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SENSITIVITY ANALYSIS OF GEARBOX
TORSIONAL VIBRATIONS

Michal Hajžman, Pavel Polach*

The paper deals with the modelling of a real gearbox used in cement mill applications
and with the sensitivity analysis of its eigenfrequencies with respect to design param-
eters. The torsional model (including a motor and couplings) based on the finite
element method implemented in an in-house MATLAB application is described. The
sensitivity analysis of gearbox eigenfrequencies is performed in order to avoid possible
dangerous resonance states of the gearbox. The parameters chosen with respect to
the sensitivity analysis are used for tuning the gearbox eigenfrequencies outside reso-
nance areas. Two approaches (analytical and numerical) to the sensitivity calculation
are discussed.
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1. Introduction

The computational investigation of gearbox dynamic properties is an important step in
the gearbox design. Mainly the resonance analysis (the comparison of system eigenfrequen-
cies with possible excitation frequencies) is performed in order to avoid dangerous resonance
states. The successive activity in case of possible resonances should lead to the tuning of
chosen eigenfrequencies out of the resonance areas. The sensitivity analysis of the gearbox
eigenfrequencies and eigenmodes is the most suitable tool in this case. It can be used for the
identification of design parameters which are proper to influence chosen eigenfrequencies.

The first necessary step of the introduced methodology is the modelling method of the
gearbox vibration. The most often used methods are based on the finite element analysis of
various complexity. Solid finite elements can be used in order to describe three-dimensional
flexible bodies. However, considering limited computer capacity, rotation of the components
and its mutual connections, the most efficient method is based on the torsional modelling [16]
of an interior rotating gearbox system. The dynamic model of the real Wikov Gear gearbox
(Figure 1) with a motor and couplings (not shown in Figure 1) is investigated in this paper.
The model (see Figure 2) is based on the finite element method combined with discrete
mass and flexible elements and it is implemented in an in-house MATLAB application. The
possible extension of the torsional modelling methodology for the nonlinear systems was
shown e.g. in [4].

On the other hand design sensitivity calculation is a very useful tool motivated mainly by
potential usage in optimization tasks [2]. Sensitivities with respect to the design parameters
are important also in many complex multidisciplinary applications, e.g. [6]. Short review
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Fig.1: Gearbox developed and produced by Wikov Gear s.r.o. Company

of various approaches can be found in [1]. Authors of [7] present general methods for
the calculation of the first order sensitivities of eigenvalues and eigenvectors of asymmetric
damped systems. For the sake of the usage in several optimization methods the second
order derivatives of eigenvalues for the same type of mechanical systems is shown in [8]. The
approaches suitable for the sensitivity analysis of mixed rigid-flexible multibody systems
are developed in [5]. The dynamic response has to be solved by symbolic methods (i.e.
analytical formulation using symbolic mathematics, not numerics) and then the derivatives
can be calculated. Sub-structuring of decomposed systems can be advantageously used
(see [12]) in order to efficiently perform sensitivity analysis of various variables representing
system dynamic properties.

Analytical and numerical approaches to the eigenfrequencies’ sensitivity calculation are
presented in this paper. Due to the decomposition of the whole system the calculation
can be fast and can be used in the optimization tasks. The sensitivity analysis results are
used in order to tune the eigenfrequency that can be in possible resonance with excitation
frequencies.

2. Gearbox modelling and modal analysis

The investigated gearbox (see Figures 1 and 2) with the motor and couplings was di-
vided into four subsystems [11]. The main parts of the subsystems are flexible shafts with
mounted gear wheels. The first subsystem (input shaft 1) was extended by a drive engine,
by a coupling between the drive and the shaft and by a coupling between the shaft and
an auxiliary drive (it is intended for the gearbox manipulation and it is decoupled during
the operation). Only a torsional motion of all subsystems was considered in the analysis,
although the vibration of the gearbox shafts is spatial. It is known, based on the mill ope-
rator experience, that the torsional vibration is the most dominant one and it is almost not
affected by other kinds of motions. The girth gear wheel of the ball mill was considered to
be mounted to the rigid frame due to the huge mill moment of inertia.

