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ANALYTICAL SOLUTION TO INFINITE FATIGUE LIFE
OF MACHINE PARTS UNDER HARMONIC LOADING

Milan Hýča*, Hynek Lauschmann**

The article presents an analytical solution to deterministic problems of infinite fatigue
life (determining the safety factor, predicting the carrying capacity and proposing
the cross-section dimensions) of machine parts subjected to arbitrary pure harmonic
loading. Presented mathematical models do not require to construct any fatigue
strength diagram adopting it only as a basis of graphical solving. Finally, these
models may serve as a starting point formulating analytical solution to deterministic
problems of infinite fatigue life of machine parts under combined harmonic loading.

Keywords : infinite fatigue life, harmonic loading, safety factor, carrying capacity,
cross-section dimensions

1. Introduction

An oldest and frequently used procedure of machine parts dimensioning subjected to
fatigue loading is dimensioning on infinite fatigue life, i.e. dimensioning under the endurance
limit [1–4]. The procedure adopts a safety factor related to this limit. Regarding fatigue
data dispersion the safety factor is to be prescribed bigger than the static safety factor. This
implies the bigger robustness of structures and reduces specific power of machines.

Regardless of it, designing methods on infinite fatigue life preserve their practical impor-
tance till today [5] : they enable structural design for infinite fatigue life and the working
competence of machine parts designed according to this approach may be reached during
the whole period of physical life of a whole structure. Further methods of designing machine
parts subjected to oscillating loading have therefore been developed in many universities
and research laboratories during recent decades, e.g., [6]. Dimensioning on limited or timed
strength is to be mentioned which makes it possible to design machine parts with increased
specific power.

The classical conception of infinite fatigue life (NC ≥ 107) assumes the nominal stress
state in characteristic cross-section of a machine part and its determination according to
elementary elasticity. The fundamental parameter for determining the limit state of fatigue
is the unnotched fully reversed fatigue limit, σC (or τC) of a material. Completing these basic
assumptions with Goodman’s linear approximation of the effect of loading cycles asymmetry,
the simplest classical version of the infinite fatigue life may be adopted. The graphical solving
of deterministic problem of infinite fatigue life of machine parts subjected to pure harmonic
loading is widely spread, especially as fare as determining the safety factor is concerned.
The graphical solving of other problems of infinite fatigue life of machine parts within the
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frame of the classical approach is either cumbersome or cannot be applied. In addition, the
graphical solving excludes the automatic plotting of appropriate nomograms.

This article presents an analytical solution to deterministic problems of infinite fatigue
life (determining the safety factor, predicting the carrying capacity and proposing the cross-
section dimensions) of machine parts subjected to arbitrary pure harmonic loading. Pre-
sented mathematical models do not require to construct any fatigue strength diagram adopt-
ing it as a basis of graphical solving. In addition, these models make it possible to solve
the problems in question inclusive of problems which are not solvable graphically. They
facilitate the plotting of nomograms which are not available by using neither graphical nor
discrete methods [7, 8]. Finally, the presented mathematical models may serve as a starting
point for formulating analytical solution to deterministic problems of infinite fatigue life of
machine parts under arbitrary combined harmonic loading.

2. Input data for analytical models of infinite fatigue life

Input data according to Figs. 1 and 2 may be classified in the following groups :

– mechanical properties of a material :

σF, τF = fictive strength (usually identified with ultimate strength) ,

σK, τK = yield strength* ,

σC, τC = unnotched fully reversed fatigue limit* ,

(1)

– the fatigue notch factors :

βσ = 1 + (ασ − 1) q , βτ = 1 + (ατ − 1) q , (2)

where ασ and ατ are the elastic stress concentration factors and q is the notch sensi-
tivity of a material,

– or, as the case may be, reduced fatigue notch factors

βσr =
βσ

vσ ϕσ
, βτr =

βτ

vτ ϕτ
, (3)

where vσ, vτ are the size factors and ϕσ, ϕτ stand for the fatigue strength surface
condition factors,

– fatigue limits of a notched part are

σ∗
C =

vσ ϕσ

βσ
σC ⇒ σ∗

C =
σC

βσr
, (4)

or
τ∗
C =

vτ ϕτ

βτ
τC ⇒ τ∗

C =
τC

βτr
, (5)

– the magnitude of loading (the maximum of loading cycle) :

at bending : MP
oh , (6)

at tension-compression : NP
h , (7)

at torsion : MP
kh , (8)

