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THE LIMITS OF THE BEAM SAG UNDER INFLUENCE
OF STATIC MAGNETIC AND ELECTRIC FORCE

George Juraj Stein® Radoslav Darula** Rudolf Chmurny™*

Utilization of a magnetic force can be found in many mechatronic applications, where
e.g. a slender beam or plate is subjected to static magnetic force generated by an
electromagnetic actuator consisting of a solenoid wound on a ferromagnetic core and
a ferromagnetic armature, fixed to the beam. The static magnetic force, acting per-
pendicularly onto the beam, causes sag (downwards bending) of the beam. If the
magnitude of the magnetic force surpasses some threshold value the armature and
hence the beam is completely attracted to the core of the solenoid. For small de-
flections the mathematical expression of the magnetic force can be linearised and
approximated by a polynomial dependence on the distance to the electromagnet. In
practical applications, it is important to analyse the nature of the sag and to deter-
mine the limits of the linear approximation, as well as the limits leading to the full
attraction to the electromagnet. The mathematical generalisation of the sag is valid
for electrostatic force between planar electrodes, too.
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old current, sag limit, electrostatic case

1. Introduction

Let us analyse a mechatronic system, which consists of a slender beam or plate of length L,
subjected to static magnetic force Fy, generated by an electromagnetic actuator. The ac-
tuator consists of a solenoid wound on a pot-form ferromagnetic core and an armature
(of length L, < L), fixed to the beam at its midpoint (Fig.1). The magnetic force Fi
is acting in the middle of the beam at distance L/2 from rigid fixtures on both ends and
induces a sag (downwards deflection) zmax. If the intensity of the magnetic force FM exceeds
certain threshold, the beam is permanently attracted to the end-stops [1].

2. Mathematical model of the equilibrium state

The deflection, zmax, at the beam midpoint (i.e. approximately at the distance L/2 from
the rigid fixture), due to a general force, P, localized at midpoint of the clamped-clamped
slender beam of length L acting in the perpendicular direction to the beam longest axis
is [1],[2], [4] : ,

P L
TR A (1)
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where Ey is the modulus of elasticity (Young’s module) of the beam material, Iy, is the

Zmax(P)
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Fig.1: Schematics of the clamped-clamped beam with electromagnet : 1 the beam,
2 ferromagnetic armature, 3 electromagnet coil, 4 electromagnet core, 5 cur-
rent source; a thick dashed line denotes the middle flux line

second moment of inertia of the beam cross-section. The displacement zy,ax is collinear with
the acting force P and has the same direction. For a beam with a rectangular cross-section,
the second moment of inertia is given by the formula I, = 1/12bh3, where b is the width of
the beam and h is its height. Formula (1) can be re-formulated as P = zyax k, where the
stiffness of the clamped-clamped slender beam loaded in the midpoint is k = 192 (E}, Iy,) /L3
[1], (2], [4]-

Energizing the electromagnet with a coil of N turns, wound on a ferromagnetic core of
cross-section S with a steady state (DC) current I a magnetic force Fy is generated in the
air gap. The magnitude of magnetic force F\ is described by the equation [1], [2], [3]:
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The magnetic flux lines are crossing twice the air gap of width d, as shown in Fig.1; po is
the permeability of air and lg is the middle flux line length in the ferromagnetic material of
relative permeability u,. A more thorough magnetic field analysis by FEM approach would
be beyond the scope of this contribution. The flux line length I can be transformed into
an equivalent half flux line length in dg., assuming linear properties of the core magnetic

Fu(d, I) = (2)

material : dpo = 1/21g/u,. This is also a simplifying assumption, since for common magnetic
materials B-H relation is non-linear [2], [3]. However, up to the saturation point, the concept
of linear permeability can be used.

From the geometry (Fig.1) follows that zmax = do — d, where dy is the initial distance
between electromagnet and the beam in de-energised state. Then the static equilibrium of
the magnetic force Fyi(d, I) and the elastic force due to the beam deflection P = zyax k is
described by :

P=(dy—d)k=Ful(dI). (3)

Let us introduce a dimensionless variable o :
Zmax dO —d
= = (4)
dp dp

The quantity « is non-negative and cannot be larger than unity. It can be looked-upon as

a non-dimensional relative distance. If & = 1 the armature and core would adhere one to
another and, subject of ideal smoothness of the adhering surfaces, no air gap would exist.
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Introducing « into (3) and using (2), the equilibrium equation is:

7FM7/J,()SN2 IQ 7#05]\[2 IQ
dy  4dy  (do—ado+dre)?  4dy  dZ[(1+46m)— a2’

ak (5)

A relative measure dy; = dp./do can be introduced, while dyy < 1, because pu, > 1. In
some cases, when dp. < dp (i.e. the reluctance of the air gap is dominant), dy < 1 and so
Oy can be neglected [2], [3].

