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UNSTEADY HARTMANN FLOW WITH HEAT TRANSFER
OF A VISCOELASTIC FLUID UNDER EXPONENTIAL

DECAYING PRESSURE GRADIENT

Hazem Ali Attia*, Mostafa A. M. Abdeen**

The unsteady Hartmann flow of a conducting incompressible non-Newtonian vis-
coelastic fluid between two parallel horizontal insulating porous plates is studied
with heat transfer. A uniform pressure gradient which decays exponentially is im-
posed in the axial direction. An external uniform magnetic field and uniform suction
and injection through the surface of the plates are applied in the vertical direction.
The two plates are kept at different but constant temperatures while the Joule and
viscous dissipations are considered in the energy equation. Numerical solutions for
the governing momentum and energy equations are obtained using finite differences.
The effect of the magnetic field, the parameter describing the non-Newtonian beha-
vior, and the velocity of suction and injection on both the velocity and temperature
distributions is investigated.

Keywords : MHD flow, heat transfer, non-Newtonian, viscoelastic, electrically con-
ducting fluids, suction and injection

1. Introduction

The Hartmann flow of an electrically conducting viscous incompressible fluid between two
parallel plates in the presence of a transversely applied uniform magnetic field has attracted
the attention of many researchers due to its interesting applications in many areas such as
magnetohydrodynamic (MHD) power generators, MHD pumps, accelerators, aerodynamics
heating, electrostatic precipitation, polymer technology, petroleum industry, purification
of molten metals from non-metallic inclusions and fluid droplets-sprays [1–8]. The effect
of uniform suction and injection through the parallel plates on unsteady Hartmann flow
of a conducting Newtonian fluid was given by Attia [9, 13]. The hydrodynamic flow of
a non-Newtonian viscoelastic fluid was handled by many authors [14–17] as it has important
industrial applications.

In the present paper, the flow of an electrically conducting non-Newtonian viscoelastic
fluid is studied with heat transfer in the presence of a uniform magnetic field and an im-
posed exponential decaying pressure gradient. The flow is subjected to a uniform suction
from above and a uniform injection from below, and an external uniform magnetic field
perpendicular to the plates. The induced magnetic field is neglected by assuming a very
small magnetic Reynolds number [4]. The two plates are kept at two different but constant
temperatures whereas the Joule and viscous dissipations are taken into account in the energy
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equation. This configuration is a good approximation to some practical situations such as
heat exchanger, flow meters, and pipes that connect system components. The governing
momentum and energy equations are solved numerically using finite differences and the ef-
fect of the magnetic field, the non-Newtonian fluid characteristics as well as the velocity of
suction and injection on both the velocity and temperature fields is reported.

Fig.1: The geometry of the problem

2. Formulation of the Problem

The fluid is incompressible, viscoelastic and flows between two infinite horizontal parallel
insulating porous plates located at the y = ±h planes and extend in the infinite x and
z directions, as shown in Fig. 1. The upper and lower plates are kept at two constant
temperatures T2 and T1 respectively, with T2 > T1. The flow is driven by a uniform and
exponential decaying pressure gradient dP/dx in the x-direction, and a uniform suction from
above and injection from below which are impulsively applied at t = 0. An external uniform
magnetic field Bo is applied in the positive y-direction which is assumed to be also the total
magnetic field, as the induced magnetic field is neglected by assuming a very small magnetic
Reynolds number which is the ratio of the fluid flux to the magnetic diffusivity and is one
of the more important parameters in MHD [4]. The plates are assumed to be infinite in the
x and z-directions which makes the physical quantities do not change in these directions.
Thus, the velocity vector of the fluid, in general, is given by

v(y, t) = u(y, t) i + vo j .

The velocity component in y-direction is assumed to have a constant value vo because of the
uniform suction. The fluid motion starts impulsively from rest at t = 0, that is u = 0 for
t ≤ 0. The no-slip condition at the plates implies that u = 0 at y = ±h. It is also assumed
that the initial temperature of the fluid is T1, thus the initial and boundary conditions of
temperature are T = T1 at t = 0, T = T1 at y = −h, t > 0 and T = T2 at y = h, t > 0. The
fluid motion is governed by the momentum equations [18]
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where  and σ are, respectively, the density and the electric conductivity of the fluid. The
second term in the right side represents electromagnetic force and τxy is the component of
the shear stress of the viscoelastic fluid given in Ref. [14] as,

τxy = μ
∂u

∂y
− μ

α

∂τxy

∂t
, (2)

where μ is the coefficient of viscosity and α is the modulus of rigidity. In the limit α tends
to infinity or at steady state, the fluid behaves like a viscous fluid without elasticity. Solving
Eq. (2) for τxy in terms of the velocity component u we obtain
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where the term (1/α2) ∂
∂y (μ ∂

∂t (μ
∂τxy
∂y )), which is proportional to (1/α2) is neglected. Sub-

stituting Eq. (3) in the momentum Eq. (1) yields
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The temperature distribution is governed by the energy equation [18]

 cp
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where cp and k are, respectively, the specific heat capacity at constant pressure and the
thermal conductivity of the fluid which are assumed constants. The second and third terms
on the right side represent the Joule and viscous dissipations respectively. Introducing the
following dimensionless variables and parameters

ŷ =
y

h
, t̂ =

μ t

h2
, û =

 h u

μ
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P  h2
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, T̂ =
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the suction parameter :

S =
 h vo

μ
,

the Hartmann number :

Ha = Bo h

√
σ

μ
,

the magnetic Reynolds number (μe is the magnetic viscosity) :

Rσ = μe σ
μ


,

the Prandtl number :
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μ cp
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,

the Eckert number :
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the viscoelastic parameter :

K =
μ2

 α h2
.

