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A NUMERICAL INVESTIGATION
OF THE MODIFIED SHERMAN SYSTEMS

Svetoslav Nikolov*, Valentin Nedev**, Vassil Zlatanov***

The aim of this paper was to demonstrate that it is possible to control the chaos
into the Sherman system by linear feedback of own signals. After introducing of the
parameter ‘α’ in the z-equation (α→ α+ α1 x(t) + α2 y(t) + α3 z(t)), we study how
the global dynamics can be altered in a desired direction (αn are considered as free
parameters). We make a detailed bifurcation investigation of the modified Sherman
systems by varying the parameters αn. Finally, we calculate the maximal Lyapunov
exponent, where the chaotic motion of modified Sherman systems exists.

Keywords : chaotic dynamics, Sherman system, bifurcation, maximal Lyapunov ex-
ponent

1. Introduction

Autonomous nonlinear three-dimensional differential equation systems can display a rich
diversity of periodic and chaotic solutions dependent upon the specific values of one or more
bifurcation (control) parameters. It is well-known that in these systems the only possible
spectra, and the attractors, are as follows : a strange attractor, a two-torus, a limit cycle,
a fixed point [1–4]. For the experimentalist, it is of great importance to know if any large
deviation due to a change of parameter, occurs in his or her system. A better understanding
of typical bifurcations is therefore required [5–9].

Chaotic motions are based on homoclinic (heteroclinic) structures which instability ac-
companied by local divergence and global contraction. Meanwhile, the transition from sta-
bility to instability requires the vanishing of stable equilibrium states and of stable periodic
motions or sufficiently large increase in the periodic ones [10–12]. The stability loss can be
repeated many times, forming an infinite period-doubling (tripling) bifurcation series.

In the meantime on a 1961, Lorenz was shown a model of convective motion in a fluid
heated from below and cooled from above. After that, the Lorenz system has been studied in
detail because it is a treasure trove of interesting phenomena. It was the first widely known
chaotic system from a set of differential equations [13, 14]. In 1963 S. Sherman [15], carried
out a system of three first-order ordinary differential equations describing the behavior of
a nuclear spin generator (NSG). This system, not much referred to in literature, displays
a larger variety of behaviors (both regular and chaotic) than the Lorenz system [16, 17].
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Following [18, 19], now NSG is called the Sherman system (SS). This system has the form

ẋ = −β x+ y , (1)

ẏ = −x− β y (1 − k z) , (2)

ż = β [α (1 − z) − k y2] , (3)

where x, y and z are the components of the nuclear magnetization vector in the X , Y ,
Z-directions, and α, β and k are positive parameters, respectively. The stationary points of
the system (1)–(3) are

x̄1 = ȳ1 = z̄1 = 1 for all parametric values (4)

and if the condition k > (1+β2)/β2 is valid, the system possesses two additional stationary
points

x̄2,3 = ±
√
α [β2 (k − 1) − 1]

k β2
, ȳ2,3 = ±

√
α [β2 (k − 1) − 1]

k β
, z̄2,3 =

1 + β2

k β2
. (5)

The divergence of the flow (1)–(3) is

D3 =
∂ẋ

∂x
+
∂ẏ

∂y
+
∂ż

∂z
= −β (α+ 2 − k z) . (6)

The system (1)–(3) is dissipative, when D3 < 0, i.e. (α+ 2)/k > z.

For different choice of parameters α, β and k the regular and chaotic solutions (and
transition to chaos) of SS was investigated by [15, 16, 20]. For example, when α = 0.15,
β = 0.75 and k = 21.5 in [14], the chaotic motion of the system (1)–(3) is obtained.

In this study, our main goal is to investigate in what limits SS is structurally unsensitive.
One of the know approaches to this problem consist in the introduction of feedback of
own signals into the system’s parameters (α, β and k) assuming their linear dependence
on x(t), y(t) and z(t). Applied to the Lorenz system and Rossler system, this approach
yields very rich global dynamical behaviors [21–23]. In practice, it is often desired that
chaos be avoided and/or that the system performance be improved or changed in some
way. Given a chaotic attractor, one approach might be to make some large and possibly
costly alteration in the system which completely changes its dynamics in such a way as to
achieve the desired behavior [24]. In other words, here, having (1)–(3) as starting system, we
can alter considerably its global dynamical behavior with minimum changes of the system’s
mathematical structure. Following [22], this means some kind of control of chaos in SS.

