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GENERATOR OF COMMAND SIGNALS FOR TESTING
SERVOMECHANISMS OF PAN AND TILT DEVICES

Vladimı́r Čech*, Jǐŕı Jevický**

The pan and tilt devices (P&TD) are often used for mounting of camera and antenna
systems which must track moving targets precisely and speedily in many applications.
For the basic testing of the adjustment and the quality of their positioning servome-
chanisms, the unit step functions of position or velocity are used as command signals.
We have developed the program SNBP (Simulator of Random Excitation Processes)
for the complex testing. The algorithms description of its foregoer EFG (Excitation
Functions Generator) was published in the conference Engineering Mechanics 2004.
As time goes on, it has shown the necessity to develop a connecting link – the generator
of only basic command signals necessary in the middle phase during servos testing.
We have utilized the traditional model of a target movement, i.e. the hypothesis
about its uniform straight-line motion. This model is not able to generate a correct
command signal for the elevation motion control in the range greater than ±90◦. At
present, P&TDs are made with substantially greater elevation ranges. Therefore we
have remade completely the model. The simulation model, which we present now, is
able to generate the command signal for the unlimited traverse motion and for the
elevation motion, too.

Keywords : pan and tilt device (P&TD), positional servomechanism, basic command
signals generator, passive optoelectronic rangefinder (POERF)

1. Motion model of the target

A basic clarification of the simulation target movement model is in Fig. 1–5. A pan
and tilt device (P&TD) is placed in the point B (Fig. 1, 4, 5). Its traverse (pan) axis is
perpendicular to the horizontal plane (tilts δ1, δ2 = 0, thus ϕ = εS, ψ = ψa – Fig. 1, 2) and
it intersects the elevation (tilt) axis just in the point B (Fig. 1). Due to simplicity, we assume
that the Line-of-Sight (LOS) of the camera lens passes through the same point and that the
LOS is directed precisely to the target point T , which represents the target. Consequently,
the target point T is identical to the aiming point. The non-simplified description of the
configuration was published in [2] – Fig. 2.

The target is moving uniformly rectilinearly and so its trajectory is determined explicitly
by the ground speed vector vT = (vT, αT, λT). The movement proceeds in the vertical target
course over ground plane (track plane) (Fig. 3 – a set of T -points, specially T0, TH, TA, T ).
The target course over ground (track) is given by the unit vector of its speed, consequently
by the angles (αT, λT), where αT is the actual track bearing (azimuth) – Fig. 5, λT is the
angle of course pitch over ground (λT = 0 – ‘constant altitude’, λT > 0 – pitching angle,
λT < 0 – diving angle) – Fig. 3, 4.
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Fig.1: The example of P&T device – a subsystem of the Passive Optoelectronic
Rangefinder (POERF), demonstration model 2009 [3] – and its kinematics

Fig.2: Delimitation of the content of this contribution [2, 4].

The shortest horizontal range dTB from the point B to the track plane (the line segment
BPC) is denoted as (azimuthal) course (track) parameter |pA| = min dTB (dTB ≥ 0). If
pA = 0, then it is called as ‘coming course (track)’; if pA 	= 0, then it is called as ‘crossing
course (track)’ – Fig. 4. It is presumed traditionally, that pA ≥ 0. For simplification of
calculations, we will assume that pA is a real number – Fig. 5.

Vertically over the point PC there is lying so-called midpoint TA of the Course (Track).
Actual path sA is contractually equal to zero in this point, i.e. sA(TA) = 0 – Fig. 3. It
is valid contractually that sA = vT tA, where tA is contractual time of the target motion.
The half-line is denoted as ‘approaching leg’ for tA < 0 and as ‘receding leg’ for tA > 0
– Fig. 3. In calculations there is used the actual horizontal path xA = sA cosλT, which lies
in the target horizontal track. The horizontal increments of topographical coordinates of
the system UTM relative to the point B are (Fig. 5)

