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SENSITIVITY ANALYSIS OF A BLADE COUPLE
UNDER ROTATION

Miroslav Byrtus, Michal Hajžman, Vladimı́r Zeman*

The aim of the paper is to show the influence of design parameters on the suppres-
sion of rotating blade vibration. The derivation of nonlinear mathematical model
of a blade couple mutually connected by a friction element is summarized. After
that, the linearization of the mathematical model is performed by harmonic balance
method. The linearized model is used for sensitivity analysis of real and imaginary
parts of eigenvalues in the course of rotation and sensitivity analysis of steady-state
response with respect to the design parameters of internal friction coupling.

Keywords : sensitivity analysis, friction damper, blades, bladed disk, harmonic ba-
lance method

1. Introduction

Stresses produced by resonant or forced vibration may significantly affect the life of
turbine blades. In order to suppress blade vibration, different damping mechanisms are
employed (i.e. underplatform dampers, shrouds, root joint, etc.). The damping asserts usu-
ally in contacts which are characterized by high contact pressures and a small amplitude of
relative displacement. To predict the influence of friction contacts, accurate models have to
be used. In many cases, the Coulomb’s friction model is used along with Hertz or Hertz-
Mindlin contact theory for spherical bodies [1]. Next and probably more important fact
is the design of particular damping mechanism. Here, the design of the friction damping,
which is realized by a friction element placed in between the shroud of rotating blades, will
be studied [3]. Sensitivity analysis will be performed to investigate the influence of chosen
design parameters on eigenvalues and steady-state response to harmonic excitation with
nozzle frequency, which is given by a product of rotational frequency of bladed disk and the
number of stator blades [2].

2. Mathematical model of rotating blade couple with friction element

Let us recall the mathematical model of rotating blade couple with a friction element
which was presented in detail in [3]. Flexible blades are discretized by FEM using 1D
Rayleigh beam elements. To linearize friction forces in contact surfaces between the blade
shroud and the friction element, harmonic balance method is applied.

Let us consider a system of two blades fixed with rigid disk rotating with angular ve-
locity ω. A friction element with inclined planar contact surfaces a and b is wedged in
between the blade shroud (Fig. 1). As a simplification, the contacts of the friction element
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and the blade shrouds are concentrated to point B in plane b ≡ �ξBηB and to point A in
plane a ≡�ξAηA, respectively.

Fig.1: Two rotating blades with friction element

Blades are modelled as 1D continuum discretized by Rayleigh beam elements with uni-
formly distributed nodes along axes of the blades. End nodes C1 and C2 of the blades are
fixed with rigid blade shroud. As the blades rotate, the centrifugal forcemD rD ω

2 pushes the
friction element towards contact surfaces a and b of the adjacent blade shroud. The friction
element acts on blades by normal NA and NB friction forces �TA(TAξ, TAη) and �TB(TBξ, TBη).
Let us suppose, the blades are excited harmonically with frequencies ωk = k ω in tangential
and axial (parallel to axis of rotation) directions. Excitation forces are uniformly concen-
trated in nodes along the blades.

Equations of motion of blades with shroud and friction element can be expressed in ro-
tating local coordinate systems xj , yj, zj , j = 1, 2 (blades) and xD, yD, zD (friction element),
where xj and xD are identified with axis of the blades and with radial of friction element.
Axes yj , yD are parallel with fixed axis of disk rotation yf (Fig. 1). Equations of motion can
be then expressed in generalized coordinates

qj = [. . . ui, vi, wi, ϕi, ϑi, ψi, . . . ]Tj , j = 1, 2 . (1)

defining displacements in axis direction and angular displacements about them in nodes
i = 1, . . . , N of the blade with shroud considering excluded friction element, in following
form [4]

MB q̈j + (ωGB + BB) q̇j + (Ks,B − ω2 Kd,B + ω2 Kω,B)qj = fω,B + fB(t) , (2)
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where symmetric matrices MB, BB, Ks,B, Kd,B, Kω,B are mass, material damping, static
stiffness, softening under rotation and bending stiffening under rotation, respectively. Ma-
trix ωGB is skew symmetrical matrix of gyroscopic effects. Constant centrifugal forces
expressed by vector fω,B and hydrodynamical forces caused by vapour flow through fixed
nozzles. Based on the analysis of vapour pressure field [5], hydrodynamic forces can be
approximately expressed in blade model (2) as a superposition of vectors of constant mean
forces fB,0 and harmonic variable components with nozzle frequency ωk = k ω as follows

fB(t) = fB,0 + fB cosωk

(
t+

δj
ω

)
, j = 1, 2 , δ1 = 0 , δ2 = δ (3)

where δ represents pitch angle of blades.