We tried various combinations. It is easy to see that the most appropriate for ‘interven-
tion’ appears to be the z-equation in (3). Thus, we are going to present here some analytical
and numerical results when parameter α is replaced by α(x, y, z) as linear function :

α→ α+ α1 x(t) + α2 y(t) + α3 z(t) , (7)

where αn (n = 1 ÷ 3) are free parameters (which can be positive, zero or negative).

The scheme of the present paper is as follows. In section two we present analytical and
numerical (graphical) results concerning the system (1)–(3) for different values of αn when
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(i) α = 0.15, β = 0.75 and k = 2.5 (regular case – see [16, 20]); (ii) α = 0.15, β = 0.75 and
k = 21.5 (chaotic case – see [16, 20]). In section three we discuss and summarize our results.

2. Analytical and numerical results

In this section, we consider the system (1)–(3), which present an autonomous dynamical
model, when the parameter α is :

Case 1 (α2 = α3 = 0). After substitution of (7) into (3), the z-equation becomes

ż = β [(α+ α1 x) (1 − z) − k y2] . (8)

In this case, the equilibrium (steady state) points of the system (1)-(2)-(8) are :

x̄ =
1
β
ȳ , z̄ =

1
k

(
1
β2

+ 1
)
,

ȳ2 − α1

k β

[
1 − 1

k

(
1
β2

+ 1
)]

ȳ − α

k

[
1 − 1

k

(
1
β2

+ 1
)]

= 0
(9)

when the inequalities

1 − 1 + β2

k β2
> 0 ,

α2
1

k β2

(
1 − 1 + β2

k β2

)
+ 4α > 0 (10)

or

1 − 1 + β2

k β2
< 0 ,

α2
1

k β2

(
1 − 1 + β2

k β2

)
+ 4α < 0 (11)

are valid. If case (10) or (11) are not valid, the equilibrium point is only one with values
x̄ = ȳ = 0, z̄ = 1. The condition (10) is valid at k > 2.778, i.e. always. The condition (11)
is valid at α1 > 2.756 (when α = 0.15, β = 0.75 and k = 2.5 < 2.778).

In Figure 1, we fix α = 0.15, β = 0.75, k = 2.5 and vary the parameter α1 ∈ [5, 15]
(see Eq. (8)). Here we note that at these values of the parameters, the relation (11) is
valid. We show in Figure 1 (a) and (b) periodic orbits for α1 = 5 and α1 = 10. As the
parameter α1 is increased to α1 = 15, a periodic solution also take place. This result is
shown in Figure 1 (c).It is seen also that in Figure 1 (c) the chaotic-like transient regime is
very long.

Figure 2 shows the bifurcation diagrams for the system (1)-(2)-(8) : values of z coordi-
nate, zn, are plotted against α1 regarded as a continuously varying bifurcation (control)
parameter for α = 0.15, β = 0.75, k = 21.5 (chaotic case). We see that at α1 ∈ [0.01, 1] the
system (1)-(2)-(8) has chaotic solutions (Fig. 2b). When α1 ∈ [1, 3.8], the inverse bifurcations
occur. As α1 increased further α1 ∈ [3.8, 3.9] the period-doubling bifurcations take place. It
is interesting to note that after α1 = 3.9 (till the end of the interval) the inverse bifurcations
also occur. The similar behavior of the system (1)-(2)-(8) we have at α1 ∈ [−4.16,−0.01].
It is seen that the bifurcations diagrams in Fig. 2a and 2b are symmetrical.

