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VARIOUS TYPES OF DRY FRICTION CHARACTERISTICS
FOR VIBRATION DAMPING

Ladislav Půst*, Luděk Pešek*, Alena Radolfová*

Paper deals with derivation of mathematical relationships of dry friction force versus
relative velocity in friction contact of two bodies. It is focused on such main types of
dry friction characteristics, which frequently occur in dynamic mechanical systems.
New models of modified Coulomb friction law and spring – friction elements are
determined. For easy application in computing programs used in technical practice
and based on linear equations, the equivalent linear stiffness and damping expressions
are formulated and analysed in detail.

Keywords : dry friction, stick-slip motion, modified Coulomb law, equivalent lineariza-
tion, equivalent stiffness, equivalent damping coefficient

1. Introduction

Dry friction forces are present in all machine structures and mechanisms, where they
strongly influence both the energy dissipations and the dynamic behavior of the entire
systems. The oscillations of systems with dry friction belong to the so called non-smooth
strong nonlinear phenomena, where jumps in friction forces occur during motion. At certain
conditions, the dry friction can cause instability and dangerous selfexcited vibrations.

Characteristics of dry friction i.e. a ‘force-relative motion’ relationship have been inten-
sively investigated for more than two centuries both experimentally and analytically. The
mathematical description of friction characteristics is of primary importance for analytical
and numerical solutions and is often dependent on the quality of a mathematical model and
on its ability to express the real mechanical structure properties.

The simple Coulomb dry friction law cannot describe a huge variety of real tribological
phenomena. Therefore, many articles and books related to theoretical and experimental ap-
proaches to friction properties have been published. Let us shortly mention some overviews
of friction problems in [1, 2], special aspects of surface roughness [3, 4], application to turbine
blade dampers [5–8], problems of surface wear [9, 10], friction at rolling [11], etc.

This article presents several main types of dry friction characteristics, which enable to
describe and to calculate frequently occurred friction connections in dynamic mechanical
systems. Program packets based on linear equations, the equivalent linear stiffness and
damping expressions of friction characteristics derived in the first part are also added for
easy computing.

* Ing. L. Půst, DrSc., Ing. L. Pešek, CSc., Ing. Mgr.A.Radolfová, Institute of Thermomechanics AS CR,
v.v.i., Doleǰskova 5, 18200 Praha 8
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2. Characteristics of dry friction contacts

The simplest and also very frequently used description of dry friction force arising between
two contacting and mutually moving surfaces of solid bodies is called Coulomb law (see
Fig. 1):

Ft = f FN sgn(v) = f FN
v

|v| = f FN (H(v) −H(−v)) for v �= 0 ,

Ft ∈ 〈−f FN, f FN〉 for v = 0 ,
(1)

where f is the coefficient of dry friction, FN normal force, v relative velocity, Ft friction force
– positive in the sense of velocity*, H(v) Heaviside function H = 1 for v > 0 and H = 0 for
v < 0.

The first row of equation (1) expresses the force-velocity relationship in the slip phase of
motion, the second row gives the interval of force, in which the relative velocity of bodies is
zero – stick phase of contact.

The graph of Coulomb law where both phases of contact are drawn is in Fig. 1. Because
the frictional drag of contact in the stick phase of loading before the beginning of motion is
usually greater than during the slip phase of motion with non zero velocity, the Coulomb
law is frequently modified by the addition of another second row in (1)

Ft ∈ 〈−fs FN, fs FN〉 , (1a)

where the static friction coefficient fs in rest is greater than the dynamic friction coefficient f :
fs > f . Graphical presentation of such a characteristic is in Fig. 2.

Fig.1 Fig.2

The transition from stick to slip phase of friction force-velocity characteristic is continuous
without any jump for certain combinations of materials. The general description of such
a nonlinear dry friction characteristic is

Ft = FN f(v) (H(v) −H(−v)) for v �= 0 ,
Ft ∈ 〈−f(0) FN, f(0) FN〉 for v = 0 , f(0) = fs ,

(2)

and it is depicted in Fig. 3.

Friction coefficient can also depend on the intensity of normal force FN. Expressions (2)
can also be used in this case, but the function f(v) has to be replaced by a more complicated
one f(v, FN).

*Friction force Ft is here taken positive for positive velocity v in conformity with [1], where the friction
force is explained ‘as the force to lift off the contacts of the upper surface over the contacts of the lower
surface’.
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Fig.3

Relations (1) and (2) are exactly applicable for cases, in which the slipping bodies are
very stiff so that the relative displacement of their centers of mass or places of measurement
is the same as the relative displacements of contact surface points.

However, if there is any elastic connection between the center of mass (point of measure-
ment) and the contact surface, than with an increase of friction force Ft from zero value in
the range |Ft| < f FN, the small elastic deformations occur first. It is not until the sliding
force reaches the limit value of stick force, that the motion with velocity |v| > 0 begins.
The simplified model of such a connecting element between points A, B is drawn in Fig. 4a.
A model of the classical Coulomb element with a stiff connection between the friction sur-
faces and points of application of forces Ft is in Fig. 4b. Fig. 4c shows the scheme of a parallel
connection of spring and damping in an equivalent linearized model (Chapter 4).