Similarly, the equations of motion of still isolated rigid friction element can be written
in generalized coordinates

qD = [u, v, w, ϕ, ϑ, ψ]T , (4)

in matrix form analogous to the blade model [3]

MD q̈D + ωGD q̇D − ω2 Kd,D qD = fω,D . (5)

After placing the friction element in between the blade shroud, acting of contact elastic
and friction forces is concentrated into contact points A and B. Linearized model of blades
connected by means of friction element will be further expressed by using perturbance dis-
placements, which define blade and friction element displacement from static equilibrium
given by centrifugal forces and by mean values of hydrodynamical forces. Contact viscous-
elastic and friction forces are then replaced by forces transmitted by springs and dampers
with equivalent viscous damping, which are calculated under assumption of constant normal
forces NX,0. These forces are calculated from static equilibrium condition of friction element
under rotation

NX,0 = mD rD ω
2 cos δX

sin(δa + δb)
, X = A,B . (6)

Angles of contact surfaces skewing between blade shroud and friction element are displayed
in Fig. 1. In configuration space of perturbed generalized coordinates defined by vector

q = [qT
1 , q

T
D, q

T
2 ]T , (7)

equations of motion of the system are then written in the form [3]

Mq̈ + (ωG + B + BC) q̇ + (Ks − ω2 Kd + ω2 Kω + KC)q + h(q̇) = f(t) . (8)

In accordance with equations of motion (2) and (5), below presented matrices have block-
diagonal structure

M = diag (MB, MD, MB) , G = diag (GB, GD, GB) ,

B = diag (BB, 0, BB) , Ks = diag (Ks,B, 0, Ks,B) ,

Kd = diag (Kd,B, Kd,D, Kd,B) , Kω = diag (Kω,B, 0, Kω,B) .
(9)

Nonlinear friction terms are included in vector h(q̇) and excitation vector

f(t) =
[
fT
B cosωkt, 0, +fT

B cosωk

(
t+

δ

ω

)]T
(10)



228 Byrtus M. et al.: Sensitivity Analysis of a Blade Couple under Rotation

is defined by vector of amplitudes of harmonic variable components of hydrodynamic forces

fB = [. . . , 0, Fax, −Ft, 0, 0, 0 . . . ]T (11)

acting at each blade node in axial and tangential direction (Fig. 1). The influence of contact
viscous-elastic and friction forces is described by stiffness coupling matrix KC, damping
matrix proportional to contact stiffness matrix BC = βC KC comprising the influence of
contact damping in contact surfaces.

Now, let us deal with the nonconservative part of coupling forces defined by vector h(q̇).
The friction forces acting on the friction element concentrated into central contact points B1

and A2 where superscript 1 corresponds to the first blade and superscript 2 to second blade.
These forces are nonlinear and can be expressed as

�TB1 = fbNB1

�vs,B1

|�vs,B1 |
, �TA2 = faNA2

�vs,A2

|�vs,A2 |
, (12)

where fb (fa) is the friction coefficient of friction surface b (a) and �vs,B1 (�vs,A2) is a slip
velocity of blade shroud ‘1’ (‘2’) with respect to the friction element in point B1 (A2) and
is expressed in ξB ηB (ξA ηA) plane. The friction forces acting on the blade shroud have
opposite direction.

To linearize the nonlinear friction forces, the harmonic balance method is used. The aim
of the linearization technique is to replace the original nonlinear system with a linear one.
The harmonic balance method is derived under following assumptions :

– Both nonlinear friction torques and forces acting on a friction element interact mutu-
ally very weak, therefore equivalent damping coefficients can be considered indepen-
dently.

– The slip motion of friction surfaces can be simply considered as two degree of freedom
elliptical motion in the friction surface.

– Excitation is supposed to be a periodic function as well as the steady-state response.

– The friction and excitation forces are expandable into a Fourier series.