Case 2 (α1 = α3 = 0). Following the same procedure, after substitution of (7) into (3), for
the equation (3), we can write

ż = β [(α+ α2 y) (1 − z) − k y2] . (12)
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Fig.1: Periodic solutions of system (1)-(2)-(8) at
α1 = 5 (a), α1 = 10 (b) and α1 = 15 (c)

Fig.2: Bifurcation diagrams zn versus α1 generated by computer solutions of the sys-
tem (1)-(2)-(8) computed with the parameters : α = 0.15, β = 0.75, k = 21.5,
α1 ∈ [−4.16,−0.01] (a) and α = 0.15, β = 0.75, k = 21.5, α1 ∈ [0.01, 5] (b)

In this case the system (1)-(2)-(12) has three fixed points

x̄ =
1
β
ȳ , z̄ =

1
k

(
1
β2

+ 1
)
,

ȳ2 − α2

k

[
1 −

(
1
β2

+ 1
)]

ȳ − α

k

[
1 −

(
1
β2

+ 1
)]

= 0 .
(13)
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if the inequalities

1 − 1 + β2

k β2
> 0 ,

α2
2

k

(
1 − 1 + β2

k β2

)
+ 4α > 0 (14)

or

1 − 1 + β2

k β2
< 0 ,

α2
2

k

(
1 − 1 + β2

k β2

)
+ 4α < 0 (15)

are valid. The condition (14) is always valid at k > 2.778, and the condition (15) is valid at
α2 > 3.674 (when α = 0.15, β = 0.75 and k = 2.5 < 2.778).

Fig.3: Bifurcation diagrams zn versus α2 generated by computer solutions of the
system (1)-(2)-(12) computed with the parameters : α = 0.15, β = 0.75,
k = 2.5, α2 ∈ [3.7, 40] (a); α = 0.15, β = 0.75, k = 21.5, α2 ∈ [−5,−0.01] (b);
and α = 0.15, β = 0.75, k = 21.5, α2 ∈ [0.01, 6] (c)

In Fig. 3 the bifurcation diagrams of the system (1)-(2)-(12) are shown. It can be seen
that at α2 > 25 chaotic solution occurs (Fig. 3a). In Figs. 3b and 3c, we illustrate the
bifurcation behavior of the system (1)-(2)-(12) for α = 0.15, β = 0.75, k = 21.5 and vary
the parameter α2. It is seen that when bifurcation parameter α2 increase, the system passes
from chaotic regime to regular one. In analogy with the previous case, the bifurcation
diagrams in Figs. 3b and 3c are also symmetrical. It is important to note that an apparent
sudden collapse in the size of a chaotic attractor occurs at a value of the control parameter
α2 ≈ ±2.8. Following [13, 25 and references therein], we conclude that such a sudden
qualitative change in a chaotic attractor is known as interior crisis. Specifically, at an
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interior crisis, the attractor jumps discontinuously in size. As bifurcation parameter passes
the critical one, the attractor collides with a saddle fixed point or periodic point p and
suddenly incorporates the outward branch of the unstable manifold of p. Here we note that
the modified system (1)-(2)-(12) has a new geometry (compared to Fig. 4a which is obtained
for original system (1)–(3)) of the strange attractor (see Fig. 4b).

Fig.4: Chaotic attractors of the system (1)-(2)-(12) at α = 0.15, β = 0.75, k = 2.5,
α2 = 27 (a); and of the system (1)–(3) at α = 0.15, β = 0.75, k = 21.5 (b)

Case 3 (α1 = α2 = 0). Replacing equation (7) into (3), we obtain for z-equation

ż = β [(α+ α3 z) (1 − z) − k y2] . (16)

The equilibrium points of the system (1)-(2)-(16) are :

x̄ =
1
β
ȳ , z̄ =

1
k

(
1
β2

+ 1
)
,

ȳ2 − 1
k

[
α+ α3

(
1
β2

+ 1
)] [

1 −
(

1
β2

+ 1
)]

= 0 .
(17)

if the inequalities

1 − 1 + β2

k β2
> 0 , α+ α3

(
1 − 1 + β2

k β2

)
> 0 (18)

or

1 − 1 + β2

k β2
< 0 , α+ α3

(
1 − 1 + β2

k β2

)
< 0 (19)

are valid. The condition (18) is always valid at k > 2.778, and the condition (19) is valid at
α3 < −αk β2/(1 + β2) = −0.135, when α = 0.15, β = 0.75 and k = 2.5 < 2.778.