ΔET = xA sinαT + pA sin(αT + 270◦) ,

ΔNT = xA cosαT + pA cos(αT + 270◦) .
(1)
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Fig.3: The first diagram for explanation of geometric relations

Fig.4: The second diagram for explanation of geometric relations

In contrast to traditional procedures, we will use the slant range dH of the point T to
the point PC – Fig. 3. We denote its minimal size as the elevation course (track) parameter
|pH| = min dH (the line segment THPC, dH > 0). For simplification of calculations, we will
assume that pH is a real number, pH 	= 0. It is valid for the altitude of the target point T

ΔHT = ΔHTA + sA sinλT , ΔHTA =
pH

cosλT
. (2)

This introduction of the parameter pH 	= 0 and the slant range dH allows to use the
universal relation for the slant range to target point T (Fig. 4, 6)

DTB =
√
d2
H + p2

A , dH =
|pH|

cosβH
. (3)
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Fig.5: The third diagram for explanation of geometric relations

Fig.6: The example showing the change of the distances dH

and DTB during simulation (a variant)

An instantaneous position of the target point T is determined by the pair of angles
βA ∈ 〈−90◦,+90◦〉, βH ∈ 〈−90◦,+90◦〉 (Fig. 3, 4, 5). Their sizes can be calculated easily
from values (vT, λT, pH, pA), which determine simulated motion of the target, and from the
chosen time tA. It is valid for tA ∈ (−∞,+∞)

sA = vT tA , sH = sA + ΔsHA , ΔsHA = pH tanλT , (4)

βH = arctan
sH
|pH| , βA = arctan

xA

|pA| for xA = sA cosλT , (5)

γ = arctan
|pA|
dH

, dTB =
|pA|

cosβA
for pA 	= 0 . (6)
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2. Usage of model of target movement for generating command signals εS, ψa

It can be determined consequently with the use of angles βA, βH :

a) The angular height of the target point T angle detected by an elevation angle sen-
sor (Fig. 1, 7)

εS =

⎧⎨
⎩

[βH + (90◦ − λT)] sgn(pH) if pA = 0 ,

arctan
ΔHT

dTB
otherwise ,

εS ∈ 〈−180◦,+180◦〉 . (7)

b) Traditional angular height of the target point T (Fig. 4, 7)

εTB =
{

arcsin(sin εS) if pA = 0 ,
εS otherwise ,

εTB ∈ 〈−90◦,+90◦〉 . (8)

Henceforth, we will consider the basic variant for simulations, which is given by the
condition pA 	= 0. It always holds under this condition that εTB = εS and |εS| < 90◦.
The target is tracked simultaneously in the elevation ϕ and the traverse ψ. We add yet
contractually two other variants to the basic one, which are determined for the same
parameters, but for pA = 0. We will use the new denotation (εTB0, εS0) instead of the
common (εTB, εS) – Fig. 7.

The first variant corresponds with the traditional model, i.e. the elevation is considered
with limitation just on εTB = εS ∈ 〈−90◦,+90◦〉, and the target is tracked again simul-
taneously in the elevation ϕ and the traverse ψ. We will denote this variant as (pA = 0,
ψa = var resp. |ϕ| ≤ 90◦).

The second variant presupposes that the elevation is unlimited (εS is commonly unlimi-
ted). The target is tracked with the use of the elevation movement ϕ only, whereas the
traverse ψ is not varying (ψ = const; the traverse movement control is ‘off’). We will
denote this variant as (pA = 0, ψa = const resp. |ϕ| > 90◦).

