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USING AI METHODS TO FIND A NON-LINEAR
REGRESSION MODEL WITH A COUPLING CONDITION

Radomil Matoušek*

In the real-life engineering practice, non-linear regression models have to be designed
rather often. To ensure their technical or physical feasibility, such models may, in
addition, require another coupling condition. This paper describes two procedures
for designing a specific non-linear model using AI methods. A Radial Basis Functions
(RBF) based optimization is presented of the model using Genetic Algorithms (GA).
The problem solved was based on practical measurements and experiments. The re-
sults presented in the paper can be applied to many technical problems in mechanical
and civil engineering and other engineering fields.

Keywords : non-linear regression, approximation, genetic algorithms, radial basis
function, optimization

1. Introduction

One of major problems encountered in processing the results of various measurements
is to determine and mathematically describe the dependence of one observed quantity y on
another observed quantity x, that is, to establish the mutual dependence of the problems
observed. In the sequel, the quantity y, which is usually determined with a smaller relative
precision (such as the star magnitude or forming speed in a ramming test) will be called
a dependent (explained) variable while the other variable observed, which is usually deter-
mined more precisely (such as tome or degree of reshaping) will be taken for an independent
(explaining) quantity. The actual relationship between these two variables is given by the
dependence sought, that is, by a function y(x).

In technical applications, often a suitable mathematical regression model needs to be
found on the basis of data measured in an experiment. As the regression model is designed
to represent physical and technical processes, certain physical and technical limitations must
be considered. Thus such a regression model should :

– well approximate the values measured,
– meet some physical and technical requirements,
– be of as low a degree as possible.

The second requirement refers to physical and technical limiting conditions such as the
temperature being kept above a fixed limit, the forming speed being non-negative, and
others.

The regression dependence presented relates to the design and optimization of a suitable
regression model for describing the dependences between data measured in a material ram-
ming test. Technically, this area is part of material forming. During the testing, multiple
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technological dependences were investigated. Being part of this paper, the solution proposed
focuses on a specific part of the data measured with the independent variable being the de-
gree of deformation (logarithmic degree of deformation) and the dependent variable being
the deformation speed. Because of its nature, this project may also be applied to other
dependence types with a similar type of limitation or type of the data measured, which
abound in technical disciplines.

2. Material forming and input data

Material forming is a highly efficient technology. By forming, the material size and shape
are gradually changed by a forming tool. During forming, each material is characterized by
its specific properties. In addition, these properties are being influenced by the specific con-
dition of the forming. For a particular forming process, it should of course be known, under
what circumstances, the forming will be optimal. For this purpose, various characteristics
are being set up based on what is called material forming tests [10] depending on the tem-
perature and deformation. As the results of the forming tests may be influenced by random
errors, they are approximated by a regression function.

b17 (ϕ, ϕ̇) a48 (ϕ, ϕ̇)
0.000 0.000 0.000 0.000
0.790 0.835 0.582 0.401
1.035 2.740 0.741 0.390
1.648 1.708 1.115 0.273
1.692 2.077 1.284 0.060
2.562 2.300 1.817 0.073
3.133 2.392 2.344 0.073
4.249 2.201 2.867 0.075
5.355 2.783 3.285 0.075
6.245 2.239 4.121 0.078
7.068 1.537 5.020 0.082
7.640 1.252 5.827 0.085
8.461 0.242 6.845 0.091
9.564 0.200 7.767 0.103

10.569 0.209 8.754 0.107
11.767 0.244 9.424 0.117
12.631 0.219 11.515 0.136
13.481 0.238 12.774 0.162
14.595 0.295 14.060 0.175
15.492 0.285 15.285 0.217
17.825 0.314

Data characteristic : b17 (data set b17r.txt)

Material : 423018.2 Sample size [mm]

Temperature [◦C] : 21 D0 = 9.96 H0 = 16.06

Characteristic : Nonferrous metal material containing the following
elements and their percentages : Sn 7.53; Pb 0.013 and Cu up to 100
percent. Alternative material denotation is CuSn8.

Data characteristic : a48 (data set a48r.txt)

Material : 16231.3 Sample size [mm]

Temperature [◦C] : 200 D0 = 15.10 H0 = 24.07

Characteristic : Cementation chrome-nickel steel, known as ‘Nital’
also suitable for hardening treatment. Even with the low carbon con-
tent, the steel has a high core strength.