*For pure bending, specific values of yield strength and fatigue limit (both higher then values for tension-
compression) should be used.
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where MP
oh, NP

h and MP
kh denote the generalized internal forces,

– the slope of load line :

at bending or tension-compression : ησ =
σP

h

σP
m

∈ 〈1;∞) , (9)

at torsion : ητ =
τP
h

τP
m

∈ 〈1;∞) , (10)

– the size of a characteristic cross-section of a structure part (e.g. the size of a diameter d

of the shaft cross-section),

– the safety factor related to the endurance limit allowing for the linear approximation
of the effect of loading cycles asymmetry, corresponding to the type of loading :
at a bending or tension-compression :

kσ =
σMσ

h

σP
h

, (11)

where

σP
h =

MP
oh

Wo
or σP

h =
NP

h

S
(12)

or at a torsion :

kτ =
τMτ
h

τP
h

, (13)

where

τP
h =

MP
kh

Wk
(14)

with S, Wo and Wk standing for the cross-section properties.

3. Deriving mathematical models of infinite fatigue life

We will derive mathematical models of infinite fatigue life following the classical Smith’s
diagram. The estimated Smith’s diagram for a part subjected to pure harmonic axial stress
due to bending or tension-compression is in Fig. 1. Similarly, the Smith’s diagram for a part
under pure harmonic shear stress due to torsion is in Fig. 2. Derivation of analytical ex-
pressions of the limiting curve A∗D∗G of a fatigue failure consists in deriving relations for
ordinates σMC

h and τMC
h of points MC ⊂ A∗D∗ in Smith’s diagrams according to Figs. 1a

and 2a. A magnitude of the stress components is determined by magnitude of the upper
quantity, σP

h or τP
h , of loading cycles. Equations of straight lines OMC and A∗MC are as

follows :

– an equation of the straight line OMC :

σMC
h =

σP
h

σP
m

σMC
m =

(
1 +

σP
a

σP
m

)
σMC

m , (15)

– an equation of the straight line A∗MC :

σMC
h =

σF − σ∗
C

σF
σMC

m + σ∗
C =

(
1 − σ∗

C

σF

)
σMC

m + σ∗
C . (16)
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Thus, regarding Eqs. (15) and (16) we get

(
1 +

σP
a

σP
m

)
σMC

m =
(

1 − σ∗
C

σF

)
σMC

m + σ∗
C, (17)

from which
σMC

m =
σ∗

C

σP
a

σP
m

+
σ∗

C

σF

. (18)

By substituting Eq. (18) into Eqs. (15) or (16) we get

σMC
h =

1 +
σP

a

σP
m

σP
a

σP
m

+
σ∗

C

σF

σ∗
C . (19)

Fig.1: Smith’s diagram of machine parts subjected to harmonic tension-compres-
sion or bending with indicated load lines ησ in two characteristic positions :
a) ησ ≥ ηlimit

σ or b) 1 < ησ < ηlimit
σ (for ηlimit

σ see eq. (33))

Recalling the slope of load line

σh

σm
= ησ ∈ 〈1,∞) , (20)

which implies

ησ =
σm + σa

σm
= 1 +

σa

σm
, (21)

the Eqs. (18) and (19) read

σMC
m =

σ∗
C

ησ +
σ∗

C

σF
− 1

(22)
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Fig.2: Smith’s diagram of machine parts subjected to harmonic torsion with
indicated load lines ητ in two characteristic positions : a) ητ ≥ ηlimit

τ or
b) 1 < ητ < ηlimit

τ (for ηlimit
τ see eq. (36))

and
σMC

h =
σ∗

C

ησ +
σ∗

C

σF
− 1

ησ = σMC
m ησ . (23)

Equations of straight lines, OMK and D∗G, are

σMK
h =

σP
h

σP
m

σMK
m = ησ σMK

m (24)

and
σMK

h = σK . (25)

Substituting this identity into Eq. (24) we arrive at

σMK
m =

σK

ησ
. (26)

Referring to a notation in Figs. 2a and 2b, we can derive the coordinates of points MC

and MK in a Smith’s diagram for infinite fatigue life of machine parts under pure torsional
harmonic loading following Eqs. (22), (23) and (25), (26), respectively :

τMC
m =

τ∗
C

ητ +
τ∗
C

τF
− 1

, (27)

τMC
h =

τ∗
C

ητ +
τ∗
C

τF
− 1

ητ = τMC
m ητ (28)

or

τMK
h = τK , (29)

τMK
m =

τK

ητ
. (30)
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Substituting for σMC
h from Eq. (23) a condition

