PUC)
consisting of a small number of particles–fibres, which statistically resembles the actual
structure of a studied composite material. For an early study on this subject we refer the
reader to [13] and references therein. Consider the periodic unit cell consisting ofN particles.
The geometry of such a unit cell is determined by the dimensions H1 and H2 and x and y

coordinates of all particles. The principal problem is to select these values in such a way
that material formed by this periodic unit cell is as much similar as to some given original
microstructure as possible. In the following figures we can see examples of the PUCs. From
the previous pictures it is clear that determination of a PUC, which is statistically equivalent
to the original microstructure, is not trivial. The process of finding a PUC is described e.g.
in [13] and is out of scope of this paper.

Fig.7: Periodic unit cells : Hexagonal lattice (left), 2-fiber PUC (middle)
and 6-fiber PUC (right)

7. Random Structures

For our experiments we come from the data obtained from Czech Technical University
in Prague, Klokner Institute, Department of Engineering Mechanics – those are bitmaps
of a dimension 1144×1144, see figure 8. From the analysis of this data, we chose normal
distribution of the fibre diameters with expected value of the diameter 71.87242 and standard
deviation 4.57858 . The average amount of the fibres in selected rectangular area was 164.6
and the average volume fraction 48.69 %. In our experiments we adopt these characteristics
of the composite material. Detailed analysis of real composite materials obtained from the
microscope can be found in [8]. In the following figures we can see an example of the obtained
data and corrected ones used to the experiments.

Having the set of bitmaps of the real composite media, it is desirable to have a tool for
generating random structures that will be statistically similar to the real ones. The reason
is to be able to extract from such simulated structures an adequate PUCs that will be used
for the next computations.

The theory of spatial point processes is at present studied very deeply and intensively
and it creates quite large branch of the statistics and probability theory. As an example
let us mention the scope of its application: astronomy, engineering and building industry,
textile industry, agriculture and geographics (geostatistics). In the literature are nowadays
described many algorithms generating spatial point processes. Among point processes ap-
plicable to simulating random structure similar to the real one belong so called Hard-Core
Models (i.e. Matérn’s Model I, Matérn’s Model II, Matern-Stoyan Model or Matern-Bartlett
Model), see [5] for detailed description.
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Fig.8: Real sample (left) and its correction for computation (right)

Now we describe four algorithms developed for the purpose of generating random struc-
ture similar to the real one and after that we compare this algorithms from the statistical
viewpoint in the next paper.

7.1. Algorithm A1

The main idea of this algorithm is based on a stochastic process S(t, ω), whose separate
trajectories have a character of a ‘wavy-random sinusoid curve’. In other words, they have
different amplitudes and periods. The process is in the shape

S(t,ω) =
K∑

n=0

sin
(

(2n+ 1)π t
2T

)
ξn(ω) ,

where {ξn}∞n=1 is a sequence of mutually independent random variables having normal dis-
tribution with zero mean and unity variance, T is the length of the interval, over which we
generate this process and K is the number of members we want to sum up (the higher K is,
the more ‘noisy’ the trajectories are). This process is a modification of a Karhunen-Loève
expansion of the Wiener process (Brownian motion), see [KPS] for additional information.

Fig.9: Trajectories of a stochastic process S(t, ω) for different K
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Fig.10: To the description of the algorithm

Let D be a domain, representing our sample, into which we want to place fibres with
random diameters corresponding to the established distribution of the real samples.

A detailed procedure can be described in several steps. In the bottom of the following
picture there is a solid curve which forms the centers of the fibres with random diameter.
This solid curve was received by means of one realization of the stochastic process S(t, ω)
with K = 3800. During putting the fibres on the line we also have to check overlapping of
the fibres. After the solid line is filled we continue with a dashed one, which is generated in
the same mean as the solid one, but is shifted up. Again, the fibres are placed to the line
and checked with existing ones. In the case of overlapping(the arrows in the figure) they
are shifted to the ‘safe’ distance. In this way we continue until the whole domain D is not
filled up.

In the next figure there is finished a resulting structure of a two-phased fibre composite
material according to the algorithm A1. By a different choice of a numberK in the expansion
of the stochastic process S(t, ω) we change an amplitude and period of a curve. This fact
causes, that we are able to generate structures with various volume fraction and number of
fibres in a sample. Of course, it is possible to set a minimum distance between two fibres.
By means of this algorithm, fifteen samples were generated for the purpose to the next
computations. It is important to note, that the centers of the generated fibres lies in the
domain D. In other words it means that the fibres in the figure 10 are not included for
further computations. This fact causes the so called edge-effects. Next we note, that this
fact is fulfilled also in the next algorithms. To the theory of the so called edge correctors we
refer to [1], [5] or [13].