Tab.1: Sample data to be used for the regression calculation

Fig.1: Graphical representation of the data samples
to be used for the regression calculation
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Data for the non-ferrous material (ČSN 423018) and steel (ČSN 16231) were chosen as
representative samples. The testing samples of the above materials were made by turning
with the H0 : D0 = 1.6 ratio.

ϕ = ln
H0

H
. (1)

By changing the height H of the object deformed and the initial height H0 of the sample,
the logarithmic deformation (reshaping) degree was determined at each measurement point.

3. Regression with a functional limitation

The regression function (of n variables) is required to be closed on a set M ⊂ �n.
Under the physical and technical constraint, the regression function proposed should be
non-negative as seen in Fig. 1. Thus the resulting optimization problem is an approximation
with functional constraint, which can be formulated as follows :

minE = min
k∑

t=1

f (t)
w

(
d(t) − f (t)

a

)2

, (2)

fa = fa(x,p) ≥ 0 , (3)

where {(x(t),d(t)); t = 1, . . . , k} . . . k measurements; x . . . vector of independent variables,
x ∈ M ⊂ �n, d . . . dependent value measured, fw . . . weight function, fw = fw(x) ≥ 0,
fa . . . approximation (nonlinear) function f (t)

a = fa(x(t),p(t)), p . . . vector of model param-
eters (coefficients), E . . . approximation error.

A general solution to (2) and (3) is rather complex. Because of the nature of the data,
the function fa will be proposed as nonlinear. Thus the first problem considered may be to
minimize (2) with respect to a general approximation function fa. The next problem to be
solved is the constraint (3) on the values of fa. A system defined in this way has infinitely
many solutions due to the unknown character of the function fa and an optimum solution
requires a suitable compromise to be chosen.

To estimate the parameters of the regression function, mostly the least-squares method

is employed minimizing the expression :

k∑
t=1

(
d(t) − f (t)

a

)2

(4)

for all the values of the parameters p determining the regression function, which corresponds
to (2) for a unit weight function. By the dependence type of the coefficients p, with respect
to the regression function, regression models are divided into :

– linear models – linear with respect to the model coefficients,
– nonlinear models – nonlinear with respect to the model coefficients.

In many cases, determining the adequacy of a model may be rather tricky and contro-
versial even if many applicable statistical criteria exist [12, 14].
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3.1. Polynomial regression

A polynomial regression function is among the most frequently used regression models.
Such a model is based on a regression function written as :

fa =
m∑

j=0

pj x
j . (5)

To determine the degree m of the polynomial, the following approaches based on statistical
methods may be used [1, 8] :

1. a model with m = 0 is used as a starting one, in each step testing whether another
degree needs to be added. If such a next term is found to be statistically insignificant,
the algorithm stops,

2. a model with m = maxm is used as a starting one based on theoretical grounds or
practical restrictions. Then we proceed as in the previous case but, this time, reducing
m step by step,

3. finally, a penalizing function may be introduced providing a relative price to be paid
for adding another parameter.

Fig.2: Example of a polynomial regression for data b17

For the data class given (see, for example, Table 1, Fig. 1) also this class of regression
functions was tested for comparison. The result proved to be unsuitable, which can, for
example, be seen in Fig. 2. Moreover, the chances of affecting the negative values of the
regression model by (3) were relatively small.

3.2. Radial basis regression

Based on the facts described in the previous paragraph, a regression model with different
and ‘more suitable’ properties with respect to the physical and technical constraint of the
problem in question (1.4) and to the expected shape of the regression was used. A Radial
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Basis Function (RBF) serves as the basis of this function class. The following (Gauss-curve-
based) function is a typical representative of this class :

ϕj(x,xj , sj) = exp

[
−

( |x − cj |
sj

)2
]
, sj > 0 . (6)

Each RB function is generally determined by n parameters. The regression considered is
formed by h linear combinations of RBF’s ϕj :

fa =
h∑

j=1

wj ϕj(x, cj , sj) or fa =
h∑

j=1

wj ϕj(x, cj , sj) + w0 (7)

with wj , cj and sj being unknown coefficients (parameters p).

Thus, in a general case, the searched for regression function has the following form :

fa =
h∑

j=1

pj,1 ϕj(x,pj,2) or fa =
h∑

j=1

pj,1 ϕj(x,pj,2) + p0,1 , (8)

where ϕj . . . general RBF, pj,1 . . . RBF linear combination coefficients, pj,2 . . . RBF pa-
rameters (the second index indicating parameter count), p0,1 . . . additional RBF coefficient.