Fig.4

Courses of force Ft of spring-friction element at vibration (e.g. x = x0 sinωt) of points B
against A are shown in Fig. 5. The start from origin x = 0, ẋ = 0 begins by linear increase
of Ft along line 1, the stationary periodic process is represented by a rhomboid in the case
of elastic micro-deformation (Fig. 5a) or by a rectangle for an infinitely stiff spring (Fig. 5b).
Inclined or vertical lines correspond to the deformations of the spring at zero friction velocity
(stick), horizontal sides of the figures illustrate relative motion (slip) in a friction element
at constant deformation of spring.

Areas of figures are proportional to the dissipated energy during one cycle. In real con-
ditions, sides of figures in Fig. 5 are not straight lines but general curves (see [8]) influenced
both by general friction characteristics and nonlinear properties of spring.
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Micro-deformations depicted by a inclined lines in Fig. 5a are caused mostly by elastic
deformations of bodies near the friction surfaces, but they are also accompanied by partial
microslips in several points of the contact area, where owing to non-uniform distribution of
contact pressure a part of the area is less loaded or even without contact as it is evident e.g.
from photos in [8].

Processes which happen during the stick period near the zero relative velocity are there-
fore always related to friction motions and are also highly influenced by wear, geometric
precision, etc. Therefore their mathematical model is very uncertain.

Fig.5

If it is taken into consideration that in extreme positions at vibrations and at low relative
velocity the change of polarity of friction force lasts a short interval of time and that it is
connected by a small dissipation of energy, then it is possible to model this short process
approximately by an inclined line in the modified Coulomb diagram Ft(v) and describe it
mathematically by the following relationship

Ft =
f FN

vr
v for |v| < vr , (3)

which replaces the second equation in (1). Threshold velocity vr is seen in Fig. 3.

Such a modified Coulomb law can be described by one expression :

Ft = f FN

[
v

vr
(1 −H(|v| − vr)) + sgn(v)H(|v| − vr)

]
. (4)

Its graphical representation is in Fig. 6.

Fig.6
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At small relative velocities |v| < vr the friction force Ft linearly increases to the
value f FN. Then the full slip between both contact surfaces starts |v| > vr and the friction
force does not change Ft = ±f FN in this whole slip phase of motion. Because, in a si-
milar way as it is shown in Fig. 3, the friction force changes very often its magnitude with
increasing velocity v, then it is important to introduce a general function Ft(v) into the
equation (4). Such a description of general friction characteristic is

Ft = Ft0
v

vr
(1 −H(|v| − vr)) + [Ft0 sgn(v) + g(v − vr sgn(v))]H(|v| − vr) , (5)

which contains both the sudden change of friction force near the origin and the general course
of nonlinear friction force g(v) in the slip phase of motion. This function is continuous and
can be expressed by a power series :

g(va) =
N∑

n=1

bn v
n
a (6)

where va = v − vr sgn(v).

Examples of such a friction characteristics are shown in the following figures for fixed
values |v| < vr = 0.5, Ft = 1 and for a power series of the fourth degree :

g(va) = (b1 + b2 |va| + b3 v
2
a + b4 |va|3) va . (7)

Friction characteristics with linear increase b1 = −0.1; 0; 0.1 of friction force Ft is in
Fig. 7.

Fig.7 Fig.8

If only the first (linear) and the second (quadratic) members in g(va) are used :

g(va) = b1 va + b2 |va| va , (8)

then the corresponding friction characteristics are plotted in Fig. 8 for b1 = 0.1; 0;−0.1;−0.2
and b2 = 0.02 .

The stronger increase of friction slipping force is achieved by combining the first and the
fourth power of relative velocity va. It is shown in Fig. 9 calculated for function

g(va) = b1 va + b4 |va|3 va , (9)

where b4 = 0.0005 and b1 = −0.2 ÷ 0.1 .
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Fig.9 Fig.10

Both of these functions have the same sense of curvature in the whole interval v > vr.
By means of appropriate combination of coefficients bi in equation (7), it is possible to get
partially concave and partially convex curvatures. Such a property is shown in Fig. 10 for
the function

g(va) = b1 va + b2 |va| va + b3 v
3
a , (10)

with the values b1 = 0; 0.1; 0.2, b2 = −0.05, b3 = 0.006 .

A mathematical model of friction characteristics with finite number of elements in power
series form of function g(v−vr sgn(v)) can only be used for a limited region of slip velocity v
(or va), because the magnitude of friction force increases with increasing va to infinity and
does not describe the physical reality.