σMC
h = σK (31)

will read
σ∗

C

ησ +
σ∗

C

σF
− 1

ησ = σK , (32)

from which

ησ = ηlimit
σ =

1 − σ∗
C

σF

1 − σ∗
C

σK

. (33)

Similarly, substituting for τMC
h from Eq. (28) a condition

τMC
h = τK (34)

implies
τ∗
C

ητ +
τ∗
C

τF
− 1

ητ = τK , (35)

yielding

ητ = ηlimit
τ =

1 − τ∗
C

τF

1 − τ∗
C

τK

. (36)

The quantities ηlimit
σ and ηlimit

τ according to (33) and (36) represent limit magnitudes of
the factors of a loading cycle asymmetry for bending, tension-compression and torsion,
respectively. Recalling denotation according to Figs. 1 and 2, the following relations may be
assumed :

σMσ

h =

⎧⎪⎨
⎪⎩

σMC
h = ησ

ησ +
σ∗

C

σF
− 1

σ∗
C if ησ ≥ ηlimit

σ ,

σMK
h = σK if ησ < ηlimit

σ ,

(37)

τMτ

h =

⎧⎪⎨
⎪⎩

τMC
h = ητ

ητ +
τ∗
C

τF
− 1

τ∗
C if ητ ≥ ηlimit

τ ,

τMK
h = τK if ητ < ηlimit

τ .

(38)

Thus, the ordinates σMσ

h and τMτ

h of points MC and MK of limit curves A∗D∗G of infinite
fatigue life represent the fundamental relations for formulating appropriate mathematical
models of infinite fatigue life of machine parts subjected to arbitrary pure harmonic loading.
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4. Solving basic problems of infinite fatigue life of machine parts subjected to
pure harmonic loading

Assuming a pure harmonic loading in bending or tension-compression, the safety fac-
tor, kσ, may be defined as

kσ =
σMσ

h

σP
h

, (39)

where σMσ

h is covered by (37) and

σP
h =

MP
oh

Wo
or σP

h =
NP

h

S
, (40)

in which, e.g. for machine parts with circular cross-section of the diameter d,

Wo =
π d3

32
or S =

π d2

4
. (41)

Similarly, at pure harmonic loading in torsion the safety factor, kτ , is to be defined as

kτ =
τMτ

h

τP
h

, (42)

where for τMτ

h the relation (38) is valid and

τP
h =

MP
kh

Wk
, (43)

where

Wk =
π d3

16
. (44)

Substituting (40) in (39) and (43) in (42) we get for the safety factors kσ and kτ

kσ =
Wo

MP
oh

σMσ

h or kσ =
S

NP
h

σMσ

h (45)

and
kτ =

Wk

MP
kh

τMτ

h . (46)

Hence, the upper magnitude of harmonic cycles of loading read

MP
oh =

Wo

kσ
σMσ

h or NP
h =

S

kσ
σMσ

h (47)

and
MP

kh =
Wk

kτ
τMτ

h (48)

and for magnitude of cross-section properties Wo or S and Wk,

Wo =
MP

oh kσ

σMσ

h

or S =
NP

h kσ

σMσ

h

(49)
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and

Wk =
MP

kh kτ

τMτ

h

. (50)

Thus, the relations (45)–(50) and (37), (38) enable analytical solving to all deterministic
problems of infinite fatigue life of machine parts subjected to arbitrary pure harmonic
loading :

– determining the safety factor,
– predicting the limit carrying capacity, and
– dimensioning the cross-section.

For mechanical properties σF, σK and σC of a material subjected to bending loading Mo or
tension-compression N and for mechanical properties τF, τK and τC of a material subjected
to torsion moment Mk the following notation will be introduced as follows :

σFMo = (σF)Mo , σKMo = (σK)Mo , σCMo = (σC)Mo , (51)

σFN = (σF)N , σKN = (σK)N , σCN = (σC)N , (52)

τFMk = (τF)Mk , τKMk = (τK)Mk , τCMk = (τC)Mk , (53)

(σMσ

h )Mo = σMσ

h according to (37) at the harmonic bending, Mo , (54)

(σMσ

h )N = σMσ

h according to (37) at the harmonic tension-compression, N , (55)

(τMτ

h )Mk = τMτ

h according to (38) at the harmonic torsion, Mk , (56)

ηlimit
σMo

= (ηlimit
σ )Mo =

(
1 − σ∗

C/σF

1 − σ∗
C/σK

)
Mo

=
1 − σ∗

CMo
/σFMo

1 − σ∗
CMo

/σKMo

, (57)