Based on this, the term for determination of equivalent damping coefficient for k-th
harmonic component with angular frequency ωk can be derived assuming Coulomb friction
law in following form [3]

be(ak, ωk) =
4T

π ak ωk
, (13)

where T is the magnitude of friction force, ak is the amplitude of steady slip motion and ωk is
excitation angular frequency. According to known experimental observations, the term (13)
does not fit real, measured amplitudes of slip motion. In [8], a modification of (13) is
suggested

be(ak, ωk) =
4T

π (ak ωk)1.112
. (14)

Physically, the term ak ωk represents the amplitude of corresponding harmonic component
of the slip velocity. Using the modified equivalent damping coefficient (14), each harmonic
component of nonlinear friction forces (12) can be linearized and expressed by the coefficient
of equivalent viscous translational and rotational damping (e.g. for the point B1)

b(t)e (a(t)
B,k, ωk) =

4T

π (a(t)
B,k ωk)1.112

, b(r)e (a(r)
B,k, ωk) =

4M

π (a(r)
B,kωk)1.112

. (15)



Engineering MECHANICS 229

Variables a(t)
B,k and a(r)

B,k constitute translational and rotational slip amplitudes excited by k-th
harmonic component, respectively, magnitude M of friction torque is M = 2 fb refNB,0/3.
Finally, the nonlinear mathematical model (8) can be equivalently replaced by linearized
one for each excitation harmonic component with frequency ωk

Mq̈ + (ωG + B + BC + Be(ak, ωk)) q̇ + (Ks − ω2 Kd + ω2 Kω + KC)q =

= fω + f(ωk) eiω0t .
(16)

Friction torques and forces are represented by equivalent damping matrix Be(ak, ωk)), where
ak = [ a(t)

A,k, a
(r)
A,k, a

(t)
B,k, a

(r)
B,k ]T is a vector containing steady slip amplitudes. Vector f(ωk)

of complex amplitudes represents external harmonic excitation with frequency equal to ωk.

3. Sensitivity analysis – computational aspects

The methodology of the modelling presented above is used for sensitivity analysis of
a real blade couple. The blades are fixed to a rigid disk rotating with constant angular
velocity. Detail geometrical description of the blades was gained from [8]. Using the in-
house software for computational blade modelling, each blade was divided by six nodal
points into five finite beam elements. Final computational model has 78 DOF (two blades
and one friction element) [3]. The linearized model (16) serves as the first approximation of
the nonlinear model of the blade couple and is used for sensitivity analysis calculation. Here,
we are dealing with determination of sensitivity of eigenvalues and steady-state response of
the blade couple. To determine the sensitivity, one can derive analytical formulas or use
numerical calculations to gain the desired sensitivity results [7].

Although the mathematical model of a blade couple is linearized, the usage of analytical
formulas for sensitivity of nonconservative mathematical model with equivalent damping
matrix Be(ak, ωk) is complicated, because the particular expression of this matrix depends
on external excitation. That is why we decided to use the numerical calculations of sensitivity
using finite difference formulas. Let us have monitored quantity q = q(p). We desire to
express its partial derivative with respect to a vector of S selected parameters of the system
p = [p1, p2, . . . , pS ]T. Small change Δq of the monitored quantity q can be expressed with
a small change Δp of the initial parameters vector p0. If the conditions of continuity of
derivatives of the monitored quantity q are fulfilled, two terms of Taylor’s formula can be
used

Δq = q(p0 + Δp) − q(p0) =
S∑

j=1

∂q(p0)
∂pj

Δpj . (17)

After modification of relation (17), one can obtain

Δq
q(p0)

=
S∑

j=1

∂q(p0)
∂pj

pj0

q(p0)
Δpj

pj0
. (18)

From relation (18) we can get relative sensitivity Δqj of quantity q with respect to change
of parameter pj

Δqj =
∂q(p0)
∂pj

pj0

q(p0)
. (19)
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Partial derivative in (19) is approximated using the finite difference

∂q(p0)
∂pj

=
q(p0 + Δpj) − q(p0)

Δpj
, (20)

where vector Δpj = [0, . . . , 0,Δpj , 0, . . . , 0]T contains one nonzero element on j-th position.
The differential relation for calculation of relative sensitivity Δqj of quantity q to a change
of parameter pj can be written using (19) and (20) in final form

Δqj =
q(p0 + Δpj) − q(p0)

Δpj

pj0

q(p0)
. (21)

In the next, we will use the relative sensitivity for particular sensitivity calculations.