To express friction properly in the case, in which the friction force at great velocity v

settles on a constant value, it is possible to use the functions arctan(v) or exp(−v). In
Fig. 11 an example of such a course of friction characteristics is calculated with function

Ft = FN f

{
v

vr
(1 −H(|v| − vr)) + [sgn(v) + ba arctan(v − vr sgn(v))]H(|v| − vr)

}
(11)

and ba = −0.5; 0; 0.5 .

Fig.11 Fig.12
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Fig. 12 shows three friction characteristics of the similar property as in the previous case,
but instead of function arctan the exponential function is used :

Ft = FN f

{
v

vr
(1 −H(|v| − vr)) + [1 + β (1 − exp(−α (|v| − vr)))]H(|v| − vr)

}
. (12)

Parameter β ascertains the value of friction force at very large slip velocity Ft(v → ∞) =
= FN f (1+β) and parameter α determines the decline of friction characteristics in boundary
crossing point v = vr. The influence of this parameter on the course of friction characteristic
is evident from Fig. 12, where Ft(v) curves are plotted for α = 0.2; 1; 5 at the same β = −0.7 .

Different friction coefficient f1 in the slip phase from the friction coefficient f2 in the
stick phase can be introduced into the mathematical friction models (1)–(10) very simply
by applying two coefficients for ranges |v| < vr and |v| > vr. Modified equation (4) is then

Ft = FN

[
f2

v

vr
(1 −H(|v| − vr)) + f1 sgn(v)H(|v| − vr)

]
(13)

and equation (5)

Ft = FN f2
v

vr
(1 −H(|v| − vr)) + [FN f1 sgn(v) + g(v − vr sgn(v))]H(|v| − vr) . (13a)

An example of such a characteristic is in Fig. 13, where Ft0 = FN f1 = 1, Ftk = FN f2 = 2
and the others parameters are the same as in the lower curve in Fig. 10, i.e. b1 = 0,
b2 = −0.05, b3 = 0.006, b4 = 0.

Fig.13

Different friction properties in stick and slip phase of motion can be modeled a similar
way in other cases as well.

The arbitrary nonlinear friction characteristic can be mathematically described by a sum
of piecewise-linear functions. The basic element of such a sum is plotted in Fig. 14 and
expressed by

Ftn = bn (v − vrn sgn(v))H(|v| − vrn) , (14)

where bn = tanβn is the slope of slip friction function beginning at |v| = vrn.
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Fig.14 Fig.15

Example of a characteristic consisting of 6 linear sections in region v > 0 is shown in
Fig. 15.

This piecewise linear characteristic is given by

Ft(v,B,V) =
6∑

n=1

bn (v − vrn sgn(v))H(|v| − vrn) , (15)

where the parameters bn, vrn are elements of vectors B, V, which for the friction characte-
ristic drawn in Fig. 15 are

B = [ 4 −5.6 1.2 0.3 0.4 −0.2 ] ,

V = [ 0 0.5 1 2 3 5 ] .
(16)

Since the number n of piecewise linear sections in (15), (16) is not limited, it is possible to
describe mathematically a quite arbitrary course of friction forces as the function of relative
velocity in the contact. Due to a simple linear form of the basic element (14) it also is
comparatively simple to express equivalent linear damping for complicated friction forces.

3. Equivalent linearization of dry friction processes

The development of mechanical engineering is based to a large extent on treatment
of many applied problems, where quantitative, first approximation results play the very
important roles. If a method of equivalent linearization is applied to the nonlinear element,
which is a part of a much larger linear mechanical system, the whole system can be treated
as linear, which simplifies the solution of the problem.

The importance of an equivalent linearization method is supported by the fact that in the
last decades a lot of commercial programme packets based on solutions of linear differential
equations have been more and more employed.

For solving of technical problems it is often advantageous to replace strongly nonlinear
friction characteristic by an equivalent linear function. Let us suppose that the displacement
is near the harmonic oscillations x = a sinωt with velocity ẋ = v = aω cosωt.

Equivalent linear damping coefficient be(aω) [12, 13] is then

be(aω) =
1

π aω

2π∫
0

Ft(aω cosωt) cos τ dτ , (17)
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where aω = v0 is the amplitude of relative velocity between the friction surfaces. The course
of one period of motion is in the time history v(t) (in dimensionless form v/vr(τ)) shown in
Fig. 16.

Fig.16 Fig.17

Instants of a transfer from full slip into microslip and reverse are in time τr, π−τr, π+τr,
2π − τr, where

τr = arccos
(
vr
v0

)
. (18)

Replacement of the modified Coulomb’s law with the microslip (4) drawn in Fig. 6 by
a linearized formula is realized by substituting v = v0 cos τ into (4) and (17) with view
of (18) :

be(v0) =
Ft0

π v0

2π∫
0

{
v0 cos τ
vr

[1 −H(|v0 cos τ | − vr)] +

+ sgn(v0 cos τ)H(|v0 cos τ | − vr)
}

cos τ dτ .