Equations (4) and (5) may be written as, (all hats are dropped for convenience)
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The initial and boundary conditions for the velocity and temperature in the dimensionless
form are written as

u(y, 0) = 0 , u(−1, t) = u(1, t) = 0 , (8)

T (y, 0) = 0 , T (−1, t) = 0 , T (1, t) = 0 , (9)

whereas the pressure gradient is assumed in the form dP/dx = C e−αt. It should be pointed
out that we are dealing with dimensionless physical variables such as velocities and temper-
atures which can be fitted to the common physical ranges in different physical applications.

3. Numerical solution

Equations (6) and (7) represent a system of partial differential equations which is solved
numerically under the initial and boundary conditions (8) and (9), using the finite difference
method. The Crank-Nicolson implicit method [19] is used at two successive time levels.
Finite difference equations relating the variables are obtained by writing the equations at
the mid point of the computational cell and then replacing the different terms by their
second order central difference approximation in the y-direction. The diffusion terms are
replaced by the average of the central differences at two successive time-levels. Finally, the
resulting block tridiagonal system is solved using the generalized Thomas-algorithm [19].
We define the variables v = ∂u/∂y and H = ∂T/∂y to reduce the second order differential
Eqs. (6) and (7) to first order differential equations. The finite difference representations for
the resulting first order differential Eqs. (6) and (7) take the form
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where DISP represents the Joule and viscous dissipation terms which are specified in terms
of the velocities and their gradients and accordingly, are known from the solution of Eq. (10)
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and can be evaluated at the mid point (i + 1/2, j + 1/2) of the computational cell. Com-
putations are made for C = 5, α = 1, Pr = 1, and Ec = 0.2 . Grid-independence studies
show that the computational domain 0 < t < ∞ and −1 < y < 1 can be divided into inter-
vals with step sizes Δt = 0.0001 and Δy = 0.005 for time and space, respectively. Smaller
step sizes do not show any significant change in the results. Convergence of the scheme is
assumed when the values of every one of the unknowns u, T , and their gradients differ by
less than 10−6 for the last two time steps for all values of y.

4. Results and Discussion

Figures 2–3 present the profiles of the velocity u and the temperature T respectively
with time for different values of time t and for K = 0, 0.5, and 1 and for Ha = 1, S = 1.
As shown in the figures, the profiles are asymmetric about the y = 0 plane because of the
suction. Figures 2–3 show that, when K = 0, u and T reach the steady state monotonically
with time. On the other hand, increasing K decreases u and T at small time but increases
them at large time. Figures 2b and 2c indicate the effect of K in decreasing the temperature
as a result of decreasing the velocity u and its gradient which decreases the dissipations.

Fig.2: Time variation of the profile of u for va-
rious values of K (Ha = 1 and S = 1)

Fig.3: Time variation of the profile of T for va-
rious values of K (Ha = 1 and S = 1)

Figures 4–5 depict the time progression of u and T at the centre of the channel (y = 0),
respectively for different values of the parameter Ha and for K = 0, 0.5, and 1 and for S = 0.
Increasing the parameter Ha decreases u and the time of approaching its steady state for all
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values of K because the magnetic resistive force on u increases with the increment in Ha.
It is clear from Fig. 4 that the parameter K has a marked effect on the time of approaching
its steady state of u and this effect becomes more pronounced for smaller values of Ha.

Fig.4: Effect of the parameter Ha on u
for various values of K (S = 0)

Fig.5: Effect of the parameter Ha on T
for various values of K (S = 0)

Figure 5 tells that the effect of the parameter Ha on T depends on time. Increasing Ha

increases T at small times but decreases it at large times which can be attributed to the fact
that, for small times, an increment in Ha increases the Joule dissipation which is proportional
to Ha2. For large times, increasing Ha decreases u significantly and, consequently, decreases
the Joule and viscous dissipations which accounts for crossing T (t) curves for all values of K.
Figures 5b and 5c indicate that such a crossover becomes more pronounced for higher K.
The effect of changing K on the steady state time of T may be neglected for all values of Ha.

Figures 6–7 show the time progression of u and T at the centre of the channel, respectively
for different values of the suction parameter S and for K = 0, 0.5, and 1 and for Ha = 1.
Figure 6 indicates that increasing the suction decreases u due to the convection of the fluid
from regions in the lower half to the centre which has higher fluid speed. The parameter K

has a marked effect on the steady state time of u for all values of S. Figure 7 presents that
increasing S decreases the temperature at the centre of the channel for all values of K and t.
This is due to the effect of convection in pumping the fluid from the cold lower half towards
the centre of the channel. The effect of S on T is clear for all K.
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Fig.6: Effect of the parameter S on u
for various values of K (Ha = 0)

Fig.7: Effect of the parameter S on T
for various values of K (Ha = 0)

5. Conclusions

The unsteady Hartmann flow and heat transfer of an electrically conducting viscoelastic
fluid were studied in the presence of a uniform magnetic field as well as a uniform suction and
injection. The influence of the viscoelastic parameter, the magnetic field, and the suction
and injection velocity on the velocity and temperature distributions was investigated. The
viscoelastic parameter has a clear effect on the velocity and temperature distributions and
their steady state times for all values of the magnetic field and the suction velocity. The
variation of the velocity and temperature with the viscoelastic parameter was detected to
be time dependent. Also, it is of interest to find that the dependence of the temperature on
the magnetic field vary with time for all values of the viscoelastic parameter.
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