In the regression function considered, a ‘suitable behaviour’ can be found, that is a pro-
perty, with respect to the problem in question and the GA methods further used :

– each RB function may be designed as positive and bounded,
– ‘control’ of the model as defined by (3) can be implemented well because of its pa-

rameters p and the nature of (6) and (8),
– if conditions (12), (13) and (14) are met, a sufficient condition for the regression model

being non-negative, that is, an approximation of (3) may be set as follows :

pj,1 ≥ 0 , (9)

– according to [3, 4] an RBF model will be less sensitive to the coefficient than a poly-
nomial model.

3.3. RBF neural networks

As a model, also a new and, in many respects, very ‘strong’ artificial-neural-network type
should be mentioned, Radial Basis Function Network – RBFN. This is a model of a forward
neural network with a layer containing what is referred to as local units. With respect to
the perceptrons, such units have a behaviour which is dual in a certain sense :

– perceptron – divides the input space into two subspaces with markedly different output
values,

– local units – the relevant neuron output is localised in a neighbourhood of the point
given by its parameters.

Models of such artificial neural networks were first discovered and investigated in the early
1980’s. This new model was designed and used in (1988, 1989) by Broomhead and Low [2].
The basic results on RBF-network approximation come from Powell [13] and Micchelli [9].
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Fig.3: RBF neural network, basic diagram

Next the development of the RBF networks was strongly influenced by the results of Moody
and Darken as well as Poggio and Girosi [11]. A very well researched and comprehensive
description can be found in [4, 15], and an algorithmization of the learning rules in [5].

RBF unit (RBF neuron), denoted by ϕ, has n real input values x = (x1, . . . , xn) and one
real output value y. A parameter c is assigned to each of these input values. The output
value is calculated by a transfer function applied to the inner potential of the unit, see below.
The unit has a parameter s, which is the spread of the RBF unit. The inner potential of an
RBF unit ξ is calculated as the distance of the input vector x from the centre of the RBF
unit c using a Euclidean metric �E.

ξ =
‖x− c‖

s
. (10)

The output value y is obtained by applying the transfer function ϕ to the potential ξ.

y = ϕ(ξ) . (11)

A whole range of transfer functions may be designed. Because of their specific properties,
such functions are called radial. A radial function may be thought of as one determined
by a significant point, a centre c, assigning the same values to arguments equally distant
from c.

Fig.4: An RBF unit in 3D space
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Their further properties include :

– locality (see above), e.g. for a function of one variable by :

∞∫
−∞

f(x) .=

b∫
a

f(x) , (12)

with f(x) being a transfer function (RBF) and a, b being the boundary values of the
interval, for which, with respect to the centre of the RB function, we already have :

a∫
−∞

f(x) dx ≈ 0 ,

∞∫
b

f(x) dx ≈ 0 , (13)

This property is important because of the approximation properties of the RBF net-
works.

– functional properties of D(f) . . . domain and H(f) . . . — range, by :

D(f) ⊆ � , H(f) ⊆ (0, 1] . (14)

This property is advantageous because of the functional constraint of the approxima-
tion (3), which is required in the technical application in question.

The following is a typical RB function used in RBF networks :

ϕj(x) = exp

[
−

(‖x − cj‖
sj

)2
]
, for sj > 0 , i = 1, 2, . . . , h . (15)

The input layer of an RBF network contains n units corresponding to the n-dimensional input
values. To each connection between input value i and RBF unit j a weight cij (j = 1, . . . , h)
is assigned. Such a weight represents coordinate i of the centre cj of RBF unit j. The
output value of RBF unit j is connected to the output layer by a synopsis with a weight
wjs. The output units or neurons are linear and calculate a weighted sum of its input values.
An RBF network performs two different transformations. The first one, being implemented
by RBF units, is a linear transformation from �n to �h. The second transformation takes
this space of hidden units to the output space �m, is linear and implemented by the output
linear neurons of the network, Fig. 3.