Formula (5) can be, after some algebraic manipulation, re-written :
a(l) k_,uoSNz I?

1+6u  4d] (146 )3[1
M

; (6a)

a 161(?1\4]2

which calls for introduction of a normalised parameter 8: 8 = «/(1 + dm). Parameter 3
relates the air gap width change (dg — d) to the properties of the magnetic circuit dyr, which
are constant for the initial distance dy. Obviously, 8 < 1. The physically feasible limit is
B <1/(1+ dm). Then (6a) is modified to:

— f1o S N* s = 172
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(6b)

3. Solution of the equilibrium equation

The (6b) can be solved for variable 3(I) by an approximate approach or in the exact
way, applying analytical or numerical tools:

i. The denominator of the right hand side of (6b) can be approximated by a McLaurin’s
series :
Bk=KuIl*{1+28+33*+...}. (7)

Just the first two terms of the expansion are considered, i.e. the linear approximation
is used. After some algebra the formula for approximate calculation of 5 emerges. The
approximate value of 3 will be in further denoted as (3’ :

Ky I?
/_
ﬂ_k—QKMF' (8)

ii. The exact solution stems from the cubic equation obtained by rewriting (6b):

sl-gp =20, (99)
ie.

53—252+ﬂ—%12:0. (9b)

The solution of (9b) calls for the use of Cardano’s formulas for evaluation of cubic
equations or rely on numerical solvers of algebraic equations, embedded in simulation pro-
gramming environment, e.g. MATLAB®. The solution leads to three different complex
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roots [5],[6]. In analogy to the quadratic equation there is a cubic discriminator Ds, fur-
nishing for D3 > 0 three real roots. This is the case here. By further analysis, two pairs of
special real solutions of this cubic equation were found :
—a pair for # =0 and 8 =1, which is a result for I = 0;
— a pair for § = 1/3 and § = 4/3, which results if T attains a specific threshold value
Icrit :

4 k
2
L= 10
crit 27 KM ( )
The threshold current I, is determined by the beam stiffness k£ and the magnetic circuit
properties K. The value 8 = 4/3 corresponds to the triple real root at D3 = 0. For I > I .t

(when D3 < 0) there is only a single real root and two complex conjugate roots.

Let us introduce a generalized variable gy, which is physically the current I normalized
by the value of threshold current, gy = I /It < 1. Then (8) and (9b) can be re-formulated
and simplified :

1
/6/:27 1 27 (113)
4 ¢%
4
63—262+ﬂ—ﬁq12\120. (11b)

For calculation of the exact solutions of G the MATLAB® function ‘roots’ was used,
returning a complex three element vector for each g value. Then the roots were ordered in
ascending order and plotted in the form of line graphs (Fig. 2). Note, that this is not a plot
of a function, because for any positive value of gy < 1 three different values are possible.
The course of the approximate solution ', expression (11a), is plotted as a thin line.

Physically feasible values of numerical solution of the cubic equation (11b) are bound
to the interval [0,8 < 1/(1 + dnm)] (white area in Fig.2); hence the solution in the grey
area has no physical meaning (the beam would have to move within the electromagnetic
core!). The dashed course is not physically realistic either, because this would assume that
the elastic beam was buckled prior to energising the field. The physically plausible course
is the lowest curve, starting at zero and reaching for gy = 1 the value of 5 = 1/3. For the
value gy = 1 two different solutions do exist: 8 = 1/3 and 8 = 4/3. This can by interpreted
as the limit of stability: at the threshold current I..;; the beam buckles from the value of
B=1/3to 3 =1/(1+4 dum), as denoted by the thick vertical line and the armature is fully
attracted to the core. For I > I .5 the beam would be permanently attracted to the core.
If the current reverts from a value of I > I.;; the beam would follow the same trajectory,
i.e. as soon as the value of gn drops below unity the beam would attain (after extinction
of a transient phenomenon) a position corresponding to the § = 1/3. The trajectory is
once more highlighted in Fig. 3. From the approximate solution no limiting current and no
full attraction can be implied! In practice the remanent magnetism may play certain role,
changing the beam transient behaviour in the vicinity of gn.