Firstly, we compute the case when α = 0.15, β = 0.75, k = 2.5, α3 < −0.135 and we
obtain that here the system (1)-(2)-(16) has only periodic solutions (see Fig. 5). Therefore
in this case the system lies in the region of regularity of its parametric space. In Figs. 6a
and 6b, we show the bifurcation diagrams of the system (1)-(2)-(16) for α = 0.15, β = 0.75,
k = 21.5 (chaotic regime) and vary the parameter α3. It is seen that after introduction of
α3, the system passes from chaos to regular motion. It is interesting to note that in Fig. 6b
two symmetrical regular branches take place.
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Fig.5: Periodic solution of the system (1)-(2)-(16)
at α = 0.15, β = 0.75, k = 2.5, α3 = −0.2

Fig.6: Bifurcation diagrams of the system (1)-(2)-(16) at α = 0.15, β = 0.75, k = 21.5,
α3 ∈ [−1,−0.01] (a), α = 0.15, β = 0.75, k = 21.5, α3 ∈ [0.01, 0.47] (b)

Case 4 (α3 = 0). Here, after replacing (7) into (3), we obtain for z equation

ż = β[(α + α1 x+ α2 y) (1 − z) − k y2] . (20)

Now the ȳ equation is

ȳ2 − 1
k

(
α1

β
+ α2

) (
1 − 1 + β2

k β2

)
ȳ − α

k

(
1 − 1 + β2

k β2

)
= 0 . (21)

The system (1)-(2)-(20) has three fixed points if inequalities

1 − 1 + β2

k β2
> 0 ,

(α1 + β α2)2

k β2

(
1 − 1 + β2

k β2

)
+ 4α > 0 (22)

or

1 − 1 + β2

k β2
< 0 ,

(α1 + β α2)2

k β2

(
1 − 1 + β2

k β2

)
+ 4α < 0 (23)

are valid. Therefore, similar to (1)–(3), two real roots exist. Condition (22) is valid at
k > 2.778, i.e. always. Condition (23) is valid at α1 + 0.75α2 > 2.76, when α = 0.15,
β = 0.75 and k = 2.5 < 2.778.
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The numerical procedure used here is similar to previous three cases. Now, we have
two new bifurcation parameters α1 and α2. In Figure 7a, the bifurcation diagram of the
system (1)-(2)-(20) is shown for different values of the parameter α2 (and α1 is fixed). Here
we note that in this case k = 2.5 (regular case). It is seen that for these values of α2 ∈ [7, 35]
and α1 = −0.5 the new system has regular and chaotic behavior. Following [13], two types
of bifurcation are most basic. In the first, called a saddle-node bifurcation, fixed points
are born. The second is called a period-doubling bifurcation, where a fixed point loses its
stability and simultaneously, a new orbit of doubled period is created. Here we see that this
is an example of the period-doubling route to chaos. Figure 7a shows that period-doubling
cascade in this case begins at α2 ≈ 11. Note that inverse bifurcations also occur.

Fig.7: Bifurcations diagrams of system (1)-(2)-(20) computed with the
parameters : α = 0.15, β = 0.75, k = 2.5, when (a) α2 ∈ [7, 35],
α1 = −0.5 and (b) α1 ∈ [−7,−2.3], α2 = 10

Fig.8: Bifurcations diagrams of system (1)-(2)-(20) computed with the parameters :
α = 0.15, β = 0.75, k = 21.5, when (a) α2 ∈ [0.01, 0.2], α1 = 0.15 and
(b) α1 ∈ [0.01, 0.25], α2 = 0.05

The bifurcation diagram in Fig. 7b show that an apparent sudden collapse in the size of
a chaotic occurs at a value of the bifurcation parameter α2 ≈ −6.5 . Therefore, similar to
previous Figs. 3b and 3c it is example for interior crisis. It is interesting to note here that
near α2 = −5.8 the second interior crisis occur.

