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FINITE ELEMENT FOR ANALYSIS OF BEAMS
STRENGTHENED BY BONDED COMPOSITE STRIPS

Dobromir Dinev*

This paper presents a finite element for the analysis of beams strengthened by com-
posite strips. The element is based on a mixed formulation of the mechanical model
of the strengthened beam, the adhesive and the composite strip, working simulta-
neously. This solution allows us to study the influence of the adhesive layer on the
behaviour of the strengthened beam.

The proposed element is verified with solutions of other analytical models or dif-
ferent finite element models and schemes.

Keywords : FRP strengthening, finite element formulation

1. Introduction

The increase of beams’ bending capacity is considered to be the most effective appli-
cation of FRP in the building industry. Many laboratory tests deal with failure modes of
strengthened beams. They show that the strengthened system, which includes the beam,
the adhesive and the FRP strip, has a different behaviour than other types of strengthening
such as reinforced concrete jacketing, prestressing of the structural elements, steel jacketing
or addition of external steel elements.

For design purposes, the strengthened system is assumed to fail when the FRP strip
breaks. In many cases, the failure mode of the system is the FRP strip debonding. This
dangerous brittle failure cannot be neglected.

A lot of research work focuses on the analysis of this failure. The laboratory tests and
the analytical models related to the behaviour of the bonded joints and the separation of
the adherents are studied in details in [7, 13, 21]. The effect of debonding of the composite
strip due to bending of strengthened beams is also studied very carefully. In addition to
the experimental tests in [3, 12], the separation of the FRP from the beam is analyzed by
analytical methods presented in [2, 4, 5, 8, 9, 11, 14, 16, 17, 20–22,24–26] and by finite element
models applied in [1, 3, 5, 14, 19, 23].

The proposed finite element is based on the analytical model presented in [5]. This model
is constrained by the assumptions for the adhesive layer and the composite strip, suggested
in [26] and [22]. The model assumes that the FRP strip has only axial stiffness and the
strengthened beam is modelled according to the Timoshenko hypothesis. The bonding effect
between the two adherents is expressed by the work of the shear stresses in the adhesive layer.
This assumption implies constant shear stress in the adhesive. The differential element of
the strengthened system is shown in Fig. 1.
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Fig.1: Differential element (a) and kinematics of deformations (b) and (c)

The equilibrium equations for the strengthened system are

Eb Ab uob,xx + b σa = 0 ,

A11 uofrp,xx − b σa = 0 ,

kb Gb Ab (wb,xx − θb,x) + qb = 0 ,

Eb Ib θb,xx + kb Gb Ab (wb,x − θb) − b Hb σa = 0 ,

uob − uofrp − Hb θb +
ta
Ga

σa = 0 ,

(1)

where (.),x is differentiation of (.) with respect to x; Eb is modulus of elasticity of the beam’s
material; Gb is shear modulus of the beam’s material; Ab and Ib are the area and the moment
of inertia of the beam’s cross-section; Hb is depth of the beam; kb is shear correction factor
for the beam’s cross-section; b and ta are the width and thickness of the FRP strip; A11 is
membrane stiffness of the laminate [18]; Ga is shear module of the adhesive; nb, qb and
mb are the axially and transversally distributed loads and moments along the beam’s axis;
uofrp, uob , wb and θb are the axial and transversal displacements and rotations of the FRP
strip and the strengthened beam; σa is shear stress in the adhesive layer.

2. Element formulation

The general-purpose computer programs are the common tools for finite element analysis
of beams strengthened with bonded fiber reinforced polymer (FRP) strips. Usually, the beam
and the FRP strip are modelled with frame elements. Spring elements represent the adhesive
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layer. Another option is presented by plane stress elements for the whole strengthened
system. A third possibility is to apply brick (solid) elements for the beam and the adhesive
and shell or plate elements for the FRP strip. The significant differences between thicknesses
of the components of the strengthened system leads to difficulties with the finite element
meshing. Some problems call for including specific elements, which represent the non-linear
behaviour of the materials. This additionally complicates the solution of the problem.

This study focuses on the formulation, implementation and validation of a proposed finite
element, which represents the behavior of the strengthened beam, the adhesive and the FRP
strip, working simultaneously.

The formulation of the presented finite element is based on the idea of the Hellinger-
Reissner mixed functional [6]. The approximated stress master field is presented by the
shear force in the strengthened beam. The generalized displacements of the strengthened
beam and the FRP strip are the displacements master fields used for the finite element
formulation.

