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FURTHER APPLICATION
OF PARAMETRIC ANTI-RESONANCE

Ladislav Půst*, Aleš Tondl**

This contribution supplements the series of work oriented on active reduction of un-
acceptable vibrations by means of parametric excitation fulfilling certain conditions.
Paper deals with the suppression of undesirable vibration using special parametric
excitation fulfilling certain conditions. It is shown that this phenomenon can be used
not only for suppressing the self-excited vibrations or parametric resonances aris-
ing outside the region of main resonances in the vicinity of eigenfrequencies as are
subharmonic resonances.
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1. Introduction

In several publications (see e.g. [2–15]) it was shown that the parametric excitation in
mechanical systems doesn’t need always result in dangerous vibrations due to the stability
loss and initiation of parametric resonances as it is commonly stated in publications dealing
with parametrically excited systems, but it can also be used for suppressing dangerous
vibrations not only externally excited but also for self-excited vibrations. In the recently
published paper [15] this phenomenon (parametric anti- resonance) was further analyzed and
his practical application was shown on the case where parametric resonance of the first kind
can be fully suppressed by an additional parametric excitation fulfilling certain conditions.
In this paper it is also mentioned that using appropriate additional parametric excitation
at certain conditions the subharmonic resonance vibrations could be suppressed.

This contribution deals with the suppression problem of the subharmonic vibration link
up paper [15] and the whole set of publications using this anti-resonance phenomenon for lim-
iting or even for full suppressing undesirables vibrations. This active means is characterized
by additional parametric excitation fulfilling certain conditions. For example, if additional
parametric excitation is due to the periodic variation of the elastic element stiffness, then
the frequency of this stiffness variation is equal to the difference of two eigenfrequencies (see
Appendix in [15]). This phenomenon can be used not only for suppressing self-excited vibra-
tions but also for suppressing parametric resonances. A very good survey on parametrically
excited systems inclusive the parametric anti-resonance is in [16].

The stability analysis of externally excited vibrations leads to differential equations with
periodic variable coefficients and so to the certain instability intervals, which leads to ini-
tiation of nonlinear resonances as e.g. subharmonic resonance. These resonances, which
have not been considered in the design of certain equipment, can be dangerous for it’s save
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run. In this contribution the application of the mentioned phenomenon for reducing such a
subharmonic resonance will be presented.

2. Basic analysis

Let us consider a system with n degrees of freedom excited by external harmonic force.
Let us suppose that coefficients of expressions in differential equations of motion representing
damping and nonlinearities are small. So, transforming the differential equations of motion
into the quasi-normal form, the following equations are obtained :

ÿs + Ω2
s ys = as cosωt+ ε [Fs(ẏ1, . . . , ẏn) + Φs(y1, . . . , yn)] , (s = 1, 2, . . . , n) , (1)

where Ωs are the eigenfrequencies of the abbreviated system (for ε = 0), ε is a small
parameter, the functions Fs express the damping and Ψs the system nonlinearities. The
steady solution outside the main resonances in the first approximation (for ε = 0) reads :

ys0 =
as

Ω2
s − ω2

cosωt . (2)

The stability of this solution can be analyzed when inserting in equations (1)

ys = ys0 + xs . (3)

The linearized differential equations of the disturbed motion have the form :

ẍs + Ω2
s xs + ε

n∑
k=1

(Θsk ẋk +Qsk xk) = 0 , (s = 1, 2, . . . , n) , (4)

where Θsk, Qsk are periodic functions with frequency ω. Take a notice that for ω = 2 Ω1

the solution of the differential equations of the disturbed motion will be unstable. It means
that for the system governed by equations (1) subharmonic resonance occurs. When adding
the additional parametric excitation with frequency Ωk −Ω1 to the original system governed
by equations (1), where Ωk is the eigenfrequency of sufficiently damped vibration mode,
the subharmonic resonance can be suppressed. For simplicity let us show the effect of the
additional parametric excitation on the system with two degrees of freedom.

Fig.1: Model of 2 DOF system with external and parametric excitations
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Let us consider a Double Degree of Freedom (DDOF) system (see Fig. 1), where mass m1

is harmonically excited and the amplitude of excitation F0 = S ω̄2 depends on quadrate of ex-
citation frequency ω̄ (in order to increase the subharmonic resonance excitation possibility).
This mass is elastically mounted by a nonlinear spring having unsymmetrical characteristics
ϑ (y1 − y2)2 to mass m2, which is elastically mounted, by another spring having stiffness k2.
The additional parametric excitation can be realized by periodic variation of the stiffness
k2(t) = k20 (1+α cos νt). Denoting masses deflections as y1, y2 then the system is governed
by the following equations :

m1 ÿ1 + b1 ẏ1 + k1 (y1 − y2) + ϑ (y1 − y2)2 = S ω̄2 cos ω̄t ,

m2 ÿ2 + b2 ẏ2 + k20 (1 + α cos νt) y2 − k1 (y1 − y2) − ϑ (y1 − y2)2 = 0 .
(5)

S is the static moment of the exciting unbalance, α indicates the depth of the parametric
modulation of the stiffness.