Diagram in Fig. 8a depicts the case when α1 = 0.15, k = 21.5 and α2 ∈ [0.01, 0.2]. It
is evident that the chaos occurs after period-doubling bifurcations, starting from regular
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solutions with period two. Comparing Fig. 8a and Fig. 8b, we conclude that behavior of
the system (1)-(2)-(20) is not similar. In Fig. 8b, we see four different orbits in which the
period-doubling bifurcations occur. Note that interior crises also take place for α1 ≈ 0.03
and α1 = 0.05 .

Case 5 (α2 = 0). This case is solved identically. Here we obtain

ż = β [(α+ α1 x+ α3 z) (1 − z) − k y2] , (24)

where

ȳ2 − α1

k β

(
1 − 1 + β2

k β2

)
ȳ − 1

k

(
α+ α3

1 + β2

k β2

)(
1 − 1 + β2

k β2

)
= 0 . (25)

Here, the system (1)-(2)-(24) has three fixed point if inequalities

1 − 1 + β2

k β2
> 0 ,

α2
1

k2 β2

(
1 − 1 + β2

k β2

)
+

4
k

(
α+ α3

1 + β2

k β2

)
> 0 (26)

or

1 − 1 + β2

k β2
< 0 ,

α2
1

k2 β2

(
1 − 1 + β2

k β2

)
+

4
k

(
α+ α3

1 + β2

k β2

)
< 0 (27)

are valid. The condition (26) is valid for k > 2.778 and α2
1 + 7.1773α3 > −8.3328 (when

k = 21.5 > 2.778). The condition (27) is valid for k < 2.778 and α2
1 − 56.2322α3 > 7.5912

(when k = 2.5 < 2.778).

First, in Figure 9a a bifurcation diagram of the system (1)-(2)-(24) is presented. Here,
we consider α1 to be bifurcation (control) parameter and α3 = 0.2 is fixed. The system has
periodic solutions (with period two) at the beginning and in the end of the interval. Near
α1 = −0.23 the first interior crisis occur and near α1 = −1.52 the second. In mid interval
the system has very rich bifurcation behavior where straight and inverse bifurcations take
place. Comparing Fig. 9a and Fig. 9b we conclude that when α3 is control parameter (see
Fig. 9b) only the inverse bifurcations occur (beginning from α3 = −0.01). Here we note that
in the end of the intervals for α1 and α3 the system has similar behavior (periodic solutions
with period two).

Fig.9: Bifurcation diagrams obtained by integrating system (1)-(2)-(24), (a) for
α1 ∈ [−2,−0.01], α3 = 0.2 and (b) for α3 ∈ [−0.95,−0.01], α1 = 0.05
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Second, we compute the case when k = 2.5 < 2.778 and we obtain that here system
(1)-(2)-(24) has only stable or periodic solutions. Therefore, in this case the system is
un-sensitive to linear feedback. That’s why, we not illustrate these results.

Case 6 (α1 = 0). Substituting Eq. (7) into Eq. (3), we get the following differential equation

ż = β [(α+ α2 y + α3 z) (1 − z) − k y2] (28)

and for ȳ we write

ȳ2 − α2

k

(
1 − 1 + β2

k β2

)
ȳ − 1

k

(
α+ α3

1 + β2

k β2

) (
1 − 1 + β2

k β2

)
= 0 . (29)

If the inequalities

1 − 1 + β2

k β2
> 0 ,

α2
2

k2

(
1 − 1 + β2

k β2

)
+

4
k

(
α+ α3

1 + β2

k β2

)
> 0 (30)

or

1 − 1 + β2

k β2
< 0 ,

α2
2

k2

(
1 − 1 + β2

k β2

)
+

4
k

(
α+ α3

1 + β2

k β2

)
< 0 (31)

are valid, the system (1)-(2)-(28) has three equilibrium (steady state) points. If case (30)
or (31) are not valid the system has only one equilibrium point with coordinates x̄ = ȳ = 0,
z̄ = 1. Condition (30) is valid at k > 2.778 and α2

2 + 12.76α3 > −14.814 (when
k = 21.5 > 2.778). Condition (31) is valid at α2

2−99.968α3 > 13.469 (when k = 2.5 < 2.778).