The next steps for the derivation of the stiffness matrix are based on the mechanics of
materials approach. The assumed shear force field is used for the solution of the equation
which is related to the shear stresses in the adhesive layer. The remaining equilibrium
equations are solved with appropriate boundary conditions.

The last equation of (1) gives the expression for the shear stress in the adhesive layer

σa =
Ga

ta
(uofrp − uob + Hb θb) . (2)

The first-order shear-deformation beam theory (Timoshenko hypothesis) gives the rela-
tionships between the internal forces and the displacements

Nb = Eb Ab uob,x , Mb = −Eb Ib θb,x ,

Vb = kb Gb Ab (wb,x − θb) , Nfrp = A11 uofrp,x .
(3)

The equilibrium equations for the differential element of the strengthened system (Fig. 1)
show the relation between internal forces and shear stresses

Nb,x = −b σa , Nfrp = b σa , Vb,x = −qb , Mb,x = Vb − b Hb σa . (4)

Differentiation of (2) and the combination with (3) and (4) leads to

σa,xx − α2 σa +
Hb Ga

Eb Ib ta
Vb = 0 , (5)

where

α2 =
Ga b

ta

(
1

A11
+

1
Eb Ab

+
H2

b

Eb Ib

)
. (6)

The general solution of the differential equation (5) can be written as

σa = C1 e(αx) + C2 e(−αx) + σp
a . (7)

The particular solution σp
a depends on the function of shear force in the strengthened beam,

which is the non-homogeneous part of the equation (5). In order to derive the elements
of the stiffness matrix, the generalized displacements of the end nodes of the strengthened
system are assigned unit values. The solution of the equations (1) shows that the shear
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force Vb is a constant function along the beam’s length. The constants of integration C1

and C2 are arbitrary and can be derived from the boundary conditions for the adhesive
layer. They may also depend on loading.

In order to apply the Timoshenko beam theory we can introduce

Φ =
12 Eb Ib

kb Gb Ab L2
, (8)

a dimensionless measure of the flexural-to-shear stiffness ratio [15]. The equilibrium equa-
tions (1) can be re-written as

Eb Ab uob,xx + b σa = 0 ,

A11 uofrp,xx − b σa = 0 ,

12
Eb Ib

Φ L2
(wb,xx − θb,x) + qb = 0 ,

Eb Ib θb,xx + 12
Eb Ib

Φ L2
(wb,x − θb) − b Hb σa = 0 ,

uob − uofrp − Hb θb +
ta
Ga

σa = 0 .

(9)

Fig.2: Generalized displacements for the proposed finite element

The nodal parameters selected for the displacements’ degrees of freedom are (Fig. 2) :
– An axial displacement of the left (right) end node of the strengthened element – u1

(u5);
– An axial displacement of the left (right) end node of the strengthening strip – u2 (u6);
– A transversal displacement of the left (right) end node of the strengthened element

– u3 (u7);
– A rotation of the left (right) end node of the strengthened element – u4 (u8).

Stiffness elements are derived from internal forces with the corresponding generalized
displacements ui = 1

k1i = −Nb(0) , k2i = −Nfrp(0) , k3i = −Mb,x(0) − b Hb σa(0) , k4i = −Mb(0) ,

k5i = Nb(L) , k6i = Nfrp(L) , k7i = Mb,x(L) + b Hb σa(L) , k8i = Mb(L) .
(10)

2.1. Unit axial displacement u1 of the left end node of the strengthened frame
element

In case of axial displacement u1 = 1 the function of displacement can be set as uob(0) = 1
and the shear force function can be assumed to be Vb(x) = 0. The necessary boundary con-
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ditions for the frame element and the FRP strip used to determine the integration constants
in the general solution are

ub(0) = 1 , ufrp(0) = 0 , wb(0) = 0 , θb(0) = 0 ,

ub(L) = 0, ufrp(L) = 0 , wb(L) = 0 , θb(L) = 0 .
(11)

The substitution of the boundary conditions (11) in (2) leads to the boundary conditions
for the shear stresses in the adhesive layer

σa(0) = −Ga

ta
, σa(L) = 0 . (12)

The boundary conditions (12) will be used to complete the general solution for the shear
stresses, which are necessary to solve the remaining differential equations.

The general solution of eqn. (5) is

σa(x) =
e−xα (e2xα − e2Lα)Ga

(e2Lα − 1) ta
. (13)

Now the expression for shear stress (13) can be substituted in the first four equations
of (9). These equations, together with the boundary conditions (11), lead to the analytical
solutions for the generalized displacements. Relationships (3) give the functions for the
internal forces.