4. Sensitivity analysis of a blade couple on a test rig

The proposed damping mechanism through the friction element targets the vibration
suppression. Therefore, the sensitivity analysis should reveal whether there exist some
design parameters which can significantly positively influence the blade vibration, i.e. which
of their values can suppress steady-state vibration of the blade couple. To find out that,
it is also necessary to choose suitable design parameters which will be ordered in following
vector

p = [f k δa δA δb δB]T , (22)

where f stands for friction coefficient, k for multiple of fundamental excitation frequency ω
(i.e. angular speed of the bladed disk) and the angles δa, δA, δb, δB are defined in Fig. 1.
Practically, the sensitivity calculations are performed for different initial parameters p0 (e.g.
for different initial value of friction coefficient f).

According to the harmonic balance method, the steady-state response has to be used for
contact slip motion calculation. At first, the steady-state response to external excitation
is determined neglecting friction effects. The response is then used to determine the slip
motion between shrouds and friction element and based on that the equivalent damping

Fig.2: Test rig for measuring blade and disk vibration (Institute of Thermomechanics,
Academy of Sciences of the Czech Republic) [6]
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coefficients are calculated according to relations (13) to (15). Let us define the system
design parameters (22) which primarily influence the blade motion. Slip properties of the
contact surfaces are defined by friction coefficient fa = fb = f0. The excitation defined
in (10) is uniformly distributed along the blade, i.e. radial and tangential forces (11) act at
each blade node. Amplitudes of the forces are supposed to be inverse proportional to the
multiple k of basic excitation frequency ω. Particular values are as follows

f0 = 0.1 ÷ 0.25 , k = 1 ÷ 30 , Fax =
10
k

[N] , Ft =
20
k

[N] , ωk = k ω [rad/s] . (23)

4.1. Sensitivity of eigenvalues

Because of the presence of damping in the mathematical model (16), the eigenvalues
are complex. Hence, we deal with relative sensitivity calculations of corresponding real
and imaginary parts. It has been already shown in [3] that imaginary parts of eigenvalues
depend on rotational speed of the disk to which the blades are mounted and are significantly
influenced by contact coupling forces arising between shroud and friction element. Fig. 3
clearly demonstrates the mentioned dependence of eigenvalues with respect to rotational
speed of the disk. As the rotational speed increases, an interesting phenomenon occurs.
The two areas which are marked by grey colour, are important because furthermore a set
of low eigenfrequencies arises. They are caused by the friction damping and correspond to

Fig.3: Imaginary parts of chosen eigenvalues in dependence on
rotational speed of the bladed disk (f0 = 0.1, k = 1)

Fig.4: Zoomed grey areas from the previous figure – imaginary parts of chosen eigen-
values in dependence on rotational speed of the bladed disk (f0 = 0.1, k = 1)
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such operational state when the blade motion does not affect the friction element motion
and the friction element then behaves like unattached and moves like there were no dam-
ping in the coupling. The origin of this phenomenon consists in the fact that the friction
coupling is supposed to be viscous only. Fig. 4 shows a detail of the course of newly arising
eigenfrequencies which are intersected by the synchronous spin speed line corresponding to
excitation with rotational frequency and therefore the resonant state occurs. This effect
is supposed to be very sensitive to coupling friction coefficient and that is the reason why
the friction coefficient has been chosen as a design parameter. Let us further note that the
coupling damping is in general strongly dependent on the external excitation because the
harmonic balance method is used for determination of the coupling damping.

As an illustration, the following figures below (Fig. 5 – Fig. 8) show the relative sensitivity
of imaginary and real parts of first five eigenvalues for different initial friction coefficient f0
and first harmonic excitation. Let us mention that the damping of the friction coupling
causes that different number of real and complex eigenvalues appears as the rotational speed
increases. Therefore, after each modal analysis calculation the reordering of calculated
eigenvalues has to be performed. The eigenvalues are ordered ascending with respect to
the imaginary part, firstly with positive and after with negative imaginary part. The real
eigenvalues are placed at the end.