(19)

Due to the discontinuities of functions H and sgn it is necessary to solve this integral by
parts with the time boundary τr shown in Fig. 16 and equation (18).

Integral interval 2π in (19) can be reduced to a quarter

2π∫
0

{. . . } cos τ dτ = 4

π/2∫
0

{. . . } cos τ dτ . (19a)

At small amplitudes v0 < vr, in which the motion exists only in the microslip domain,
equivalent linear damping coefficient be is given by a slope of line going through the origin
in Fig. 6 :

be =
Ft0

vr
for v0 < vr . (20)

The values cos τr = vr/v0 are real and smaller (or equal) than 1 at greater velocity
amplitudes v0 ≥ vr. Dimensionless transition time τr is smaller than π/2. The friction
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contact passes during one cycle both microslip and full slip domain. For v0 > vr the
equivalent linear damping coefficient is :

be(v0) =
4
π
Ft0

⎡⎢⎣ τr∫
0

1
v0

cos τ dτ +

π/2∫
τr

1
vr

cos2 τ dτ

⎤⎥⎦ =

=
4Ft0

π vr

[
vr
v0

sin τr +
π

4
− τr

2
− 1

4
sin 2τr

]
.

(21)

This formula can be simplified by using the relationship (18) :

be(v0) =
Ft0

vr

[
1 − 2 τr

π
+

sin 2τr
π

]
. (22)

It is also possible to express be(v0) as function of only velocity amplitude :

be(v0) =
Ft0

vr

⎡⎣1 − 2
π

arccos
(
vr
v0

)
+

2
π

vr
v0

√
1 −

(
vr
v0

)2
⎤⎦ . (23)

Equations (20)–(23) describing the relationship of equivalent linear damping coefficient be
on velocity amplitude v0 and replacing the friction characteristics drawn in Fig. 6 are graphi-
cally represented in Fig. 17 by a solid line – b1 = 0. The course of equivalent damping
coefficient be(v0) for the dry friction combined with linear damping (Fig. 7) is in Fig. 17
depicted by dashed curves for b1 = −0.1 and b1 = 0.1 .

The advantage of including microslip phase into the classical friction Coulomb law is
not only in its better comprehension of real physical processes in friction surfaces at small
displacements, but also in the easier mathematical modelling and computation, because
the equivalent damping be has limited value be(v0) ≤ F0/vr, whereas the classical Coulomb
law without microslip gives at v0 → 0 infinitely high value of equivalent linear damping
be ≈ 1/v0 → ∞, unsuitable for calculation.

In a similar way it is possible to determine equivalent linear damping coefficient be also
for the more general friction characteristics shown e.g. in Figs 7–10. All these characteristics
contain three main parts, two of them are : linear increase of force in interval −vr ≤ v ≤ vr
and constant value in interval |v| > vr. The relationships (17)–(23) derived earlier can be
used for these parts.

The third parts of the mentioned characteristics in Figs 7–10 contain several power
functions vn, n = 1, 2, 3, 4. Corresponding equivalent damping expressions are derived in
the following text.

For linear increase of friction force b1 va = b1 (v− vr sgn(v)) and for v = v0 cosτ , v0 > vr,
0 < τ < τr the equivalent damping coefficient is

be1(v0) =
4 b1
π v0

τr∫
0

(v0 cos τ − vr) cos τ dτ =

=
4 b1
π

(
τr
2
− 1

4
sin 2τr

)
=

2 b1
π

⎡⎣arccos
(
vr
v0

)
− vr
v0

√
1 −

(
vr
v0

)2
⎤⎦ .

(24)
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In the case of quadratic function b2 va |va| = b2 (v0 cos τ − vr) |v0 cos τ − vr|, this coeffi-
cient is

be2(v0) =
4 b2
π v0

τr∫
0

(v0 cos τ − vr)2 cos τ dτ =

=
4 b2
π v0

[
v2
0

(
sin τr − sin3 τr

3

)
− 2 v0 vr

(
τr
2

+
1
4

sin 2τr

)
+ v2

r sin τr

]
=

=
4 b2 v0
π

[
− vr
v0
τr +

(
1 +

v2
r

v2
0

)
sin τr − 1

2
vr
v0

sin 2τr − 1
3

sin3 τr

]
=

=
4 b2 vr
π

[
−τr +

v0
vr

sin τr − v0
3 vr

sin3 τr

]
,

(25)

which can be again transposed onto the function of the variable vr/v0 :

be2(v0) =
4 b2 vr

π

⎡⎣− arccos
(
vr
v0

)
+
(

2
3
v0
vr

+
1
3
vr
v0

)√
1 −

(
vr

v0

)2
⎤⎦ . (25a)

Cubic element b3 v3
a in equation (7) increases the equivalent linear damping coefficient

be(v0) on addition

be3(v0) =
4 b3
π v0

τr∫
0

[v0 cos τ − vr]
3 cos τ dτ =

=
4 b3 v2

r

π

[
v2
0

v2
r

(
3
8
τr +

1
4

sin 2τr +
1
32

sin 4τr

)
−

− 3
v0
vr

(
sin τr − 1

3
sin3 τr

)
+

3
2

(
τr +

1
2

sin 2τr

)
− vr
v0

sin τr

]
=

=
b3 v

2
r

π

[
3
2

(
4 +

v2
0

v2
r

)
τr − 4

(
3
v0
vr

+
vr
v0

)
sin τr +

+
(
v2
0

v2
r

+ 3
)

sin 2τr +
1
8
v2
0

v2
r

sin 4τr + 4
v0
vr

sin3 τr

]
.