The stiffness coefficients are derived from (10) and are

k11 =
Ab (−1 + e2Lα)Eb ta α2 + b Ga [1 + L α + e2Lα(−1 + L α)]

(−1 + e2Lα)L ta α2
,

k21 = −b Ga [1 + L α + e2Lα (−1 + L α)]
(−1 + e2Lα)L ta α2

,

k31 =
6 b Ga Hb [2 + L α + eLα (−2 + L α)]

(1 + eLα)L3 ta α3 (1 + Φ)
,

k41 =
1

(−1 + e2Lα)L2 ta α3 (1 + Φ)

(
b Ga Hb

{
6 − 12 eLα + L2 α2 (1 + Φ) +

+ L α (4 + Φ) + e2Lα [6 + L2 α2 (1 + Φ) − L α (4 + Φ)]
})

,

k51 =
−Ab (−1 + e2Lα)Eb ta α2 + b Ga (−1 + e2Lα − 2 eLα L α)

(−1 + e2Lα)L ta α2
,

k61 =
b Ga (1 − e2Lα + 2 eLα L α)

(−1 + e2Lα)L ta α2
,

k71 = −6 b Ga Hb (2 + L α + eLα (−2 + L α))
(1 + eLα)L3 ta α3 (1 + Φ)

,

k81 =
1

(−1 + e2Lα)L2 ta α3(1 + Φ)

(
b Ga Hb

{
6 + e2Lα [6 + L α (−2 + Φ)] −

− L α (−2 + Φ) − 2 eLα [6 + L2 α2 (1 + Φ)]
})

.

(14)
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2.2. Unit axial displacement u2 of the left end node of the strengthening strip

Similar to the previous case u2 = 1, uofrp(0) = 1 and Vb(x) = 0. The boundary conditions
for the frame element and the FRP strip are

ub(0) = 0 , ufrp(0) = 1 , wb(0) = 0 , θb(0) = 0 ,

ub(L) = 0 , ufrp(L) = 0 , wb(L) = 0 , θb(L) = 0 .
(15)

The boundary conditions for the shear stresses in the adhesive layer are

σa(0) =
Ga

ta
, σa(L) = 0 . (16)

The general solution for the shear stress is

σa(x) = −e−xα (e2xα − e2Lα)Ga

(e2Lα − 1) ta
. (17)

This expression for shear stress (17) and the boundary conditions (15) can be used to
solve the first four equations of (9).

The stiffness coefficients are derived from (10) and are

k22 =
A11 (−1 + e2Lα) ta α2 + b Ga[1 + L α + e2Lα (−1 + L α)]

(−1 + e2Lα)L ta α2
,

k32 = −6 b Ga Hb [2 + L α + eLα (−2 + L α)]
(1 + eLα)L3 ta α3 (1 + Φ)

,

k42 = − 1
(−1 + e2Lα)L2 ta α3(1 + Φ)

(
b Ga Hb

{
6 − 12 eLα + L2 α2 (1 + Φ) +

+ L α (4 + Φ) + e2Lα [6 + L2 α2 (1 + Φ) − L α (4 + Φ)]
})

,

k52 =
b Ga [1 − e2Lα + 2 eLα L α]

(−1 + e2Lα)L ta α2
,

k62 =
−A11 (−1 + e2Lα) ta α2 + b Ga (−1 + e2Lα − 2 eLα L α)

(−1 + e2Lα)L ta α2
,

k72 =
6 b Ga Hb [2 + L α + eLα (−2 + L α)]

(1 + eLα)L3 ta α3 (1 + Φ)
,

k82 = − 1
(−1 + e2Lα)L2 ta α3 (1 + Φ)

(
b Ga Hb

{
6 + e2Lα [6 + L α (−2 + Φ)] −

− L α (−2 + Φ) − 2 eLα [6 + L2 α2 (1 + Φ)]
})

.