Under real conditions, the second variant can be used also in situations, where pA 	= 0.
The uncompensated control deviation e = γ sgn(pA) then arises, where γ is its absolute
value (see relations (6) and Fig. 4, 7a). The given procedure can be used, if the target
tracking is done with the use of a camera whose lens supports sufficiently large angle of
view. The angle of view must be of such size, that the target occurs in the field of view
during all observed action and the automatic algorithm can evaluate control deviations
e sufficiently accurately. The size of the control deviations is consequently exploited in
relations for estimates of the UTM coordinates of the target. More detailed analysis of
this problem exceeds this article.

c) Hereafter, it is valid for pA = 0 (Fig. 7) :

β̇H = β̇Hm cos2 βH, β̇Hm =
vT
|pH| , (9)

β̈H = −3.079202 β̈Hm cos3 βH sinβH ,

β̈Hm = 0.649519
(
vT
|pH|
)2

for βH = ±30◦ .
(10)

It holds for the mechanical power of the elevation traction

PβH = Jϕ β̇H β̈H , |PβH | ≤ PHm ,

PHm = 0.517608 Jϕ

∣∣∣∣vTpH

∣∣∣∣
3

for βH = ±24◦ 5′ 41.4′′ ,
(11)
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Fig.7: Example – results of simulation calculations
of command signals for testing P&TD
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where Jϕ is the reduced moment of inertia of the mechanical system with respect to the
elevation axis including influences of the mechanical efficiency [kg m2] – Fig. 7g.

Furthermore

ε̇S = β̇H sgn(pH) , ε̇TB = −ε̇S sgn(βH − λT) ,

ε̈S = β̈H sgn(pH) , ε̈TB =
[
|β̈S| − 2 β̇H(λT) δ(βH − λT)

]
sgn(pH) ,

(12)

where δ(βH − λT) is the Dirac delta function. It is evident from the relations (11), why
the variant (pA = 0, ψa = const) is more advantageous than the first ‘traditional’ variant
(Fig. 7c, e).

d) Traditional value of the bearing (azimuth) of the target point T (Fig. 5)

αTB =
{

(αT + 180◦) + (βAE0 + 90◦) if pA = 0 ,
(αT + 180◦) + (βA + 90◦) sgn(pA) otherwise ,

αTB ∈ 〈0, 360◦) , (13)

where the definition of the angle βA is extended for the case of pA = 0 by the value

βAE0 =
{

90◦ sgn(βH − λT) in the traditional model (ψa = var) ,
−90◦ in the new model (ψa = const) .

(14)

Then

β̇AE0 =
{

180◦ δ(βH − λT) if ψa = var ,
0 if ψa = const .

(15)

It is evident from (14), why the variant (pA = 0, ψa = const) is more advantageous than
the first ‘traditional’ variant (Fig. 7c, e).

e) The absolute traverse angle (pan) is defined as

ψa = αTB − αMD , (16)

where αMD is the bearing (azimuth) of main direction of pan and tilt device (its orienta-
tion is towards the north in the horizontal plane) – Fig. 5. The absolute traverse is usually
detected in the range ψa ∈ 〈0◦, 360◦), but it must be taken in the range ψa ∈ (−∞,+∞)
for simulations.

f) For the basic variant (pA 	= 0), it holds

ε̇S = ε̇TB =
1
dTB

(vt sinλT sgn(pH) − ḊTB sin εTB) , ḊTB =
vT |pH|
DTB

tanβH , (17)

ε̈S = ε̈TB =
1
dTB

[(ε̇2TBDTB − D̈TB) sin εTB − 2 ε̇TB ḊTB cos εTB] ,

D̈TB =
1

DTB
(v2

T − Ḋ2
TB) ,

(18)

β̇A = β̇Am cos2 βA , β̇Am =
vT cosλT

|pA| , (19)

β̈A = −3.079202 β̈Am cos3 βA sinβA ,

β̈Am = 0.649519
(
vT cosλT

|pA|
)2

for βA = ±30◦ .
(20)
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Furthermore

ψ̇a = α̇TB = β̇A sgn(pA) , ψ̈a = α̈TB = β̈A sgn(pA) . (21)

It holds for the mechanical power of the traverse traction

PβA = Jψ β̇A β̈A , |PβA | ≤ PAm ,

PAm = 0.517608 Jψ

∣∣∣∣vT cosλT

pA

∣∣∣∣
3

for βA = ±24◦ 5′ 41.4′′ ,
(22)

where Jψ is the reduced moment of inertia of the mechanical system with respect to the
traverse axis including influences of the mechanical efficiency [kg m2] – Fig. 7h.