(26)

Component be3(v0) can again be expressed as a function of ratio vr/v0 instead of transition
time τr. This transformation based on relationship vr/v0 = cos τr gives

be3(v0) =
b3 v

2
r

π

[
3
2

(
4 +

v2
0

v2
r

)
arccos

(
vr
v0

)
−
√(

1 − v2
r

v2
0

)(
6.5

v0
vr

+
vr
v0

)]
. (26a)

Component be4(v0) of equivalent damping coefficient be(v0), which corresponds to the
fourth power element b4 |va|3 va in nonlinear friction characteristic Ft(v0), can be calculated
again applying the integral formula (17) :

be4(v0) =
b4
π v0

2π∫
0

|v − sgn vr|3 (v − sgn vr)H(|v| − vr) cos τ dτ =

=
4 b4
π v0

τr∫
0

(v0 cos τ − vr)4 cos τ dτ ,

(27)
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which after integration and a small rearrangement gives

be4(v0) =
b4 v

3
r

π

[(
−6

v2
0

v2
r

− 8
)
τr + 4

(
v3
0

v3
r

+ 6
v0
vr

+
vr
v0

)
sin τr − 4

(
v2
0

v2
r

+ 1
)

sin 2τr +

− 1
2
v2
0

v2
r

sin 4τr −
(

8
3
v3
0

v3
r

+ 8
v0
vr

)
sin3 τr +

4
5
v3
0

v3
r

sin5 τr

]
.

(28)

Formula (28), which depends on time τr, can be again transformed into the function of
velocity amplitude v0 with result :

be4(v0) =
b4 v

3
r

π

⎡⎣−(6
v2
0

v2
r

+ 8
)

arccos
(
vr
v0

)
+

+
1
15

(
32
v3
0

v3
r

+ 166
v0
vr

+ 12
vr
v0

)√
1 −

(
vr
v0

)2
⎤⎦ .

(28a)

General formula for equivalent linear damping coefficient be(v0), in which all partial
expressions of be1, . . . , be4 are used, enables to replace a general nonlinear friction characte-
ristic Ft(v)

Ft = FN f
v

vr
(1 −H(|v| − vr)) + [FN f sgn(v) + b1 (v − vr sgn(v)) +

+ b2 |v − vr sgn(v)| (v − vr sgn(v)) + b3 (v − vr sgn(v))3 +

+ b4 |(v − vr sgn(v))|3 (v − vr sgn(v))]H(|v| − vr)

(29)

by a simple linear expression
Ft = be(v0) v . (29a)

The general formula for coefficient be(v0) in the last equation is

be(v0) =
FN f

vr
(1 −H(|v0| − vr)) +

+
FN f

vr

⎡⎣1 − 2
π

arccos
(
vr
v0

)
+

2
π

vr
v0

√
1 −

(
vr
v0

)2
⎤⎦H(|v0| − vr) +

+

⎡⎣b1
π

2

⎛⎝arccos
(
vr
v0

)
− vr
v0

√
1 −

(
vr
v0

)2
⎞⎠+

+
4 b2 vr
π

⎛⎝− arccos
(
vr
v0

)
+
(
v0
vr

2
3

+
1
3
vr
v0

)√
1 −

(
vr
v0

)2
⎞⎠+

+
b3 v

2
r

π

⎛⎝3
2

(
4 +

v2
0

v2
r

)
arccos

(
vr
v0

)
−
(

6.5
v0
vr

+
vr
v0

)√
1 −

(
vr
v0

)2
⎞⎠+

+
b4 v

3
r

π

⎛⎝−
(

6
v2
0

v2
r

+ 8
)

arccos
(
vr
v0

)
+

+
1
15

(
32
v3
0

v3
r

+ 166
v0
vr

+ 12
vr
v0

)√
1 −

(
vr
v0

)2
⎞⎠⎤⎦H(|v0| − vr).

(30)
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4. Examples of equivalent linear damping coefficients

The relationships for equivalent linear coefficients of damping that were derived in the
previous chapter are very complicated and therefore it is useful to complete them by a gra-
phical representation. Following figures should show the contribution of individual elements
of friction characteristics to the course of equivalent linear damping coefficient be(v0).

The majority of the given diagrams (Figs 18–21) is calculated for the same parameters
of microslip phase Ft0 = FN f = 1, vr = 0.5, and an only diagram in Fig. 22 is calculated for
a different friction coefficient in microslip and in full slip phase of motion.