ηlimit
σN = (ηlimit

σ )N =
(

1 − σ∗
C/σF

1 − σ∗
C/σK

)
N

=
1 − σ∗

CN/σFN

1 − σ∗
CN/σKN

, (58)

ηlimit
τMk

= (ηlimit
τ )Mk =

(
1 − τ∗

C/τF

1 − τ∗
C/τK

)
Mk

=
1 − τ∗

CMk
/τFMk

1 − τ∗
CMk

/τKMk

, (59)

where
σ∗

CMo
=

σCMo

βσr
, σ∗

CN =
σCN

βσr
, τ∗

CMk
=

τCMk

βτr
, (60)

4.1. Safety factor at a pure harmonic loading by a bending moment Mo, tension-
compression N and a torsion moment Mk (problems B Mo, B N, B Mk)

After substituting from (37) and (38), the Eqs. (45) and (46) read :

– at a loading by bending moment MP
oh (problem B Mo) :

kσ =
Wo

MP
oh

(σMσ

h )Mo =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Wo

MP
oh

ησ

ησ +
σ∗

CMo

σFMo

− 1
σ∗

CMo
if ησ ≥ ηlimit

σMo
,

Wo

MP
oh

σKMo if ησ < ηlimit
σMo

,

(61)



Engineering MECHANICS 23

– at a loading by axial tension-compression NP
h (problem B N) :

kσ =
S

NP
h

(σMσ

h )N =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S

NP
h

ησ

ησ +
σ∗

CN

σFN
− 1

σ∗
CN if ησ ≥ ηlimit

σN ,

S

NP
h

σKN if ησ < ηlimit
σN ,

(62)

– at a loading by torsion moment MP
kh (problem B Mk) :

kτ =
Wk

MP
kh

(τMτ

h )Mk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Wk

MP
kh

ητ

ητ +
τ∗
CMk

τFMk

− 1
τ∗
CMk

if ητ ≥ ηlimit
τMk

,

Wk

MP
kh

τKMk if ητ < ηlimit
τMk

.

(63)

4.2. Limiting carrying capacity at a pure harmonic loading by bending moment
Mo, tension-compression N and torsion moment Mk (problems U Mo, U N,
U Mk)

After substituting from (37) and (38), the Eqs. (47) and (48) read :

– at a loading by bending moment MP
oh (problem U Mo) :

MP
oh =

Wo

kσ
(σMσ

h )Mo =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Wo

kσ

ησ

ησ +
σ∗

CMo

σFMo

− 1
σ∗

CMo
if ησ ≥ ηlimit

σMo
,

Wo

kσ
σKMo if ησ < ηlimit

σMo
,

(64)

– at a loading by axial tension-compression NP
h (problem U N) :

NP
h =

S

kσ
(σMσ

h )N =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S

kσ

ησ

ησ +
σ∗

CN

σFN
− 1

σ∗
CN if ησ ≥ ηlimit

σN ,

S

kσ
σKN if ησ < ηlimit

σN ,

(65)

– at a loading by torsion moment MP
kh (problem U Mk) :

MP
kh =

Wk

kτ
(τMτ

h )Mk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Wk

kτ

ητ

ητ +
τ∗
CMk

τFMk

− 1
τ∗
CMk

if ητ ≥ ηlimit
τMk

,

Wk

kτ
τKMk if ητ < ηlimit

τMk
.

(66)
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4.3. Dimensioning at a pure harmonic loading by a bending moment Mo, ten-
sion-compression N and a torsion moment Mk (problems D Mo, D N, D Mk)

After substituting from (37) and (38), the Eqs. (49) and (50) read :

– at a loading by bending moment MP
oh (problem D Mo) :

Wo =
MP

oh kσ

(σMσ

h )Mo

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

MP
oh kσ

ησ +
σ∗

CMo

σFMo

− 1

ησ σ∗
CMo

if ησ ≥ ηlimit
σMo

,

MP
oh kσ

1
σKMo

if ησ < ηlimit
σMo

,

(67)

– at a loading by an axial tension-compression NP
h (problem D N) :

S =
NP

h kσ

(σMσ

h )N

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

NP
h kσ

ησ +
σ∗

CN

σFN
− 1

ησ σ∗
CN

if ησ ≥ ηlimit
σN ,

NP
h kσ

1
σKN

if ησ < ηlimit
σN ,

(68)

– at a loading by torsion moment MP
kh (problem D Mk) :

Wk =
MP

kh kτ

(τMτ

h )Mk

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

MP
kh kτ

ητ +
τ∗
CMk

τFMk

− 1

ητ τ∗
CMk

if ητ ≥ ηlimit
τMk

,

MP
kh kτ

1
τKMk

if ητ < ηlimit
τMk

,

(69)

5. Case studies

Case 5.1. A pull-rod of a circular cross-section is to be subjected to a harmonic tension-
compression loading, N , within the scope of infinite fatigue life (the problem B N).