3. Simulation of the change in aiming from one target to the another one in the
start of the action

Let us suppose that it has been aimed to a previous stationary target (εS1, εa1). The
system has received the command to track another target at the moment tA0, when this
target has been situated in the point T0 (Fig. 3, 4) with corresponding angles (εS(0) = εTB(0),
ψa(0) for pA 	= 0), resp. (εS01(0) = εTB01(0), ψa01(0) for pA = 0 and ψa = var) and (εS02(0),
ψa02(0) for pA = 0 and ψa = const).

We will introduce the relative simulation time t = tA − tA0, which value for the point T0

of the target trajectory is t = 0.

In many cases, it is convenient to respect the traditional assignment of command sig-
nals [1, 8], where it is claimed that for t < 0 all command signals must be equal to zero. In
our case, it will be valid e.g. for the basic variant (pA 	= 0), that

ΔεTB =
{

[εTB − εTB(0)] + ΔεTB(0) , ΔεTB(0) = εTB(0) − εS1 if t ≥ 0 ,
0 otherwise ,

(23)

Δψa =
{

[ψa − ψa(0)] + Δψa(0) , Δψa(0) = ψa(0) − ψa1 if t ≥ 0 ,
0 otherwise ,

(24)

where the next inputs to simulations are the time tA0 and arbitrarily chosen sizes of jumps
ΔεTB(0) and Δψa(0) in the time t = 0. Analogously for remaining two variants with pA = 0,
too.

The choice of the point T0 (resp. the time tA0) depends usually on demands on sizes of
respectively elevation and traverse speeds and accelerations in this point (‘jumps’ at speed
and acceleration in the time t = 0).

4. Tracking of the target from a moving P&TD

Let us suppose that P&TD is placed on a moving platform, which vector of speed vB is
a constant, i.e. vB = (vB, αB, λB) = const, where the angle λB is analogous to the angle λT

and the angle αB is analogous to the angle αT. So we omit influences of the platform
vibrations on the motion of the point B (Fig. 3, 4, 5).

The horizontal trajectory of the point B is

xB = vB tA cosλB . (25)
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If the position of the point B in the time tA = 0 is given in the coordinate system
UTM, B = (EB0, NB0, HB0), then the change of position of the point B towards its initial
position B0 is

ΔEB = EB − EB0 = xB sinαB ,

ΔNB = NB −NB0 = xB cosαB ,

ΔHB = HB −HB0 = xB tanλB .

(26)

We will assume that the vector of the target speed vT = (vT, αT, λT) is the vector of the
target relative speed towards the moving point B, accordingly vT = vTA − vB, where vTA

is the vector of the target absolute speed towards the ground, vTA = (vTA, αTA, λTA). This
vector can be determined from the vector equation vTA = vB +vT. This assumption means
that the vector of the relative speed of the target vT is of crucial importance for simulations
of aiming to the target and therefore it is suitable to assign it as the basic speed, while the
size of the vector vTA is only of secondary significance for simulations.

It holds true for coordinates of the point T towards the point B0

ΔETA = ETA − EB0 = ΔET + ΔEB ,

ΔNTA = NTA −NB0 = ΔNT + ΔNB ,

ΔHTA = HTA −HB0 = ΔHT + ΔHB .

(27)

where the relative coordinates of the point T towards the point B are given by relations (1)
and (2).

5. Conclusions

The traditional model had been developed gradually since the end of 19th century and it
was finalized in the second half of 1930s [5, 6, 7]. The model does not differentiate between
angles εS and εTB. As it is obvious from given relations and from the graphs in Fig. 7, this
simplification represents a serious defect, which fully takes effect during simulations of eleva-
tion motions in systems with unlimited elevation. Our contribution consists in recognition
of this problem and its elimination.
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