Fig.18 Fig.19

Courses of coefficient be(v0) depicted in Fig. 18 correspond to friction characteristics in
Fig. 7, in which the relationships Ft(v) in the full slip regions |v| > vr are linear with different
slope b1 and are described by :

Ft = [Ft0 sgn(v) + b1 (v − vr sgn(v)] H(|v| − vr) . (31)

Damping coefficient is be(v0) = 2 for v0 < vr and for v0 > vr it is

be(v0) =
Ft0

vr

⎡⎣1 − 2
π

arccos
(
vr
v0

)
− 2
π

vr
v0

√
1 −

(
vr
v0

)2
⎤⎦+

+
2
π
b1

⎡⎣arccos
(
vr
v0

)
− vr
v0

√
1 −

(
vr
v0

)2
⎤⎦ .

(32)

In the region v − vr > 0 it has a hyperbolic fall, which in the limit case v0 → ∞ and for
b1 = −0.1; 0; 0.1 goes to be(∞) = −0.1; 0; 0.1 . However, for negative b1, equivalent coefficient
be changes its sign at certain v0 and the system becomes unstable. Such a situation happens
for b1 = −0.2 at v0/vr ∼= 7 as seen in Fig. 18.

Characteristics Ft(v) in Fig. 8 contain, besides Coulomb friction and linear damping, also
quadratic function b2 |va| va, in which b1 = −0.2 ÷ 0.1, b2 = 0.02 . Corresponding curves of
equivalent damping coefficients be(v0) are plotted in Fig. 19 for the same combinations of
coefficients b1, b2. These curves are described by formulas

be =
Ft0

vr
= 2 for v0 ≤ vr
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and by

be(v0) =
Ft0
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2
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(33)

Two sets of curves are drawn in Fig. 19. Bold solid curves belong to non-zero coefficient
b2 = 0.02, the thin dashed curves depict equivalent damping coefficients be(v0) for b2 = 0.
It is obvious that the quadratic element b2 |va| va, va = v− vr sgn(v) heightens damping and
stabilizes motion, which at negative b1 < 0 can be unstable over a certain threshold.

Friction connections with more progressive increasing of friction forces in the slip phase
have similar curves of be(v0) as seen in Fig. 20, in which the influence of the fourth power of
slip velocity b4 v4

a = b4 (v−vr sgn(v))4, b4 = 0.0005 is demonstrated. Corresponding friction
characteristics Ft(v) are shown in Fig. 9. Equivalent linear damping coefficient be(v0) is at
vibration with small amplitudes v0 ≤ vr again constant be(v0) = Ft0/vr = 2, at higher
velocity amplitudes v0 > vr it strongly falls and it is described by relationship

be(v0) =
FN f
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(34)

Fig.20 Fig.21
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Comparing Fig. 19 and Fig. 20 it is evident that the influence of quadratic power damping
(b2 |va| va, Fig. 19) is remarkable at smaller velocity v0/vr ≈ 2 by diversity of courses without
(b2 = 0) and with quartic element (b2 = 0.02). The influence of quartic velocity damping
element (b4 |va|3 va, Fig. 20) is remarkable by splitting curves with and without this damping
element till at twice higher velocity v0/vr ≈ 4.

At v0/vr = 7 the differences between solid and dashed curves are equal in both cases, but
at higher velocities v0 the influence of quartic element b4 |va|3 va increases more intensively.

The fundamental property of these relationships in Fig. 19 and 20 is their bending to the
upper values, so that any instability in both cases for parameters given in the figures cannot
occur.

Further example of practicable friction characteristic is drawn in Fig. 10, in which
both concave and convex parts exist. Corresponding courses of equivalent damping coeffi-
cient be(v0) are described by expression

be(v0) =
FN f
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(35)

Differences in courses friction characteristics Ft(v) shown in Figs 7–10 and connected
with the variations of parameters b1 ÷ b4 are very marked. In spite of this, these variations
manifest themselves in the courses of equivalent damping coefficients be(v0) much weakly as
it is evident from Figs 18–21. Therefore identification construction of mathematical model
of friction characteristics Ft(v) from experimentally determined equivalent damping coeffi-
cients be(v0) (or from energy-less, from hysteresis loop) is very difficult due to measurements
errors, but it is a possible way how to improve description of friction processes.

Description of friction characteristic by means of power series of relative velocity v is
not the single one. Further way of description of general course of friction process is the
application of piecewise linear functions. Such a function was used in equations (15), (16)
and graphically presented in Fig. 15.

At derivation of equivalent linear damping coefficient be(v0) it is possible to use a su-
perposition principle of sectional damping coefficients be(v0) belonging to a partial friction
function (14) depicted in Fig. 14. According to equation (24) it is

ben(v0) =
2 bn
π

⎡⎣arccos
(
vrn
v0

)
− vrn

v0

√
1 −

(
vrn
v0

)2
⎤⎦ for v0 > vrn ,

ben(v0) = 0 for v0 ≤ vrn .