Fig.10: Bifurcation diagram of the system (1)-(2)-(28) at α = 0.15, β = 0.75,
α3 = 0.05, k = 21.5 and α2 ∈ [0.5, 5] (a); periodic solutions at α = 0.15,
β = 0.75, α2 = 0.2, k = 21.5, α3 ∈ [0.01, 0.5] (b), and at α = 0.15,
β = 0.75, α2 = −0.2, k = 21.5, α3 ∈ [0.01, 0.5] (c)
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In Figure 10a the bifurcation diagram of system (1)-(2)-(28) for α = 0.15, β = 0.75,
α3 = 0.05, k = 21.5 and α2 ∈ [0.5, 5] is shown. Here we see that when bifurcation parame-
ter α2 increases, the system passes from chaotic regime to regular one. It is interesting to
note that near α3 = 1.8 the interior crisis occur and two symmetrical ‘grape like’ branches
appear till the end of the interval. For α3 ∈ [3.2, 5] the system has regular solution with
period two. Comparing Fig. 10a and Fig. 3c we see that they resemble each other.

In Figures 10b and 10c we fix α = 0.15, β = 0.75, α2 = ±0.2, k = 21.5 and vary the
parameter α3 ∈ [0.01, 0.5]. Here, the system has only periodic solutions i.e. after control the
modified system also has regular behavior.

By analogy with the previous case (for k = 2.5), here the system (1)-(2)-(28) has only
stable or regular solutions with period one or two. Therefore, in this case the system is also
unsensitive to linear feedback Because of that we not show the numerical results for this
case.

Case 7. Finally, replacing (7) into (3), we obtain for z-equation

ż = β [(α + α1 x+ α2 y + α3 z) (1 − z) − k y2] . (32)

Now ȳ is

ȳ2 − 1
k

(
α1

β
+ α2

) (
1 − 1 + β2

k β2

)
ȳ − 1

k

(
α+ α3

1 + β2

k β2

) (
1 − 1 + β2

k β2

)
= 0 . (33)

Here the system also has three equilibrium points if inequalities

1 − 1 + β2

k β2
> 0 ,

(
α1

β
+ α2

)2 (
1 − 1 + β2

k β2

)
+ 4 k

(
α+ α3

1 + β2

k β2

)
> 0 (34)

or

1 − 1 + β2

k β2
< 0 ,

(
α1

β
+ α2

)2 (
1 − 1 + β2

k β2

)
+ 4 k

(
α+ α3

1 + β2

k β2

)
< 0 (35)

are valid. By analogy with previous cases condition (34) is valid if k > 2.778 and
(α1 + 0.75α2)2 + 7.1775α3 > −8.3328 (when k = 21.5). Condition (35) is valid if k < 2.778
and (α1 + 0.75α2)2 − 56.2322α3 > 7.5912 (when k = 2.5).

The divergence of the flow (1)-(2)-(32) is

D3 =
∂ẋ

∂x
+
∂ẏ

∂y
+
∂ż

∂z
= −β[α+ α3 + 2 + α1 x+ α2 y + (2α3 − k) z] . (36)

In this case we have three bifurcation (control) parameters α1, α2 and α3. What we see
in this general case?

In Figure 11a the bifurcation diagram of the system (1)-(2)-(32) at α = 0.15, β = 0.75,
α2 = 0.1, α3 = −0.1, k = 21.5 and α1 ∈ [0.01, 2] is shown. For α1 ∈ [0.01, 0.68] the system
has chaotic (see the result for maximal Lyapunov exponent below in the text) behavior.
As α1 increased from 0.68 there are very fast inverse bifurcations. After α1 = 1 (till the end
of the interval), the new system is regular with period two. Here we note that chaotic zone
in this case is longer than these obtained in Fig. 11b for bifurcation parameter α2.
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Comparing results obtained in Figs. 11a, 11b and 11c, we conclude that the case, when α3

is bifurcation parameter, is more interesting from dynamical point of view than these with
bifurcation parameters α1 and α2. Discussing the results shown in Fig. 11c, it is seen that
for α = 0.15, β = 0.75, α1 = 0.3, α2 = 0.1, k = 21.5 and α3 ∈ [−0.75,−0.63] the system has
periodic solutions with period two. After that (as α3 increased) in result of interior crisis
the system suddenly passes to chaotic regime. Here we note that at α3 ∈ [−0.27,−0.24],
α3 ∈ [−0.17,−0.13] and α3 ∈ [−0.075,−0.01] the inverse bifurcations take place. It is
interesting that in the end of the interval the new system has regular behavior with period
four.