During the plotting of sensitivity, there are ‘color jumps’ because of the change of num-
ber of complex and real eigenvalues. The red peaks around 300–400rpm in Figs. 5 and 7

Fig.5: Sensitivity of imaginary parts of first five eigenvalues with
respect to change of friction coefficient (f0 = 0.1, k = 1)

Fig.6: Relative sensitivity of real parts of first five eigenvalues with
respect to change of friction coefficient (f0 = 0.1, k = 1)
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Fig.7: Sensitivity of imaginary parts of first five eigenvalues with
respect to change of friction coefficient (f0 = 0.2, k = 1)

Fig.8: Relative sensitivity of absolute values of real parts of first five eigenvalues
with respect to change of friction coefficient (f0 = 0.2, k = 1)

correspond to resonant state of imaginary parts of newly arising eigenvalues. Their sensi-
tivity shifts to the left because as the friction coefficient increases, the damping increases
too and the resonant states shift to the left. More important, with respect to this particular
application, is the sensitivity of the absolute value of the eigenvalues real parts. According
to the results plotted in Figs. 6 and 8, one can see that sensitivities calculated for f0 = 0.1
are more less positive. Practically, it means that a small increase of the friction coefficient
causes more damped effect in the investigated operational area. On the contrary, sensitivity
of absolute values of eigenvalues real parts for friction coefficient f0 = 0.2 is negative in the
upper operational area for the third and the fourth eigenvalue. This fact is given by the com-
plex eigenmode shapes of these eigenvalues with regard to different phase shifts between the
displacements during the eigenmode shape motion. Moreover, for higher rotational speed,
the friction coupling locks up and the friction element loses the damping capability.

4.2. Sensitivity of steady-state response

Figs. 9 and 10 show the sensitivity of amplitude of steady-state response of three dis-
placements in axial direction labelled 32 (shroud of 1st blade), 38 (friction element) and
74 (shroud of 2nd blade) to change of friction parameter f0. The first figure corresponds
to excitation caused by bladed disk unbalance with rotational frequency ω of the rotating
disk and the latter figure corresponds to excitation by 30 fold multiple (number of stator
nozzles) of fundamental excitation frequency caused by aerodynamic forces. Here, we can
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Fig.9: Relative sensitivity of steady-state response to
change of friction coefficient (f0 = 0.25, k = 1)

Fig.10: Relative sensitivity of steady-state response to
change of friction coefficient (f0 = 0.25, k = 30)

clearly see the strong dependence on excitation frequencies of the system. Higher excita-
tion frequency excites more resonance peaks within the operational area 0–3000 rpm and
therefore the sensitivity asserts around resonant peaks.

The sensitivity is dominant in the lower frequency range because as soon as the rotational
speed crosses the value approximately of 1700 rpm, the friction element locks due to large
centrifugal forces. That is the reason why mentioned design parameters have been chosen.
In many applications, the bladed disks usually run with constant rotational speed. The
sensitivity analysis can thus predict values of design parameters which can ensure that the
friction element is not still locked and the vibration energy can be lost during the slip motion
between friction element and the shroud. It can be clearly seen in Fig. 10 that increasing
the friction coefficient has positive influence on suppression of steady-state blade vibration
at approx. n = 1100 rpm. On the contrary, increasing the friction coefficient has negative
influence on steady-state blade vibration at approx. n = 1500 rpm.

5. Conclusions

This paper presents a short overview of a blade couple with a friction element modelling
which is based on the harmonic balance method for friction effects linearization. The derived
mathematical model is further used for sensitivity calculations of complex eigenvalues and
steady-state response of a blade couple. The sensitivity is calculated numerically using dif-
ference method instead of using analytical formulas because the equivalent damping matrix
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depends directly on excitation and hence to derive analytical formulas is very complicated.
Performing the sensitivity analysis of dynamic steady-state response to high-frequency exci-
tation (e.g. nozzle excitation) with respect to friction coefficient, the limit rotational speed
of the bladed disk can be determined according to the damping effect of the friction ele-
ment. After crossing that speed, the friction element is locked between the shroud and the
energy cannot be dissipated by its slip motion anymore. Based on presented methods and
formulas for sensitivity calculations, the in-house software in MATLAB was created and
tested on a model of two rotating blades with friction element which has been developed for
experimental research at UT AV CR within the solution of GA CR project No. 101/09/1166.
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