(36)
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Fig.22

In Fig. 22, as an example of superposition of these formulae, the equivalent linear damping
coefficient be(v0) corresponding to the friction force characteristic in Fig. 15 is shown

be(v0) =
6∑

n=1

ben(v0) . (37)

Equation (37) is drawn in Fig. 22 by a solid thick line, individual contributions (36) are
limited by dashed thin lines and are labelled by n = 1 ÷ 6. These areas begin at the points
given by velocity amplitudes vrn – elements of vector V in equation (16) :

v0 = vrn = 0; 0.5; 1; 2; 3; 5 . (38)

A similar procedure of calculation of equivalent linear damping coefficients be(v0) can also
be applied by replacements of friction characteristics containing functions arctan or exp (see
equations (11), (12), Figs 11, 12) by linear expressions. Necessary integral transformations
are e.g. in [15].

5. Friction contact with elastic micro-deformations

In previous chapters friction characteristics were described by a single expression in the
range of small velocities, in which meets the case when the elastic micro-deformations of
bodies near the contact areas of friction connection are very small. Mathematical expression
of these force-deformation processes at small relative velocities near the reverse of sense of
motion is, according to equation (4) and Fig. 6, based on a substitute expression as viscous
linear relationship of friction force Ft in the region v ∈ (−vr,+vr), where vr is a small relative
velocity. Due to application of only one variable this replacement is – common for small and
high relative velocities – comparatively simple and enables easy calculation for a majority
of engineering problems, where the stiff vibrating bodies contact and shear each other.

However at some friction couples, where friction surfaces are placed on some relative
compliant parts of moving bodies, – see e.g. Fig. 23 – there it is necessary to use more
sophisticated computational model.

Because the relative motion of solid body x(t) slightly differs from the motion x1(t) in
friction area due to the elastic deformation of body’s bulge, it is possible to model such a
contact according to the Fig. 24.



Engineering MECHANICS 219

Fig.23 Fig.24

Let us solve motion of this system at assumption of classical Coulomb friction (Fig. 1)
and of the prescribed excitation harmonic motion of body I x(t) = a cosωt with the initial
conditions : x(0) = a, x1(0) = a− f FN/k, ẋ(0) = 0, ẋ1(0) = 0, Ft(0) = f FN, which are in
agreement with stationary periodic motion. Motion of friction contact II is non-harmonic
with non-smooth velocity. Course of displacement x1(t) is given by

x1 = a− f FN

k
t ∈ (0, tr) , x1 = a cosωt+

f FN

k
t ∈ (tr, T

2

)
,

x1 = −a+
f FN

k
t ∈ (T

2 ,
T
2 + tr

)
, x1 = a cosωt− f FN

k
t ∈ (T

2 + tr, T
)
.

(39)

Time histories of x(t) and x1(t) are shown in Fig. 25, where T = 2π/ω.

Fig.25

Threshold time τr between stick phase and slip phase of motion in the surface is given
by

x = a cosωtr = a− 2
f FN

k
= a− 2 Δ , (40)

from which

τr = ω tr = arccos
(

1 − 2
f FN

k a

)
. (41)

Let us label the non-dimensional expression f FN/(k a) by ψ :

ψ =
f FN

k a
. (42)
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This non-dimensional variable contains all important physical quantities typical for
spring-friction connection. Another non-dimensional variable is τ = ω t.

Time history of friction force Ft in contact surfaces is (with an opposite sign) identical
with force Ft acting body I and it is ascertained by deformation f FN/k of spring with
stiffness k

Ft = k a(cos τ − 1 + ψ) τ ∈ (0, τr) ,
Ft = −k aψ = −f FN τ ∈ (τr, π) ,
Ft = k a(cos τ + 1 − ψ) τ ∈ (π, pi+ τr) ,
Ft = k aψ = f FN τ ∈ (π + τr, 2π) ,

(43)

where τr = arccos(1 − 2ψ).

The course of friction force is shown in Fig. 26.

Fig.26

Replacing nonlinear function F (t) by an equivalent linear expression is at spring-friction
system more complicated than at Coulomb friction. The stiffness and damping components
of system in Fig. 24 have to be considered and therefore beside equivalent damping be(aω)
also the equivalent linear stiffness ke(a) [12, 13] must be added to the expression of linearized
friction force

Ft = be(aω) ẋ+ ke(a)x . (44)

A parallel model in Fig. 4c replaces a series model in Fig. 4a. Equivalent damping coef-
ficient be at assumption

x = a cosωtr , ẋ = −aω sinωt , (45)

is given by [12] :

be(aω) =
−1
π aω

2π∫
0

Ft(τ) sin τ dτ =
−2
π aω

π∫
0

Ft(τ) sin τ dτ . (46)

Using (42), (43) gives

be(aω) =
−2
π aω
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π∫
τr
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k a

(
sin 2τ

2
+ (−1 + 2ψ) sin τ

)
dτ +

2
π aω
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0

−f FN sin τ dτ =

= − 2 k
π ω

[
−cos 2τr

4
+ (1 − 2ψ) cos τr +

1
4
− 1 + 2ψ

]
+

4
π

f FN

aω
.