(18)

2.3. Unit transversal displacement u3 of the left end node of the frame element

Let the transversal displacement of the left node of the frame element be u3 = 1, i.e.
wb(0) = 1. For this case with accuracy of 0.1% the shear force function can be assumed to
be

Vb(x) = − 12 Eb Ib

L3 (1 + Φ)
. (19)
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The boundary conditions for the frame element and the FRP strip are

ub(0) = 0 , ufrp(0) = 0 , wb(0) = 1 , θb(0) = 0 ,

ub(L) = 0 , ufrp(L) = 0 , wb(L) = 0 , θb(L) = 0 .
(20)

The boundary conditions for the shear stresses in the adhesive layer are

σa(0) = 0 , σa(L) = 0 . (21)

The general solution for the shear stress can be written as

σa(x) =
12 e−xα (exα − 1)(exα − eLα)Ga Hb

(1 + eLα)L3 ta α2 (1 + Φ)
. (22)

This expression for the shear stress (22) and the boundary conditions (20) can be used
to solve the first three equations of (9).

The stiffness coefficients are

k33 =
12

(1 + eLα)L6 ta α5 (1 + Φ)2
{

b Ga H2
b

[−24 − 12 L α + L3 α3 +

+ eLα(24 − 12 L α + L3 α3)
]
+ (1 + eLα)Eb Ib L3 ta α5 (1 + Φ)

}
,

k43 = − 6
(1 + eLα)L5 ta α5 (1 + Φ)2

(
(1 + eLα)Eb Ib L3 ta α5 (1 + Φ) −

− b Ga H2
b

{
24 + 12 L α + L3 α3 Φ + 2 L2 α2 (1 + Φ) +

+ eLα [−24 + 12 L α + L3 α3 Φ − 2 L2 α2 (1 + Φ)]
})

,

k53 =
6 b Ga Hb [2 + L α + eLα (−2 + L α)]

(1 + eLα)L3 ta α3 (1 + Φ)
,

k63 = −6 b Ga Hb [2 + L α + eLα (−2 + L α)]
(1 + eLα)L3 ta α3 (1 + Φ)

,

k73 = − 12
(1 + eLα)L6 ta α5 (1 + Φ)2

{
b Ga H2

b

[−24 − 12 L α + L3 α3 +

+ eLα (24 − 12 L α + L3 α3)
]
+ (1 + eLα)Eb Ib L3 ta α5 (1 + Φ)

}
,

k83 = − 6
(1 + eLα)L5 ta α5 (1 + Φ)2

(
(1 + eLα)Eb Ib L3 ta α5 (1 + Φ) −

− b Ga H2
b

{
24 + 12 L α + L3 α3 Φ + 2 L2 α2 (1 + Φ) +

+ eLα [−24 + 12 L α + L3 α3 Φ − 2 L2 α2 (1 + Φ)]
})

.

(23)

2.4. Unit rotation u4 of the left end node of the frame element

The rotation of the left node of the frame element u4 = 1 implies θb(0) = −1 and the
function of shear force is

Vb(x) = 6
Eb Ib

L2 (1 + Φ)
. (24)
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The boundary conditions for the frame element and the FRP strip are

ub(0) = 0 , ufrp(0) = 0 , wb(0) = 0 , θb(0) = −1 ,

ub(L) = 0 , ufrp(L) = 0 , wb(L) = 0 , θb(L) = 0 .
(25)

The boundary conditions for the shear stresses in the adhesive layer are obtained as
follows

σa(0) = −Ga Hb

ta
, σa(L) = 0 . (26)

The equations (26) give the integration constants and the general solution for the shear
stress is

σa(x) = − 1
(−1 + e2Lα)L2 ta α2 (1 + Φ)

e−xα
(−eLα + exα

)
Ga Hb

(
6 − 6 eLα −

− 6 exα + 6 eLα+xα − eLα L2 α2 − exα L2 α2 − eLα L2 α2 Φ − exα L2 α2 Φ
)

.

(27)

The expression for shear stress (27) and the boundary conditions (25) can be used to
solve the four equations of (9).

In this case the stiffness coefficients are

k44 =
1

(−1 + e2Lα)L5 ta α5 (1 + Φ)2
(
(−1 + e2Lα)Eb Ib L4 ta α5 (1 + Φ) (4 + Φ) −

+ b Ga H2
b L

{
72 + 36 L α + 12 L2 α2 (1 + Φ) + L4 α4 (1 + Φ)2 +

+ L3 α3 (4 + 8 Φ + Φ2) − 24 eLα [6 + L2 α2 (1 + Φ)] +

+ e2Lα [72 − 36 L α + 12 L2 α2 (1 + Φ) + L4 α4 (1 + Φ)2 −
− L3 α3 (4 + 8 Φ + Φ2)]

