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CHOICE AND CALIBRATION OF CYCLIC
PLASTICITY MODEL WITH REGARD
TO SUBSEQUENT FATIGUE ANALYSIS

Radim Halama*, Michal Šofer*, Frantǐsek Fojt́ık*

Plasticity models, included in the most popular commercial FEM software, are not
able to describe well such cyclic plasticity effects as multiaxial ratcheting or cyclic
hardening caused by nonproportional loading. For example in the case of stainless
steels it is necessary to use a robust cyclic plasticity model. This paper shows some in-
teresting results from FE simulations of stress-strain behaviour of stainless steel 316L
using new cyclic plasticity model with superposition of the kinematic hardening rule
of AbdelKarim and Ohno [11] and the isotropic hardening rule of Calloch and Mar-
quis [14]. On the basis of performed simulations, a fatigue study has been performed,
which shows the influence of material option in a FE computation on accuracy of
life prediction. The conclusion presents recommendations for the calibration of cyclic
plasticity models of Chaboche type.

Keywords : ratcheting, nonproportional hardening, consistent tangent modulus, low-
cycle fatigue, cyclic plasticity

1. Introduction

The stress-strain behaviour of metals under cyclic loading is very miscellaneous and needs
individual approach for different metallic materials. Development of material models for the
correct description of particular phenomenon of cyclic plasticity complicates such effects as
cyclic hardening/softening and cyclic creep (also called ratcheting). Effect of cyclic harden-
ing/softening corresponds to hardening or softening of material response, more accurately
to decreasing/increasing resistance to deformation of material subjected to cyclic loading.
As mentioned in [1], some materials shows very strong cyclic softening/hardening (stainless
steels, copper, etc.), others less pronounced (medium carbon steels). The material cycli-
cally hardens/softens during force controlled or strain controlled loading. On the contrary,
the cyclic creep phenomenon can arise only under force controlled loading. Ratcheting can
be defined as accumulation of any plastic strain component with increasing number of cy-
cles. Mentioned behaviour of materials may be significantly different for proportional and
nonproportional loading, which in itself points to the need to use complicated constitutive
relations. In the case of stainless steels additional hardening occurs under nonproportional
loading. This nonproportional hardening is mostly investigated under tension/torsion load-
ing using the circular, elliptical, cross, star and other loading path shapes [2]. Such cyclic
plasticity effects as nonproportional hardening or multiaxial ratcheting can not be described
by classical plasticity models, therefore the problem can be solved by implementation of
a more complex cyclic plasticity model to a FE code.
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For this numerical study the experimental data published by Portier et al. [3] were
adopted. There are tested the kinematic hardening rules proposed by Besseling, Chaboche
and AbdelKarim-Ohno in the contribution. For the proposed modification of AbdelKarim-
Ohno model the markedly better agreement with experiments is achieved. The way of
implementation into a FE code of the proposed material model is also briefly described.

The second part of this contribution is focused on plasticity model calibration and its
further application in fatigue life prediction. Currently there are several approaches to
predict the fatigue life of structural parts [4]. Modelling of cyclic plasticity is associated
more with low-cycle fatigue domain. Nowadays, most attention is paid to the critical plane
criteria, which use energy approach [4], and integral methods [5]. In the former case there is
a critical plane, which corresponds to the maximum value of the proposed fatigue parameter.
On the contrary, integral methods take into account the current stress state on more planes,
and thus reflect the need of more slip systems activation [6]. The aim of researchers is to
find universal criteria, preferably for random loading [7]. Estimation of prediction accuracy
is very important for practice. If we consider that the estimates obtained in the multiaxial
fatigue is always determined with some uncertainty of the criteria used, it is suitable to
minimize the error introduced into the analysis by appropriate choice and calibration of
cyclic plasticity model. Correct description of the stress-strain behaviour of materials under
consideration is essential. As presented in this paper, particularly under nonproportional
loading the robustness of cyclic plasticity model plays an important role.