The flexible shafts were modelled using two-node shaft finite elements with one torsional
degree of freedom in each node (see Figure 3). It is supposed that element e of length l has
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Fig.2: Scheme of the gearbox model

Fig.3: Scheme of the torsional shaft finite element of length l, outer
diameter D, inner diameter d and with nodes i and i+ 1

two nodes i and i + 1 with torsional deformations (angles) ϕi and ϕi+1 superimposed on
the rotational motion with angular velocity ω0. In order to derive the shaft torsional finite
element matrices the longitudinal coordinate x of the cross-sectional infinitesimal element
defined by area A(x) and width dx rotating at angular velocity ω0 + ϕ̇(x) is considered. The
kinetic energy can be then formulated in the form

E
(e)
k =

1
2

l∫
0

Jp(x)
(
ω0 + ϕ̇(x)

)2
ρ dx , (1)

where Jp(x) is the polar moment of inertia and ρ is the material density. Similarly the
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element potential (deformation) energy is

E(e)
p =

1
2

l∫
0

∫
(A(x))

G
(
γ2
xy + γ2

xz

)
dA(x) dx , (2)

where G is the shear modulus and strain γxy and γxz can be expressed [3], [15] using

γxy = −z ϕ′(x) , γxz = y ϕ′(x) , (·)′ =
∂(·)
∂x

. (3)

Expression (2) for the potential energy can be rewritten as

E(e)
p =

1
2

l∫
0

∫
(A(x))

Gϕ′2(x) (y2 + z2) dA(x) dx . (4)

Torsional deformation of the arbitrary point of the finite element is approximated by
linear polynomial

ϕ(x) = Φ(x) c, Φ(x) = [ 1 x ] , (5)

with vector c of unknown coefficients. After several modifications one can get the expression

ϕ(x) = Φ(x)S−1 q(e) , (6)

where

S =
[

1 0
1 l

]
, q(e) =

[
ϕ(0)
ϕ(l)

]
. (7)

Using the identity based on the Lagrange’ equations

d
dt

(
∂E

(e)
k

∂q̇(e)

)
− ∂E

(e)
k

∂q(e)
+
∂E

(e)
p

∂q(e)
= M(e)q̈(e) + K(e)q(e) (8)

together with expressions of energies (1) and (4) and approximation (6) the torsional shaft
element mass and stiffness matrices are

M(e) = S−T I1 S−1 , K(e) = S−T I2 S−1 , (9)

where integral matrices I1 and I2 can be calculated for the prismatic finite element (area
A(x) and polar moment of inertia Jp(x) are constant) of axisymmetric cross-section as

I1 =
∫ l

0

ρ Jp(x)ΦT(x)Φ(x) dx = ρ Jp l

[
1 l/2
l/2 l2/3

]
,

I2 =
∫ l

0

GJp(x)Φ′T(x)Φ′(x) dx = GJp l

[
0 0
0 1

]
.

(10)

The derivation of the element matrices for the axial-torsional-bending vibration of two
node shaft elements with six degrees of freedom in each node can be found e.g. in [15] and [9]
or more generally for more rotor cases in [3].
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After decomposition into subsystems the mathematical models of the uncoupled subsys-
tems can be written in the form

Ms q̈s(t) + Ks qs(t) = 0 , s = 1, 2, . . . , 4 , (11)

where Ms is the subsystem mass matrix and Ks is the subsystem stiffness matrix. They
are composed of finite element matrices and of the inertia moments and stiffnesses which
correspond to the rigid wheels and discrete springs. The structure of the subsystem models
(Figure 2) is :

– Subsystem 1 – is composed of the first input shaft divided by 14 finite elements and
joined with the input coupling (of Pencoflex company, 2 rigid wheels with rubber
elements in between represented by a torsional spring, the first part of the coupling is
connected to shaft nodes 1 and 2) which is joined to the main engine (massive rigid
wheel). The coupling (one rigid wheel) to the auxiliary motor is connected with the
last shaft nodes (number 14 and 15).