})
,

k54 =
1

(−1 + e2Lα)L2 ta α3 (1 + Φ)
b Ga Hb

{
6 + e2Lα [6 + L α (−2 + Φ)] −

− L α (−2 + Φ) − 2 eLα [6 + L2 α2 (1 + Φ)]
}

,

k64 = − 1
(−1 + e2Lα)L2 ta α3 (1 + Φ)

b Ga Hb

{
6 + e2Lα [6 + L α (−2 + Φ)] −

− L α (−2 + Φ) − 2 eLα [6 + L2 α2 (1 + Φ)]
}

,

k74 =
6

(1 + eLα)L5 ta α5 (1 + Φ)2
(
(1 + eLα)Eb Ib L3 ta α5 (1 + Φ) −

− b Ga H2
b

{
24 + 12 L α + L3 α3 Φ + 2 L2 α2 (1 + Φ) +

+ eLα[−24 + 12 L α + L3 α3 Φ − 2 L2 α2 (1 + Φ)]
})

,

k84 =
1

(−1 + e2Lα)L4 ta α5 (1 + Φ)2
(
−(−1 + e2Lα)Eb Ib L3 ta α5 (−2 − Φ + Φ2) +

+ b Ga H2
b

{
72 + 36 L α + 12 L2 α2 (1 + Φ) + L3 α3 (2 + 4 Φ − Φ2) −

− 2 eLα [72 + 12 L2 α2 (1 + Φ) + L4 α4 (1 + Φ)2] +

+ e2Lα [72 − 36 L α + 12 L2 α2 (1 + Φ) + L3 α3 (−2 − 4 Φ + Φ2)]
})

.

(28)
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Due to the symmetry of the proposed finite element, the generalized displacements of
the right end node will yield similar stiffness coefficients

k55 = k11 , k65 = k21 , k75 = −k31 , k85 = k41 ,

k66 = k22 , k76 = −k32 , k86 = k42 ,

k77 = k33 , k87 = −k43 ,

k88 = k44 .

(29)

The final form of the stiffness matrix is

k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11 k12 k13 k14 k15 k16 k17 k18

k22 k23 k24 k25 k26 k27 k28

k33 k34 k35 k36 k37 k38

k44 k45 k46 k47 k48

k55 k56 k57 k58

symm. k66 k67 k68

k77 k78

k88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

The stiffness matrix can be easily transformed, according to the Euler-Bernoulli theory,
by setting the coefficient Φ = 0.

The elements of the generalized nodal forces caused by a uniform transversal load are

f1 = −b Ga Hb qb [−12 − 6 L α − L2 α2 + eLα (12 − 6 L α + L2 α2)]
12 (−1 + eLα)Ea Ib ta α4

,

f2 =
b Ga Hb qb [−12 − 6 L α− L2 α2 + eLα (12 − 6 L α + L2 α2)]

12 (−1 + eLα)Eb Ib ta α4
,

f3 = −L qb

2
,

f4 =
1

12 (−1 + eLα)Eb Ib ta α4
qb

{
(−1 + eLα)Eb Ib L2 ta α4 +

+ b Ga H2
b [12 + 6 L α + L2 α2 − eLα (12 − 6 L α + L2 α2)]

}
,

f5 =
b Ga Hb qb [−12 − 6 L α− L2 α2 + eLα (12 − 6 L α + L2 α2)]

12 (−1 + eLα)Eb Ib ta α4
,

f6 = −b Ga Hb qb [−12 − 6 L α − L2 α2 + eLα (12 − 6 L α + L2 α2)]
12 (−1 + eLα)Eb Ib ta α4

,

f7 = −L qb

2
,

f8 =
1

12 (−1 + eLα)Eb Ib ta α4
qb

{
−(−1 + eLα)Eb Ib L2 ta α4 +

+ b Ga H2
b [−12 − 6 L α− L2 α2 + eLα (12 − 6 L α + L2 α2)]

}
.

(31)

The load vector can be expressed as

f = [ f1 f2 f3 f4 f5 f6 f7 f8 ]T . (32)
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3. Numerical examples and verification

The numerical test, given below, shows the applicability of the proposed finite element.
A single-span simply-supported beam with uniformly distributed loading is analyzed in all
examples (Fig. 3). An FRP strip strengthens the full span of the beam.