As a rule, the learning process of an RBF network consists of three stages. Each stage
of the learning algorithm determines the values of another parameter group of the RBF
network. The following is a summary of an RBF network algorithm :

INPUT : training set of k patterns – {(x(t),d(t)), t = 1, . . . ,k}
OUTPUT : three algorithm stages calculating :

1. positions of h centres – centres of RBF units cj

2. parameters RBF – spread s and other parameters if any
3. weights wjs

Stage 1 : Determines the positions h of the centres of RBF units, in figures 3, 4 represented
by the weights between the input values and the RBF layer, that is, {cij ; i = 1, . . . , n;
j = 1, . . . , h}. Basically, at this stage, the densities of the pattern occurrences are appro-
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ximated. There may be several approaches: uniform distribution – regular arrangement
of the h centres of the RBF units all over the input space, random patterns – h random
training patterns are chosen and the centres of the RBF units are placed on their input
parts, optimum patterns – the method [15] selects h training patterns serving as the centres
of the RBF units, self-organization – k-means clustering [5] etc.

Stage 2 : This is to set further parameters of the RBF units if they exist or are adapted.
By (15), parameter s represents the spread of an RB function, that is, the size of the con-
trolled area and influences the generalization abilities of an RBF network. Parameter s is
mostly set in proportion to average Euclidean distances q of the nearest neighbours of a unit.

Stage 3 : Is referred to as learning with a teacher, which means that a training set
{(x(t),d(t))} is used to set the parameters. At this stage, the weights wjs, or wj are adapted
as the coefficients of a linear combination of RBF units. Optimum weights wj are found
using an error function E(w)

E(w) =
1
2

k∑
t=1

∥∥∥d(t) − y(t)
∥∥∥ (16)

using a direct method
w =

(
ΦT Φ

)−1
ΦT d (17)

with Φ = (ϕij)i,j = ϕ(‖xi − cj‖), i, j = 1, . . . , h, or using an iterative procedure described
by the theory of linear neural networks, denoted by LMS or Widrow-Hoff algorithm [15]

w(i+ 1) = w(i) + lr e(i)xT(i) , (18)

where lr – learning parameter, step; e – RBF network error; i – iteration number.

4. Design of a regression model and GA optimization

Based on the type of the actual data, and the resulting shape of the regression function,
the number of the RBF units was set at h = 3. This also determines the maximum number
of parameters p of the model (degrees of freedom) for the neural network in question, which,
by (7) and (8) for an RBF network, is :

fapprox.RBFN =
h∑

j=1

pj,1 ϕ(x,pj,2) + p0,1 =
h∑

j=1

wj ϕ(x, cj , s) + w0 . (19)

The results and previous experience from implementing classical RBF neural networks
were used to design a more ‘vivid’ RFB-based model. A change as compared with model (19)
consists in introducing a variable basis spread parameter for each RBF unit and removing
the shift parameter fa. The model parameterization corresponds to (20).

fapprox.RBFGA =
h∑

j=1

pj,1 ϕ(x,pj,2) =
h∑

j=1

wj ϕ(x, cj , sj) . (20)

Description Denoted in graphs as by (19) number of parameters

RBF centre coordinates RBcenter c1, . . . , c3 3

RBF spread RBspread s 1

RBF weight (size, amplitude) RBweight w1, . . . , w3 3

fa shift along y axis RByshift w0 1

Tab.2: Description of the symbols used in the parameterized RBFN model
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Description Denoted in graphs as by (20) number of parameters

RBF centre coordinates RBcenter c1, . . . , c3 3

RBF spread RBspread s1, . . . , s3 3

RBF weight (size, amplitude) RBweight w1, . . . , w3 3

Tab.3: Description of the symbols used in the parameterized RBFGA model

The GA optimization mechanism application was tested with 2 alternative settings :
1. With the RBcenter parameter range within the domain of the data to be approximated.

This solution proved to be rather unsatisfactory, Fig. 5. Even if the MSE values or
the regression coefficients were better, this variant was rejected already by visual
inspection.

2. With the RBcenter parameter range within an extended interval.
This approach proved to be very efficient even when tested with another two sub-
settings 2A a 2B.

The basic characteristics and parameters of the GA employed were established in an
expert way in view of the problem in question. A GATE toolbox in the Matlab environment
was used for the solution. The average number of generations used to achieve the results
presented was 200.

GA data characteristic GA operator characteristic

funName faprox6 nParam 9 select(GA,’tournamentE’,4)

funOpt min nBitParam 10 cross(GA,’pcross’,[0.8 3])

iType [–] mInit random mutation(GA,’bitmut’,0.02)

mCode GC nIndi 100 mod(GA.nGener,20)==0

iParam by settings 2A, 2B mutationHC(GA,’HC12’,5,’rand’,5,...)