– Subsystem 2 – represents the second shaft discretized using 12 shaft finite elements.
It is connected with shaft 1 and with shafts 3 and 4 by gear mesh.

– Subsystem 3 – is composed of one of the output shafts divided by 10 finite elements.
This shaft is coupled by the gear mesh to the second shaft and with the girth gear
of the mill which is supposed to be a rigid frame. The output pinion of the shaft is
mounted on the shaft using inner gear mesh.

– Subsystem 4 – it is almost identical to Subsystem 3.

The coupling of the subsystems is realized by gear mesh stiffness matrices

KGz = kGz cos2 αz cos2 βz

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
...

· · · r2pz · · · rpz rwz · · ·
...

...
· · · rpz rwz · · · r2wz · · ·

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, z = 1, 2, . . . , 5 , (12)

where kGz is the meshing stiffness, αz is the normal pressure angle, βz is the teeth inclination
angle, rpz is the pinion diameter and rwz is the wheel diameter. The position of the nonzero
elements in the stiffness matrix is given by global numbers of coupled nodes of various
subsystems. More comments and derivation of the complex gear mesh model can be found
in [10], [3].

The whole model of the gearbox is

Mq̈(t) + Kq(t) = 0 , q(t) = [qT
1 (t), qT

2 (t), qT
3 (t), qT

4 (t)]T , (13)

where the block diagonal global matrices are

M = diag(M1,M2,M3,M4) , K = diag(K1,K2,K3,K4) +
5∑

z=1

KGz . (14)

The model can be easily extended by a proportional damping or by a certain excitation
vector on the right hand side. Derived model (13) implemented in the in-house MATLAB
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application was used for the mill drive modal analysis. Original eigenfrequencies (stars in
Figure 4) are compared with excitation frequencies (lines in Figure 4) by gear meshing (the
first three harmonic components are considered). It is clear that several eigenfrequencies are
close to the excitation frequencies and therefore these eigenfrequencies should be tuned out
of the excitation frequencies. The sensitivity analysis is a suitable tool for the determination
of usable design parameters.

Fig.4: Comparison of original and tuned eigenfrequencies with excitation frequencies

3. Numerical approach to the sensitivity analysis

A direct and basic approach to the calculation of the sensitivity of a certain variable
is based on the numerical differentiation of the variable with respect to the chosen design
parameters. Moreover it is suitable to derive the sensitivities with respect to P physically
different parameters by special relative expressions [14]. Change Δfν of the ν-th eigenfre-
quency fν can be expressed for small change Δp ∈ �

P of initial parameter vector p0 ∈ �
P

using the Taylor series

Δfν = fν(p0 + Δp) − fν(p0) =
P∑

j=1

∂fν(p0)
∂pj

Δpj . (15)

After modification one can get

Δfν

fν(p0)
=

P∑
j=1

∂fν(p0)
∂pj

pj0

fν(p0)
Δpj

pj0
. (16)

Relative sensitivity Δf̄ j
ν with respect to the change of the j-th parameter pj can be derived

from equation (16) as

Δf̄ j
ν =

∂fν(p0)
∂pj

pj0

fν(p0)
. (17)
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Partial derivative is calculated in this case by finite difference

∂fν(p0)
∂pj

=
fν(p0 + Δpj) − fν(p0)

Δpj
, (18)

where holds
Δpj = [ 0, . . . , 0,Δpj , 0, . . . , 0 ]T . (19)

The value of difference parameter Δpj should be chosen with respect to the convergence of
the numerical difference calculation. The advantage of the numerical approach is in the fast
implementation of the analysis, however the attention should be paid to the Δpj selection.
Possible inaccuracy of the results is considered to be a drawback.