After rearrangement and time transformation ω1 t = τ , ω1 =
√
k1/m1 equations (5) get

the form :

y′′1 + y1 − y2 + ε
[−α1 ω

2 cosωτ + κ1 y
′
1 + γ (y1 − y2)2

]
= 0 ,

y′′2 −M (y1 − y2) + q2 y2 + ε
[
κ2 y

′
2 + α2 y2 cos ητ − γ (y1 − y2)2

]
= 0 ,

(6)

where ε is small parameter and

M =
m1

m2
, ω2

2 =
k20

m2
, q2 =

ω2
2

ω2
1

, ω =
ω̄

ω1
, η =

ν

ω1
, ε γ =

ϑ

k1
,

ε κ1 =
b1

m1 ω1
, ε κ2 =

b2
m2 ω1

, ε α1 =
S

m1
, ε α2 = q2 α .

(6a)

For ε = 0 the abbreviated linear system related with equations (6) is obtained :

y′′1 + y1 − y2 = 0 ,

y′′2 −M (y1 − y2) + q2 y2 = 0 .
(7)

The characteristic determinant

D =
∣∣∣∣ 1 − Ω2 −1

−M M + q2 − Ω2

∣∣∣∣ = Ω4 − (M + q2 + 1)Ω2 + q2 (8)

provides the eigenfrequencies :

Ω2
1,2 =

1
2

(M + q2 + 1) ±
√

(M + q2 + 1)2

4
− q2 . (9)

The numerical results can be also be expressed by quasi-normal coordinates

y1 = v1 + v2 , y2 = a1 v1 + a2 v2 , (10)

i.e. using expressions :

v1 =
1

a1 − a2
(y2 − a2 y1) , v2 =

1
a1 − a2

(a1 y1 − y2) , (11)

where

a1,2 = −1
2

(M + q2 − 1) ±
[
1
4

(M + q2 − 1)2 + 1
]1/2

. (11a)
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For the case of parameters M = q = 1 the corresponding modal quantities are :

Ω1 = 0.618 , Ω2 = 1.618 , a1 = 0.618 , a2 = −1.618 . (12)

3. Solution of selected examples

The theoretical analysis of dynamic system with external and parametric excitation gives
general qualitative conclusion, but does not provide answer concerning the quantitative be-
havior of such systems as : How strong does the auxiliary parametric excitation have to be
in order to suppress the subharmonic oscillations, either completely or only to a prescribed
rate; what type is the resulting oscillation when both excitation forces act on system, how
precisely should be maintained the ratio of external and parametric frequencies for quench-
ing of subharmonic vibration; how the small mistuning of mentioned frequencies influences
the degree of subharmonic vibrations quenching, etc. These answers can be gained by nu-
merical experiments, i.e. by numerical solution of differential equations (5) or (6) for given
parameters.

4. Examples

Submitted theory of suppressing subharmonic resonance by means additional parametric
excitation let us promote by numerical solution of two masses system from Fig. 1 described
by equations (6) with the numerical values given at the end of chapter 2 : M = q = 1,
Ω1 = 0.618, Ω2 = 1.618 and for further parameters

η = Ω2 − Ω1 = 1 , ε κ2 = 0.05 , ε κ2 = 0.05 , ε α1 = 1 , ω = 2 Ω1 = 1.236 .

The various levels of auxiliary parametric excitation are : ε α2 = 0; 0.3; 0.6; 0.9; 1 .

Time history of motion y1(τ) of upper mass m1 is plotted in Fig. 2 together with the
course of excitation force F (t) = α1 ω

2 cosωτ , avoiding parametric excitation, i.e. α2 = 0.
In order to eliminate the influence of transient free oscillations due to the initial conditions
in τ = 0, the motion y1(τ) is in Fig. 2 recorded after sufficiently distant time from origin i.e.
in dimensionless time interval τ ∈ (1900, 2000). The pure subharmonic course of vibration
is obvious from the twice longer period of motion y1(τ) against period of external excitation
ε α1 ω

2 cosωτ .

Further Fig. 3 shows the course of motion y2(τ) of the bottom mass m2 in the same time
interval τ ∈ (1900, 2000). Ratio of frequency of vibration y2 to the frequency of excitation

Fig.2 Fig.3
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force is again 1:2. Amplitude of mass m2 is approx. 0.6 amplitude of mass m1, what
corresponds to the mode of vibration of investigated DDOF abbreviated system in the first
resonance.

If the stiffness k2 of the bottom spring changes periodically with time k2(t) = k20 (1 +
+ α cosωt), then both motions y1(τ) and y2(τ) change their courses. These motions are
shown in Fig. 4 and 5 for comparatively low stiffness modulation ε α2 = 0.3 and again after
sufficient long time τ = 1900 from origin τ = 0.