Given : Material : mild steel 11 500.1 :
– σFN = 550MPa, σKN = 310MPa, σCN = 180MPa,
– NP

h ∈ 〈NP
h min; NP

h max〉 = 〈0; 300〉kN (limits of maximum loading),
– d ∈ 〈0; 50〉mm (limits of the cross-section diameter),
– βσr = 2, 3 (reduced fatigue notch factor),
– ησ = 1, 4 (the slope of load line),
– p = 6 (number of prescribed values of the safety factor kσ),
– kσ = 1, 2, 4, 6, 9, 12 (prescribed values of the safety factor kσ),
– S = π d2/4 (the cross-section area),
– n = 500 (number of segments for linspace x = NP

h and y = d).
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Fig.3: Theoretical variation of the safety factor, kσ , referring to given machine parts
which are to be subjected to given harmonic tension-compression causing infi-
nite fatigue life and allowing for influence of the reduced fatigue notch factor,
βσr, and the slope of load line, ησ , a) βσr = 2, ησ = 1, b) βσr = 3, ησ = 4

Case 5.2. A connective notched shift of a circular cross-section is to be subjected to a har-
monic loading by bending moment, Mo, causing infinite fatigue life (the problem U Mo).

Given : Material : mild steel 11 500.1 :
– σFMo = 880MPa, σKMo = 370MPa, σCMo = 240MPa,
– MP

oh ∈ 〈MP
oh min; MP

ohmax〉 = 〈0; 300〉Nm (limits of maximum loading),
– d ∈ 〈0; 50〉mm (limits of the cross-section diameter),
– βσr = 2, 3 (reduced fatigue notch factor),
– ησ = 1, 4 (the slope of load line),
– p = 6 (number of prescribed values of the safety factor kσ),
– kσ = 1, 2, 4, 6, 9, 12 (prescribed values of the safety factor kσ),
– Wo = π d3/32 (property of the circular cross section),
– n = 500 (number of segments for linspace x = MP

oh and y = d).

Fig.4: Theoretical variation of the safety factor, kσ, referring to given machine
parts which are to be subjected to given harmonic bending loading causing
infinite fatigue life and allowing for influence of the reduced fatigue notch
factor, βσr, and the factor of the loading cycle asymmetry, ησ , a) βσr = 2,
ησ = 1, b) βσr = 3, ησ = 4
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Case 5.3. A propeller shaft is to be subjected to a harmonic torsional loading caused by
torsional moment, Mk, causing infinite fatigue life (the problem D Mk)

Given : Material : mild steel 11 500.1 :
– τFMk = 440MPa, τKMk = 190MPa, τCMk = 140MPa,
– MP

kh ∈ 〈MP
kh min; MP

khmax〉 = 〈0; 300〉Nm (limits of maximum loading),
– d ∈ 〈0; 50〉mm (limits of the cross-section diameter),
– βτr = 2, 3 (reduced fatigue notch factor),
– ητ = 1, 4 (the slope of load line),
– p = 6 (number of prescribed values of the safety factor kτ ),
– kτ = 1, 2, 4, 6, 9, 12 (prescribed values of the safety factor kτ ),
– Wk = π d3/16 (property of the circular cross section),
– n = 500 (number of segments for linspace x = MP

kh and y = d).

Fig. 5: Theoretical variation of the safety factor, kτ , referring to given machine parts
which are to be subjected to given harmonic torsion loading causing infinite
fatigue life and allowing for influence of the reduced fatigue notch factor, βτr,
and the slope of load line, ητ , a) βτr = 2, ητ = 1, b) βτr = 3, ητ = 4

6. Conclusions

Presented analysis makes it possible to solve deterministic problems of infinite fatigue
of notched components subjected to arbitrary pure harmonic loading. Graphical presenta-
tion of calculated results of three examples concerning determination of the safety factor,
predicting the carrying capacity and proposing the cross-section dimensions are enclosed in
Figs. 3 to 5.

Derived mathematical models do not require to construct any fatigue strength diagram
adopting it only as a basis of graphical solving. Finally, these models may serve as a starting
point for formulating analytical solution to deterministic problems of infinite fatigue life of
machine parts under combined harmonic loading.
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