We note here that, when α = 0.15, β = 0.75, k = 2.5 (regular case) are fixed and vary
α1, α2, α3, the new system has only stable or regular solutions with period one.

Fig.11: Bifurcation diagrams obtained by integrating system (1)-(2)-(32), (a) for
α1 ∈ [0.01, 0.2], α2 = 0.1, α3 = −0.1; (b) for α2 ∈ [0.01, 1], α1 = 0.3,
α3 = −0.1 and (c) for α3 ∈ [−0.75,−0.01], α1 = 0.3, α2 = 0.1

The Lyapunov exponents describe the action of the dynamics defining the evolution
of trajectories. In chaotic evolutions nearby trajectories separate exponentially. For small
enough length scales and short enough time scales the initial effect of the dynamics will be to
distort the evolving spheroid into an ellipsoidal shape, with some directions being stretched
and others contracted. The longest axis of this ellipsoid will correspond to the most unstable
direction of the flow. The asymptotic rate of expansion of this axis is measured by the largest
(maximal) Lyapunov exponent. In details, if the infinitesimal radius of the initial fiducial
volume is called r(0), and the length of the ith principal axis at time t is called li(t), then
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the ith Lyapunov exponent can be defined as [26, 27, 29] :

λi = lim
t→∞

1
t

log
li(t)
r(0)

. (37)

The Lyapunov exponents are always ordered and it is common to use a decreasing ordering
in the spectrum of Lyapunov exponents, λ1 > λ2 > λ3 > . . . . Here we note that for
maps of dimension k and for continuous-time dynamical systems this spectrum of Lyapunov
exponents is defined similarly. More precisely information and theorems can be found in [30].

The maximal Lyapunov exponent λmax shows the kind of motion on the phase space :
(i) if λmax < 0 the motion is a stable fixed point; (ii) if λmax = 0 the motion is a stable
limit cycle; (iii) if 0 < λmax < ∞ the motion is chaotic and (iv) if λmax = ∞ the motion
is noise [26]. Following [26], the maximal Lyapunov exponent for a given data set can be
calculated by means of the sum

S(Δn) =
1
N

N∑
n0

ln
(

1
|Ψ(βn0)|

∑
βn0∈Ψ

|sn0+Δn − sn+Δn|
)
, (38)

where reference points βn0 are embedding vectors, Ψ(βn0) is the neighborhood of βn0 with
diameter ε, sn0 is the last element of βn0 and sn0+Δn is outside the time span covered
by the delay vector βn0 . Since a priori one might neither know the minimal embedding
dimension m nor the optimal distance ε, one should compute S(Δn) for a variety of both
values. The size of the neighbourhood should be as small as possible, but large enough such
that on average each reference point has at least a few neighbours. Otherwise one might
systematically ignore certain parts of the attractor and thus compute a wrong value [26, 27].

For the numerical calculation of λmax we use the TISEAN software package [28]. The
obtained maximal Lyapunov exponents (per unit time) are represented in Appendix.

Comparing these results, we conclude that in Case 2 (a), modified Sherman system is
more chaotic than the rest, but is smaller chaotic than original Sherman system (see [16, 20]).
Opposite, in case 5 (b) the maximal Lyapunov exponent is the smallest.

3. Summary and conclusions

The paper studies how the dynamics and the global behavior of Sherman’s system vary,
introducing linear feedback α→ α+α1 x(t)+α2 y(t)+α3 z(t) in the equation for z (see (3)).
Assuming successively that some of the coefficients αn (n = 1, 2, 3) be zero, we find seven dif-
ferent modifications of Sherman’s system. The governing equations were solved numerically
using MATLAB (The MathWorks, Inc., Natick, MA, USA).