Fig.4 Fig.5

Decrease of component amplitude of y1 of upper mass m1 to approximately 50% of
subharmonic oscillations initial amplitude and marked change of oscillation form is shown in
Fig. 4. A higher harmonic component with frequency close to the second eigenfrequency Ω2

of the abbreviated system (ε = 0) appears in the time history y1(τ).

Motion y2 of the bottom mass m2 has the similar course as well, see Fig. 5. Maximum
displacements of y2 did not change by addition of parametric excitation ε α2 = 0.3 against
the case ε α2 = 0, but due to the fluctuation the average effective value drops. A motion
component corresponding to the second eigenfrequency Ω2 appears in this motion, too.

Further increase of level of auxiliary parametric excitation to ε α2 = 0.6 does not bring,
with exception of small lowering, any essential change in the course of subharmonic vibra-
tions y1(τ) and y2(τ), as shown in Fig. 6 and 7.

Fig.6 Fig.7
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Another property of these records should be noticed. It concern the higher frequency
component. The level of this component noticeable increases in both records during the
20 periods of excitation force in the short time τ ∈ (1900, 2000).

Fig.8 Fig.9

In order to explain this phenomenon, the 10 times longer course of vibrations y1(τ) and
y2(τ) in τ ∈ (1000, 2000) was recorded for ε α2 = 0.6 and the results are shown in Fig. 8 for
the upper massm1 and in Fig. 9 for the bottom massm2. The longer records have shown that
the initial conditions do not influence the investigated motion, but this one transforms and
settled on beat motion type, where the levels of different components periodically fluctuate.

Period of beats for given ε α2 = 0.6 is T0.6
∼= 500. Energy of vibrations flows during

these beats from the subharmonic motion into vibrations with higher frequency and back.

Fig.10 Fig.11

At further increase of parametric excitation level to ε α2 = 0.9, the maximum of ampli-
tudes decreases a little bit, approx. on the 45% of initial value at ε α2 = 0, the beat form of
oscillation was preserved and namely with the shorter period T0.9

∼= 330, as it can be seen
from Fig. 10 and Fig. 11.

Responses on the additional parametric excitation with the amplitude ε α2 = 1 are shown
in Fig. 12 and 13. Small increase of ε α2 manifests itself by a moderate decrease of maximum
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Fig.12 Fig.13

vibrations up to 40% of initial amplitude value, but in the nodes of beats these values sink
to approx. 20%.

Period of beats is reduced again to T1 = 290. Motions of both masses y1(τ) and y2(τ)
are not pure beats, but they contain apart from two main harmonic components also further
components, which are both periodical and chaotic.

Existence of chaotic properties of these external and parametric excited vibrations is
evident from the records of Poincaré mappings shown in the following figures.

Fig.14 Fig.15

Points in Fig. 14 determine the dynamic state (y1, ẏ1) of upper mass m1 at the instants of
time, when the excitation force reaches its prescribed state. Therefore two narrow clusters of
points are recorded at pure subharmonic oscillation at ε α2 = 0. The central field of approx.
700 points corresponds to the motion of same system influenced by an auxiliary parametric
excitation with modulation level ε α2 = 0.3 . It is evident that due to the application of
parametric excitation the subharmonic vibrations y1 of first mass m1 is reduced more than
to a half.

Maximum amplitudes of bottom mass m2 vibrations is not reduced to the same degree,
but their mean value reaches this rate of reduction, as it follows from Fig. 15.

The greater reduction of maximum and mean value of subharmonic oscillations is
achieved by increasing the auxiliary parametric excitation on ε α2 = 0.6 . Fig. 16 shows
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Fig.16 Fig.17

that maximal amplitude y1 of upper mass m1 is reduced on approx. 28%, while the mean
value on much lower level.

Reduction of mass m2 vibration is not so high, maximum amplitude y2 is 47% of the
amplitude without parametric excitation ε α2 = 0 as seen on Fig. 17.

If the modulation of spring stiffness k2 is increased to ε α2 = 1, the reduction of vibration
y1(τ) drops to 22% and reduction of vibration y2(τ) to 35%, as seen from the records of
Poincaré mappings in Fig. 18 and Fig. 19.

Fig.18 Fig.19

5. Conclusion

Harmonic excitation of a two masses system with a nonlinear spring characteristic, which
contains a quadratic unsymmetrical part, in the range of subharmonic resonance generates
highly dangerous subharmonic vibrations.

Theoretical and numerical analyses show the very positive effect of auxiliary additional
parametric excitation to suppress undesirable subharmonic vibrations to a large extent.
Selected examples demonstrate, that the additional parametric excitation besides the sup-
pressing of subharmonic vibrations changes considerably the type of vibrations from the
periodic oscillation to a beat oscillation with a large amount of chaotic components.
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