4. Analytical approach to the sensitivity analysis

The derivation of the comparable analytical relative sensitivities starts from the eigen-
value problem definition and its transposition

(K − λν M)vν = 0 , vT
ν (K − λν M) = 0T . (20)

The orthonormality conditions using the mass matrix are

vT
ν Mvν = 1 and vT

μ Mvν = 0 , for μ �= ν . (21)

Using differentiation of (20) with respect to parameter pj , after multiplying the equation
by vT

ν and after modification one gets

vT
ν

(
∂K
∂pj

− λν
∂M
∂pj

)
vν + vT

ν (K− λν M)
∂vν

∂pj
− ∂λν

∂pj
vT

ν Mvν = 0 . (22)

The expression for the sensitivity of eigenvalue λν with respect to the change of parameter pj

results from equations (20), (21), (22) in the form

∂λν

∂pj
= vT

ν

(
∂K
∂pj

− λν
∂M
∂pj

)
vν . (23)

Considering λν = Ω2
ν = (2 π fν)2, it can be written that

∂fν

∂pj
=

1
8 π2 fν

∂λν

∂pj
=

1
8 π2 fν

vT
ν

(
∂K
∂pj

− λν
∂M
∂pj

)
vν (24)

and finally relative sensitivity is

∂f̄ν(p0)
∂pj

=
∂fν

∂pj

pj0

fν(p0)
. (25)

The advantage of the presented analytical approach is in the fast and accurate sensitivity
calculation. As the system is composed of several subsystems the first order derivatives in
expression (24) can be calculated very quickly. Each derivative is composed of block diagonal
zero matrices and only one nonzero matrix. It depends on the type of the design parameter.
The particular form of the derivatives of finite element matrices, discrete element matrices or
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Fig.5: Relative sensitivities of the third eigenfrequency with
respect to the change of various design parameters

Fig.6: Relative sensitivities of the tenth eigenfrequency with
respect to the change of various design parameters

gear mesh stiffness matrix is obvious. More general derivation of eigenvalue and eigenvector
sensitivities for various non-rotating and rotating systems is given in [3]. The analytical
approach in case of multiple (repeated) eigenvalues was published in [13].

The sensitivity analysis results were tested for both numerical and analytical expres-
sions (17) and (25). A good agreement for proper selection of Δpj can be found. The
illustration of the sensitivity values for the Wikov Gear gearbox is in Figures 5 and 6. There
are the relative sensitivities of the third and the tenth gearbox eigenfrequencies that can
cause possible resonance states (see Figure 4). The third eigenfrequency (and similarly the
second eigenfrequency) is characterized by the dominant influence of the Pencoflex coupling
parameters (its moments of inertia and its stiffness). Since these are not the gearbox design
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parameters the selection of the coupling is based on the mill operator decision. On the other
hand the meshing stiffness of the first gear mesh, which affects the tenth eigenfrequency
(Figure 6), can be changed by the designers.

5. Conclusions

The model suitable for the solution of the torsional vibration of the real gearbox produced
by Wikov Gear s.r.o. including the motor and the couplings is presented in this paper. It
can be used for the most important analysis of the system eigenvalues and it can help to
determine possible dangerous resonances. Further two approaches to the sensitivity analysis
of eigenfrequencies were introduced. Design parameters chosen with respect to the sensitivity
analysis were used for tuning the gearbox eigenfrequencies out of the excitation frequencies.
Based on the relative sensitivities (Figure 6) the width of the first gear mesh between shaft 1
and shaft 2 was chosen in order to tune the tenth eigenfrequency out of the resonant state.
The tuned eigenfrequencies are denoted in Figure 4 by circles. The second and the third
eigenfrequencies, which are also close to the excitation frequency, cannot be affected by
gearbox design parameters because they are characterized by a dominant vibration of input
equipment (mainly by coupling, see Figure 5). Therefore they were not tuned out.
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[10] Hajžman M., Zeman V.: Influence of rotors unbalance and gears eccentricity on stator vibration
and noise, In: 7th IFToMM-Conference on Rotor Dynamics, eds H. Springer, H. Ecker, Vienna
University of Technology, Vienna 2006, full paper on CD-ROM
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