(47)
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Applying cos τr = 1 − 2ψ gives after simple rearrangement

be(aω) =
4 f FN

π aω

[
1 − f FN

k a

]
= be∞ [1 − ψ] for 0 ≤ ψ ≤ 1 . (48)

The limit value be∞ = 4 f FN/(π aω) is equivalent linear damping coefficient of a separate
dry friction element (k = ∞). The range of dimensionless parameter ψ ∈ 〈0, 1〉 corresponds
to the range of spring stiffness k

k ∈
〈
f FN

a
,∞
〉
. (49)

The equivalent linear stiffness ke(a) of spring-friction system can be ascertained in a si-
milar way :

ke(a) =
1
π a

2π∫
0

Ft(τ) cos τ dτ =
2
π a

π∫
0

Ft(τ) cos τ dτ . (50)

Introducing (43), (45) gives

ke(a) =
2
π a

⎡⎣ τr∫
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k a (cos τ − 1 + ψ) cos τ dτ +
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−f FN cos τ dτ
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k

π
arccos(1 − 2ψ) − 2 k

π
(1 − 2ψ)

√
ψ (1 − ψ) .

(51)

Courses of relative equivalent damping coefficients be(aω) for different stiffness k = 1 ÷ 5
in relation to the equivalent damping be∞ of Coulomb friction element (i.e. at infinity stiff-
ness k) are shown in Fig. 27.

Fig.27
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It is evident that with increasing stiffness k the ratio be/be∞ goes to 1 and the properties
of spring-friction element approach to the simple dry friction Coulomb element.

The absolute values of equivalent damping be in relationship with amplitude a (again for
different stiffness k = 1 ÷ 5) are shown in Fig. 28. The equivalent damping for Coulomb
friction at k → ∞ is there drawn by a dashed thin hyperbolic curve. Finite values of
tangential stiffness k of contact surfaces are depicted by full thick curves. In such a case,
zero friction exists at very small amplitudes. This interval of undamped phase a ∈ (0,Δ),
Δ = f FN/k decreases with increasing spring stiffness k. After crossing this threshold a > Δ,
the equivalent damping be suddenly increases, reaches a maximum and then asymptotically
decreases again to a zero value. The stronger is the stiffness k, the higher is maximum be
and the nearer is the property of spring-friction element to the property of Coulomb friction
element – dashed curve.

Fig.28

It is evident that the effect of contact tangential stiffness k is worthy of consideration
only at very small amplitudes a and/or at very small stiffness k. In other cases, when it
approximately holds

k a > 5 f FN , (52)

it is sufficient and reasonable to use a simple Coulomb model of dry friction.

Fig.29
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Approximation of spring connection by an equivalent linearized model (44) contains also
spring component ke(a)x. Let us see how it changes at variable amplitude a. Courses of
equivalent stiffness ke(a) for different stiffness k in the spring-friction element are shown in
Fig. 29.

At the undamped vibration be(aω) = 0 with small amplitudes

a <
f FN

k
= Δ , (53)

the friction force Ft contains only elastic component with ke = k. A short horizontal line
depicts this phase. For greater amplitudes a > Δ, the equivalent stiffness ke goes quickly to
zero, and at a ∼= 5 Δ it is less than 15% of k.

At increasing spring stiffness k the curves ke(a) move to right, as it is shown by a dashed
line for k = 100. This curve is for k → ∞ identical with both vertical and horizontal axes and
the spring-friction model transfers into simple Coulomb model with no elastic component.

6. Conclusion

The paper presents derivation of analogical relationships of dry friction force versus velo-
city of relative motion in contact of two bodies. Proceeding from the classical Coulomb law,
the varied forms of characteristics are described by analytical or piecewise linear functions.
The equivalent linearization method was used to gain simple linear formulae applicable at
numerical solution of dynamic properties of machine elements with frictional connections.

Particular attention was paid to the modelling of a stick-slip phenomenon at small ampli-
tudes and velocities of relative motion and both the modified Coulomb law and the spring-
friction elements were derived and analysed in detail. The equivalent linearized models are
calculated for both types of friction connections. It is shown that the application of the
spring-friction models and their linearized approximation is reasonable only for analysing
vibrations processes with very small amplitudes and stiffness near the stick phase of motion.
For higher amplitudes and stiffness the characteristic of slip phase given by equivalent li-
near damping is more important and the modified Coulomb friction model and the relevant
equivalent linear damping coefficient are sufficient for the solution of most technical systems.
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Wälzlagern, Acta Technica ČSAV, 2 (1962) 141–173
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