2. Description of used cyclic plasticity models

We consider the rate-independent material’s behaviour model, which includes the additive
rule for the total strain tensor

ε = εe + εp (1)

with Hook’s law assumption for elastic strain

σ = De : εe = De : (ε − εp) , (2)

where εp is the plastic strain tensor and De is the elastic stiffness matrix. Further, the von
Mises yield function is assumed

f =

√
3
2

(s − a) : (s− a) − σY −R , (3)

where s is the deviatoric part of stress tensor σ, a is the deviatoric part of back-stress α,
which states the centre position for the yield surface with the initial size σY and R is the
isotropic variable.

2.1. Model of Besseling

Besseling in 1958 introduced a multilinear model without any notion of surfaces [8]. The
model as used in Ansys predicts plastic shakedown for uniaxial loading with nonzero mean
stress, but description of cyclic hardening/softening behaviour of material is possible by
combination with multilinear or nonlinear isotropic hardening. Five points of cyclic stress-
strain curve was used for calibration of the model.
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2.2. Model of Chaboche

Chaboche and his co-workers [9] proposed a decomposed nonlinear kinematic hardening
rule in the form

dα =
M∑
i=1

dαi , dαi =
2
3
Ci dεp − γi αi dp , (4)

where Ci, γi are material parameters and dp is accumulated equivalent plastic strain in-
crement. Chaboche kinematic hardening rule is a superposition of several Armstrong and
Frederic hardening rules. Each of these decomposed rules has its specific purpose. Com-
pared to Armstrong and Frederick model, this model improves the ratcheting simulations
for the initial cycles. It always stabilizes to plastic shakedown with persistent cycling, when
the parameter γM = 0. Ratcheting rate at steady state can be set by appropriate choice
of γM. In this study we use three kinematic parts, i.e. M = 3. Seven material parameters
was used for all simulations with Chaboche model : σY = 130MPa, γ1−3 = 2000, 500, 0,
C1−3 = 200000, 40000, 5500MPa.

2.3. Model MAKOC

The new cyclic plasticity model has been proposed in [10]. It is based on the modified
kinematic hardening rule of AbdelKarim and Ohno [11] and on the isotropic hardening rule
proposed by Calloch and Marquis [12], see Tab. 1. The same values of elastic constants,
E = 192000MPa and Poisson’s ratio ν = 0.3 was considered for all material options in
this paper. All other necessary material parameters for proposed material model are in
the Tab. 1.

3. Simulation results

Original models of Ansys, Chaboche model and Besseling model, are not able to describe
additional cyclic hardening of 316L stainless steel under nonproportional loading. Developed
model gives very good prediction in the simulation of complicated behaviour of the steel [9].
It captures very well the nonproportional cyclic hardening. Results from simulations of five
cases with different loading path shapes and the same total strain amplitude of 0.5% are
given in the form of amplitude values for the saturated states in Fig. 1. The stress response
of model in the case of clover path is shown in Fig. 2.

Fig.1: Stress amplitude for different
loading path shapes

Fig.2: Prediction of stress response for
clover loading path shape
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Kinematic hardening rule Isotropic hardening rule

� =

5�
i=1

�i ,

�̇i =
2

3
Ci �̇p − μi γi ϕ(p)�i ṗ−

− γi ϕ(p)H(fi) 〈λi〉�i ,

λ̇i = �̇p :
�i

Ci/(γi ϕ(p))
− μi ṗ , 0 ≤ μi ≤ 1 .

Marquis law :

ϕ(p) = ϕ∞ + (1 − ϕ∞) e−ωϕp ,

where H(fi) marks Heavisides step function

and the symbol 〈x〉 corresponds to Macaulay’s

bracket (〈x〉 = x+ |x|).

Ṙ = b (Q− P ) ṗ ,

Q̇ = D(A) (QAS(A) −Q) ṗ ,

where

D(A) = (d− f)A+ f ,

QAS(A) =
g AQ∞ + (1 − A)Q0

g A+ (1 − A)
+

+Qi [(A− 1)An + (A− 1)nA] .

Evolution equations for ratcheting variables Nonproportional parameter

μi = η

�
∂f

∂σ
:
ai

āi

�χ
for all i ,

η̇ = η̇1 + η̇2 , η̇1 = ω1 (η∞1 − η1) ṗ ,

η̇2 = ω2 (η∞2 − η2) ṗ ,

χ = χ∞ + (χ0 − χ∞) e−ωχp .