Firstly, we summarize :

A. Case at α = 0.15, β = 0.75, k = 2.5 .

The system in case 1 (i.e. α→ α+ α1 x(t)) has three fixed points, i.e. a number of fixed
points is equal to that of the original system. Yet, it is seen from numerical results (see
Fig. 1) that the modified system has also regular behavior after long transitional period. The
modified system in case 2 attains a chaotic state after continuous doubling of the period.
This is a result of the gradual increase of the bifurcation parameter α2. Here we note that
the geometry of the chaotic attractor is different from the geometry of the chaotic attractor
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of the original system ([16, 18, 20] and Fig. 4). The modified system in cases 3, 5, 6, 7 has
only stable or regular (with period one or two) solutions. We should note also here that :

– considering all the cases, we find such values of the parameters, α1, α2 and α3, where
the system is simultaneously structurally stable and has real fixed points;

– the parameters were fixed as α = 0.15, β = 0.75, k = 2.5, while initial conditions
x0 = 0.01, y0 = z0 = 0.1 .

B. Case at α = 0.15, β = 0.75, k = 21.5 .

Here we find such values of the coefficients α1, α2 and α3 (different from these in A)
where the system has regular solutions with different period, and real fixed points. For all
simulations the initial conditions were also x0 = 0.01, y0 = z0 = 0.1 . Here we note that
at symmetrical intervals of change of the bifurcation parameter, the modified systems have
symmetrical bifurcation diagrams, i.e. symmetrical behavior. We find also that maximal
Lyapunov exponents for symmetrical intervals are approximately equal.

Finally, the proposed study is a first step to the profound and fill analysis of the modi-
fications thus found. We hope that the approach taken here will find application in the
practice (for example in areas of Electro-mechanics and Mechatronics) in which chaos, plays
a role.
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Appendix: Calculation of the maximal Lyapunov exponents

for Case 1

(a) bifurcation parameter (BP) α1: λmax = 0.173 ± 0.021, when α = 0.15, β = 0.75,
k = 21.5, α1 = −0.5,

(b) BP α1: λmax = 0.1685± 0.0225 when α = 0.15, β = 0.75, k = 21.5, α1 = 0.5,

for Case 2

(a) BP α2: λmax = 0.2869± 0.0241, when α = 0.15, β = 0.75, k = 2.5, α2 = 27,
(b) BP α2: λmax = 0.2445± 0.03, when α = 0.15, β = 0.75, k = 21.5, α2 = 0.9,
(c) BP α2: λmax = 0.1935± 0.0201, when α = 0.15, β = 0.75, k = 21.5, α2 = −0.9,

for Case 3

BP α3: λmax = 0.1335± 0.0144, when α = 0.15, β = 0.75, k = 21.5, α3 = −0.03,

for Case 4

(a) BP α2: λmax = 0.1459±0.004, when α = 0.15, β = 0.75, k = 2.5, α1 = −0.5, α2 = 25,
(b) BP α2: λmax = 0.183± 0.02, when α = 0.15, β = 0.75, k = 21.5, α1 = 0.15,

α2 = 0.018,

for Case 5

(a) BP α1: λmax = 0.1013± 0.012, when α = 0.15, β = 0.75, k = 21.5, α1 = −0.8,
α3 = 0.2,
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(b) BP α3: λmax = 0.0373± 0.00134, when α = 0.15, β = 0.75, k = 21.5, α1 = 0.05,
α3 = −0.2,

for Case 6

BP α2: λmax = 0.1535± 0.0175, when α = 0.15, β = 0.75, k = 21.5, α2 = 0.8, α3 = 0.05,

for Case 7

(a) BP α1: λmax = 0.1197± 0.0132, when α = 0.15, β = 0.75, k = 21.5, α1 = 0.1,
α2 = 0.1, α3 = −0.1,

(b) BP α2: λmax = 0.10097± 0.0099, when α = 0.15, β = 0.75, k = 21.5, α1 = 0.3,
α2 = 0.03, α3 = −0.1,

(c) BP α3: λmax = 0.216± 0.0161, when α = 0.15, β = 0.75, k = 21.5, α1 = 0.3,
α2 = 0.1, α3 = −0.35 .
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