Note, that when gy < 0.80 there is no marked difference between the exact solution and
the approximate solution (Fig.2). For a specific case of initial air-gap width dy = 1.0 mm
and magnetic circuit properties corresponding to dy = 0.15 for gy = 0.80 the difference
between the exact solution 8 = 0.123 and the approximate solution 5’ = 0.117 is —5 %, i.e.
still technically acceptable.



Engineering MECHANICS 327

Fig.2: The solution of the cubic equation (11b) in the generalised coordinates and
of the approximate solution (11a) (thin); the non-realistic solutions are in
the grey area; note the accentuated values for 3 =1/3 and 8 =4/3
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Fig.3: The beam sag trajectory for the electromagnetic case (solid) and the elec-
trostatic case (dashed); diamonds indicates the experimental results

The value of gy is crucial for discrimination between bending and attraction of the elastic
beam to the electromagnet core. Moreover, the maximal displacement due to bending prior
to transition to the buckled state is in normalised coordinates 3 = 1/3, i.e.

d
dlim = go (2 —0m) - (12)

Some selected experimental results are presented in Fig. 3, too [7]. The static deflection of
clamped-clamped aluminium beam of known stiffness, with an electromagnet located in the
middle was measured for various initial distances dy and current values I. From Fig. 3 it can
be seen that numerical results agree well with the experimental data. This shows that within
the range of analysed distances dy the model approximations (constant beam cross-section,
linear properties of the core and armature magnetic material, etc.) are acceptable.

4. The electrostatic case

In analogy to Fig.1 an electrostatic case can be designed: namely a clamped-clamped
beam with plane parallel electrodes of surface area S in the beam centre, between which
a potential difference (DC voltage U) exist. While neglecting the fringing effects on the
electrodes circumference, the electrostatic attraction force is given as [1],[2]:

1 2 2
FE(d,U):—eoerSEU =C U

e —p = Cgg 18)
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where g is the permittivity of vacuum and e, is the relative permittivity of the gaseous
medium between the electrodes, which can be assumed to be approximately unity. The
electrodes form a plate capacitor of capacitance C(d).

If there is no potential difference U between the electrodes a static equilibrium is main-
tained at a distance dy between the electrodes. The capacity of the so formed capacitor Cy
can be calculated, or rather measured. When there is a potential difference the electrodes
are attracted and the beam is bent due to the influence of the electrostatic force (corre-
sponding to the force P in (1)) leading to a new equilibrium position, described by a similar
force balance equation to (3) [1],[2]. However, no equivalent of the magnetic circuit does
exist and there is just a single air gap of width d. After introducing the variable o and some
algebraic manipulations the equilibrium equation can be re-formulated as follows :
7FE(d,U)7€05E U? Co U?

S S (14)

k - Co
“ do 2do Z[Ll—a2 2 dZ[l—a)?

Expression (14) is dual to (5) if the variables for the magnetostatic case are substituted
by the relevant variables for the electrostatic case, noting that dyy = 0. Hence, in analogy
with the above case a normalised variable gx = U/Ugit can be introduced, while for this
case # = a < 1. Then (6b) is to be re-formulated for the electrostatic case:

_ G vt U
T2 (1-p2 CPa-p

Bk (15)

So, for the electrostatic case the course of Fig.3 holds, too; however, the limit is at

B = a = 1, denoted by the dashed horizontal line. Expression (12) is then modified to

become deit = 2/3 dp, i.e. in other words the beam with electrodes and imposed DC voltage

U < Ugit can be bent utmost by 1/3 of the original, de-energised inter-electrodes distance dy.
The critical voltage Ut is:

o _ 8 dj

Uv?.,. = — 2Lk 16
crit 27 CO ( )

If the limiting voltage Ut is exceeded the beam is buckled and the electrodes short-
circuited, which may cause harm to associated circuit. This deliberation would be relevant,
e.g. to MEMS sensors and to powered capacitive sensors.

5. Conclusions

The threshold value of the current I, I..i; is crucial for discrimination between bending
and complete attraction to the electromagnet poles of the elastic slender beam fixed on both
ends. If a current larger than I, energises the solenoid the beam is permanently attracted to
the electromagnet. This finding is supported by experimental results, presented in [7]. From
the experimental results, the agreement with the model and thus with all simplifications
used, is obvious. The extent of beam bending is given by formula (12).

The linearised form of the magnetic force in the force equilibrium expression (8) or (11a)
can be used up to 80 % of the threshold current with an error not exceeding —5 %. Analogous
considerations are relevant for the electrostatic case, occurring, i.e. in MEMS sensors. Here
the critical voltage Ucyt is crucial. The beam can be bent utmost by 1/3 of the original
de-energised distance between the electrodes.
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