A = 1 − (a : ȧ)2

(a : a) (ȧ : ȧ)
.

Material parameters Material parameters

σY = 130 MPa,

γ1−5 = 21538, 3373, 1451, 771, 459,

C1−5 = 456250, 70520, 17380, 7670, 5860 MPa,

ϕ∞ = 0.36, ωϕ = 60, η01 = 0.8, η∞1 = 0.3,

ω1 = 45, η02 = 0.2, η∞2 = 0, ω2 = 60, χ∞ = 0,

χ0 = 5, ωχ = 30 .

d = 90, f = 0.85, n = 8.26, b = 12,

Q0 = 0, Q∞ = 255, Qi = 2334, g = 0.1 .

Tab.1: Evolution equations of proposed cyclic plasticity model

Fig.3: Stress amplitude for different
loading path shapes

Fig.4: Multiaxial ratcheting prediction – influ-
ence of shear strain amplitude γa
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The next simulated test was the uniaxial test with nonzero mean stress. The evolutions of
the maximum axial strain versus the number of cycles are given in Fig. 3. The original models
of Ansys were evaluated too [10]. The Besseling model embodied the plastic shakedown and
the Chaboche model predicted the higher ratcheting rate than was experimentally observed,
even in the case γM = 0, when plastic shakedown during certain number of cycles occures.
Results of simulation of three multiaxial ratcheting tests are also very good for the proposed
model as is shown in Fig. 4.

4. Stress integration algorithm

The return mapping algorithm proposed by Kobayashi and Ohno [12] based on successive
substitution was applied for numerical stress integration. The user programmable feature
was used to implement the proposed cyclic plasticity model into Ansys software.

Now, the group of cyclic plasticity models of Chaboche type will be considered in a general
form, when the backstress is decomposed to M parts

a =
M∑
i=1

a(i) , (5)

where each part is defined by its own evolution equation, mostly of Armstrong-Frederic type

da(i) =
2
3
Ci dεp − γi a(i) dp(i) , (6)

where except material parameters Ci, γi and plastic strain increment dεp the plastic strain
increment dp(i) appears, which caused dynamic recovery of α(i). The quantity dp(i) may
acquire a maximum value of the accumulated equivalent plastic strain, i.e.

dp(i) = dp =

√
2
3

dεp : dεp . (7)

After Euler backward discretization it is possible to rewrite kinematic hardening rule

a(i)
n+1 = a(i)

n +
2
3
Ci Δεp

n+1 − γi a
(i)
n+1 Δp(i)

n+1 (8)

to this form

a(i)
n+1 = θ

(i)
n+1

(
a(i)

n +
2
3
Ci Δεp

n+1

)
, (9)

where
θ
(i)
n+1 =

1

1 + γi Δp(i)
n+1

(10)

fulfills the condition 0 < θ
(i)
n+1 ≤ 1. Now, the von Mises yield condition has to be satisfied

fn+1 =
3
2

(sn+1 − an+1) : (sn+1 − an+1) − Y 2
n+1 = 0 , Yn+1 = σY +Rn+1 . (11)

In each time-step the elastic trial stress tensor σ∗
n+1 is calculated from quantities known

and from chosen Δεn+1. Therefore, the trial yield condition

f∗
n+1 =

3
2

(s∗n+1 − an) : (s∗n+1 − an) − Y 2
n+1 ≥ 0 (12)
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is checked, if the loading is active. If it is true, the nonlinear scalar equation must be solved

Δpn+1 =

√
3
2

(s∗n+1 − an)T : (s∗n+1 − an) − Yn+1

3G+
M∑
i=1

Ci θ
(i)
n+1

. (13)

For the bilinear kinematic hardening (M = 1) without assumption of isotropic hardening,
when Yn+1 = Yn = σY the equation (13) can be solved directly, because θ(i)n+1 = 1. In
other cases the solution can be found by an iterative algorithm. In this study the algorithm
proposed by Kobayashi and Ohno, which used successive substitution, has been applied [12],
see Fig. 5. The last and most difficult task of a cyclic plasticity model implementation is
consistent tangent modulus determination. To reach parabolic convergence of the Newton-
Raphson method in solution of global equilibrium equation it is necessary to compute the
tangent modulus consistently with applied integration scheme. New approximation approach
was verified to obtain parabolic convergence of N-R method for cases, where it is not possible
to obtain the tangent modulus in analytical way [10].