Fig.3: Test example – simply supported beam

The results of the solution with the proposed element are compared to those obtained
by using different modelling schemes or a finite element mesh for the strengthened beam,
the adhesive and the FRP strip. The geometry of the cross-section of the beam and the
properties of the used materials are as follows : cross-section of the strengthened beam
– rectangular with dimensions B = 200 mm and H = 400mm; thickness of the adhesive
layer – ta = 2mm; FRP strip with dimensions b = 200mm and hfrp = 4mm; module of
elasticity of the beam’s material – Eb = 30GPa; module of elasticity of the FRP strip’s
material – E11 = 200GPa; shear module of the adhesive’s material – Ga = 3GPa.

Fig.4: Test models
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The comparative models for verification of the proposed element are follows (Fig. 4):

– The beam is tied at both ends by a FRP strip;

– The beam is meshed by 16 frame elements. Intermediate nodes are supported by
horizontal springs with equivalent stiffness obtained from the shear module of the
adhesive. These springs are at the level of the adhesive layer;

– The beam and the FRP strip are meshed by 16 frame elements. The interaction
between the two adherents is modelled by longitudinal springs with equivalent stiffness
obtained from the shear module of the adhesive;

– The beam and the FRP strip are meshed by 16 elements and the pairs are rigidly
connected;

– The beam and the strengthening strip are meshed by 320 frame elements, the adhesive
layer is modelled by using four-nodes plane stress elements;

– The beam, the strengthening strip and the adhesive are represented by four-nodes
plane stress elements. The adhesive layer is modelled by one element for thickness,
the FRP strip – by two elements and the beam – by 40 elements. In longitudinal
direction the whole system is meshed by 320 elements;

– The beam and the adhesive layer are represented by plane stress elements, the FRP
strip by frame elements. The mesh size is the same as in the previous case;

– The modified closed-form high-order theory introduced in [5].

In all tests the transversal displacement, the bending moment and the axial force are
observed for a control cross-section, located in the middle of the span. Maximum shear
stress is calculated for a cross-section located near the left (right) support. The results are
compared to those, obtained by solving the problem with two finite elements.

The compared results are shown in table 1.

Displacement Bending moment Axial force Shear stress
Models mm kNmm kN GPa

w % M % N % σmax %
Proposed element 0.753 0 21 792.7 0 19.04 0 0.00215 0

1 0.775 2.94 22 866.49 4.93 13.4 29.61 0 0
2 0.844 12.1 24 361.81 11.79 6.16 67.64 0.0023 6.64
3 0.85 13.0 24 572.36 12.75 5.036 73.55 0.00127 41.06
4 0.746 0.88 21 462.95 1.51 20.28 6.53 0 0
5 0.743 1.3 21 365.84 1.96 20.76 9.05 0.00222 3.05
6 0.754 0.17 21 350.77 2.03 20.83 9.44 0.00213 1.13
7 0.754 0.17 21 350.85 2.03 20.83 9.44 0.00213 1.13
8 0.739 1.79 21 256.04 2.46 21.29 11.85 0.00012 94.44

Tab.1: Test results

The proposed finite element is also verified with the test experiments presented in [10].
The report deals with the determination of the bending capacity of beams, strengthened
by various schemes of FRP strips. The difference between the vertical displacement of the
controlled cross-section for the tested specimen before the first significant cracking and the
vertical displacement obtained by the proposed finite element is within 7.6%. The differences
are due to an inexact support modelling, strengthening schemes and etc.
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4. Conclusions

The numerical tests prove the applicability of the proposed finite element. Let us assume
that the results of the solution of model 6, built with 13 760 four-node plane elements, are
sufficiently accurate. Then the comparison with the results obtained with other models leads
to the following conclusions:

– The application of the proposed finite element is efficient in terms of computer time
and resources;

– The proposed element is acceptably accurate – the transversal displacements are
smaller than those obtained with model 6 by 0.17%. The difference in the bending
moment is 2.03%, and the difference in the axial force is 9.44%;

– The element can be used for the analysis of thin or moderately thick beams;

– The model, which presumes only shear stiffness in the adhesive, does not adequately
describe the behaviour of the strengthened system. The normal stiffness of the adhe-
sive and the bending stiffness of the FRP strips have to be taken into account;

– The numerical solutions by 16 elements in models 1, 2 and 3 are inappropriate – the
axial force is between 29% and 73% less than that obtained in model 6;

– The ‘design’ model 4 is useful for a global analysis of strengthened beams. The model
cannot be applied to study the stresses in the adhesive layer;

– For a detailed analysis of the strengthened system it is advisable to use either a model
with plane or solid finite elements with fine meshing or special elements. A suitable
approach is to solve differential equations of analytical models such as those proposed
in [5, 14, 16, 21].
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