2B 2A [-0.5 3]; elite(GA,’clone’,3,’refine’)

[-1.0 0.0;-1.0 0.0;-1.0 0.0;-1.0 0.0;-1.0 0.0;-1.0 0.0; -0.5 0.0; 0.01 1.0; 0.0 3.0;0.0 3.0;0.0 3.0;0.0 3.0;0.0 3.0;0.0 3.0; 0.0 1.0; 0.01 4.0; 0.0 3.0;0.0 3.0;0.0 3.0;0.0 3.0;0.0 3.0;0.0 3.0; 1.0 3.0; 0.01 6.0]

Tab.4: Description of the GA used to find the optimum
parameters of the fapprox.RBFGA model

Fig.5: RBFGA data approximation for setting 1
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The following is a simplified description of the goal function used with the domain of the
parameters p being expressed symbolically with respect to Table 4 :

fobjSSE.RBFGA = (d− fapprox.RBFGA(x,p))2 + fpenalization ,

min fobjSSE.RBFGA = min{fobjSSE.RBFGA(p)|p ∈ [data set 2A, 2B]} . (21)

The coding of the bit string parameters (individuals) was done sequentially for each RBF
unit as shown below.

Fig.6: System of the actual parameter bit string encoding and
the meaning of the parameters for the RBF units

A common basis for setting 2 as described below was the normalization of the approxi-
mated data by a linear transformation TD→U on the universe U ∈ [0, 1]2 with the meaning
of the x-axis and y-axis coordinates remaining the same. In this way, a uniform setting
of the parameter intervals with respect to any data approximated could be achieved. An
inverse transformation TU→D of the model parameters calculated was performed after the
optimization algorithm was finished. The difference between settings 2A and 2B is as fol-
lows :

2A: a single interval p ∈ [−0.5, 3] used of the optimized parameter values.
2B: a more logical interval structure is used related to the nature of the data, for each

parameter p, a particular interval is determined by Table 4. In this case, the RBF
unit position space is divided as shown by Fig. 7. Thanks to this method of encoding
of the RBF unit centre intervals, the initial point penalization could be removed.

Fig.7: Positions of the RBF centre intervals in setting 2B

As compared with 2A, the setting 2B had a greater frequency during the tests made,
which was due to the more precise specification of the RBF unit parameter intervals. On
the other hand, setting 2A is designed more generally, that is, outside the technological data
considered. The non-negativity test of the entire approximation function for setting 2B
was simpler because of the non-negative RBweight parameters consisting of only one condi-
tion (22). With this condition, the technical nature of the problem was of course taken into
consideration, that is, the interval domain in question beginning at zero.

fapprox.RBFGA(0) ≥ 0 . (22)
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In both settings (2A, 2B), due to the nature of the RBF, it was not necessary to include
the non-negativity in the goal function (21) with the non-negativity check being made only
after terminating the GA optimization process.

The following figures show the part of the space in which the (RBcenter) positions and
other parameters (RBweight, RBspread) of the units were searched for. The small circles
stand for the approximated data transformed into the universe U ∈ [0, 1]2.

Fig.8: The approximated data b17 (left) and a48 (right) in the normalized
universe U and the RBFGA approximation found

Fig.9: RBFGA approximation of data b17, setting 2
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Fig.10: RBFGA approximation of data a48, setting 2

5. Conclusion

The graphs in Fig. 9, 10 show examples of the results obtained using the method de-
scribed. Using Table 1, the reader can test the design and optimization of the regression
model by an easy experiment comparing the results achieved. In [6] the (GA) optimiza-
tion method used was compared with the standard three-stage learning method and with
direct optimization of all the parameters by non-linear solvers (Gauss-Newton, Levenberg-
Marquardt algorithm).

In this paper, a solution was presented to a non-linear regression problem on a given
class of technological data. Determining the dependency of the deformation rate on the
deformation degree is an important characteristic for the design of a technological process of
material forming. For such a process, a constraint is explicitly given on the non-negativity
of the model function value, which may complicate the model design in a considerable way.
The solution presented provides a suitable non-linear model in the form of RBF functions
and a method suitable for its optimization, in particular, using direct optimization of all
the RBF network parameters rather than a standard three-stage learning method. The GA
method given along with the model designed proved to be very efficient. Further use of the
procedure design is of course not restricted to the particular data class used.
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