Fig.11: The final structure generated by the algorithm A1
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7.2. Algorithm A2

The principle of this algorithm we can describe as follows: Firstly, we generate one fibre
with random diameter and situate it approximately in the middle of the domain sample.
Then we choose a random direction and a distance, where we put a new fibre. This procedure
is repeated until the resulting volume fraction does not reach the requested one. During
every step we are checking whether a new fibre does not cross the existing ones. In case of
overlapping fibres, new position is generated. For the better illustration and result, see the
following pictures.

Fig.12: To the description of the algorithm A2 (left) and the final
structure generated by the algorithm A2 (right)

7.3. Algorithm A3

It is based on the Brownian motion of the suspended particles in a liquid medium. The
simulation starts with generating a sample with complete periodic structure, i.e. constant
diameters of fibres and the same distance between them. The diameter must be chosen in
such a way, that the resulting volume fraction has the same value as in the real samples.
After such a structure is generated, the diameters of all fibres are changed according to the

Fig.13: To the description of the algorithm A3 (left) and the final
structure generated by the algorithm A3 (right)
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distribution of real samples. In a next step each fibre is submitted to the Brownian motion.
In other words, we choose a random direction and distance of shifting a fibre. Simultaneously
we check for the crossing with neighboring fibres and the minimum distance between them.
If it occurs, we change the direction and the distance and the process is repeated. This is
repeated until everything is all right. It is important to note, that generated amplitude of
vibrations are in tenths of fiber’s diameter, so they are relative small. This fact corresponds
to the real concept of the Brownian motion, but we do not consider the collisions of particles
and transmitting their quantity of motion during collision of one particle into another one.

7.4. Algorithm A4

The principle of this algorithm is similar to the algorithm A3. The difference is in
processing overlaying of fibers: if the deflection of the fibre will cause overlaying with neigh-
boring fiber, the shifting is canceled – the fiber stays in its old position. It causes, that the
final structure is not so random as in the case of algorithm A3, but the computing time is
several times shorter. The only disadvantage of algorithms A3 and A4 is in a fact, that the
amount of fibres is the same for all samples.

We have to note that in each of the previous algorithms, the diameters of the fibres are
distributed according known probability distribution. The resulting distribution agrees with
normal distribution N(71.87; 20.96).

Fig.14: The final structure generated by the algorithm A4

8. Conclusion

The first aim of this contribution was to find out, whether we do an error, if we replace
a random distribution of fibres with non-constant diameter in a two-phased composite ma-
terial by a periodic distribution of fibres with constant diameter. This comparison carried
out for the model problem in the form of the elliptic PDE − div(a∇u) = f with a random
coefficient a and homogeneous Dirichlet boundary condition. The problem we can interpret
as a torsion of a bar.

To do this we computed solutions with non-periodic distributions of fibres for twenty
different samples. The resulting values of gradient depend on the positions, distance and
diameters of fibres.
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For comparison we computed the same problem for an ‘equivalent’ periodic sample using
the homogenization theory. The differences of the ‘effective values’ (homogenized coeffi-
cients) for random and periodic case were not large and can be neglected. The influence
of a random material to the homogenized coefficient a0 is small. In the periodic case the
homogenization results yield a good approximation, especially when the second corrector
was used even the local peaks were approximated well.

But on the other hand, the results show that replacing random material by a periodic one
cause big statistic deviations during approximation of strain-peaks. For gradient magnitude
of solutions the corresponding diagrams shows significant differences, in random cases the
maximum is much more higher. In practice it can cause dangerous severe destruction of the
material. Thus for estimating local peaks we cannot neglect non-periodicity of the material.
For the mathematical modeling taking material to be periodic brings significant errors. From
the preceding it follows that it has the right meaning to deal with algorithms generating
random structures similar to the real ones as most as possible.

According to this, four different algorithms A1–A4 were developed. The algorithms were
designed in such way in order to generate samples to be very similar to the real structures.
The real samples (bitmaps) were obtained from the Czech Technical University in Prague,
Klokner Institute. Then, fifteen samples are generated for each of the algorithm.

Finally, very interesting and challenging topic is the deeper analysis of the algorithms
generating random structures as the real one. It is conditioned by having to disposal real
samples, resp. bitmaps of them. It would be suitable to include to the algorithms such
parameters, that will be able in some ranges influence the final structure to the reason of
the best fitting of the real one.
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