In the approximation approach the standard forward difference scheme has been applied
to approximate the derivatives(

∂θ
(i)
n+1

∂Δεp
n+1

)
ij

=
θ
(i)
n+1 (Δεp

n+1 + hT eij) − θ
(i)
n+1

hT
,

(
∂Yn+1

∂Δεp
n+1

)
ij

=
Yn+1 (Δεp

n+1 + hT eij) − Yn+1

hT
,

(14)

where i, j marks the tensor component, hT is the optimal stepsize and ekl is equal to 0 for
all k, l except k = i, l = j when ekl is equal to 1.

Fig.5: Flowchart for integration of constitutive relations
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The Fig. 6 and 7 show that the model MAKOC is more sensitive to the choice of optimal
stepsize for the approximation derivation of isotropic and kinematic hardening variables
than the Chaboche model. It was also found, when using different values of the optimal
stepsize for isotropic and kinematic variables, that higher sensitivity of new model is due to
Marquis law introduction in the kinematic hardening rule.

Fig.6: Influence of stepsize on convergence of
N-R method for Chaboche model

Fig.7: Influence of stepsize on convergence
of N-R method for new model

5. Subsequent fatigue analysis

For suitable choice of cyclic plasticity model, it is necessary to consider stress states,
which occur in the target application, and the type of investigated material. For a lot of
metallic materials it is necessary to realise some additional tests for identification of material
parameters in low-cycle fatigue domain, because cyclic deformation curve usage leads to
inaccurate results. The fact will be explained in this paper on the basis of performed
simulations using two described cyclic plasticity models – Chaboche and MAKOC.

The prediction of uniaxial hysteresis loops, after the calibration of three cyclic plasticity
models from the largest hysteresis loop, is presented in Fig. 8 and 9. Models of Besseling and
Chaboche are classical models, which cannot describe strong additional hardening due to
nonproportional loading, see Fig. 9. But, as we will see later, the proposed model describes
the behavior well.

The critical plane criterion of Jiang and Sehitoglu [7] was used for prediction of the num-
ber of cycles to crack initiation. The criterion considers, that the critical plane corresponds
to the highest value of the fatigue parameter

FP =
〈σmax〉Δε

2
+ J Δτ Δγ , (15)

where J is a material constant, Δε is the normal strain range, Δγ is the shear strain
range, Δτ is the shear stress range and σmax is the maximal normal stress. All parameters
correspond to the surveyed plane. Number of cycles to crack initiation can be calculated
from the relation

FPmax = FP0 +
(
K

Nf

)1/m

, (16)

where FP0, K and m are material constants. For purposes of this study the value of the
fatigue parameters FP0 = 0.2MPa, K = 20000MPa, J = 0.15 and m = 2 were considered,
corresponding to 304 stainless steel, having similar mechanical properties as steel 316L.
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Fig.8: Uniaxial hysteresis loops Fig.9: 90◦ out-of-phase test prediction

6. Analysis results

Results of fatigue analysis for uniaxial loading case, corresponding to the three hysteresis
loops with total strain amplitude of 0.5%, 0.65% and 0.8% are listed in Table 2.

Differences between stress amplitudes, obtained from simulation and experiment, are
smaller for lower values of strain amplitude, which is also evident from Fig. 8. It should be
noted that plasticity models are calibrated using the tensile hysteresis loop branch with strain
amplitude 0.8%. Thus, the cyclic deformation curve is not captured precisely because the
stainless steel 316L has a deviation from Masing’s behaviour. For this reason, the smallest
error of fatigue analysis corresponds to the case (Table 2).

εa [1] Method σmax [MPa] FPmax [MPa] Nf [1] Error [%]

Chaboche 320.7 1.6035 10153 −16.50
0.005 MAKOC 323.4 1.617 9961 −18.08

Experiment 296.5 1.4825 12159 —

Chaboche 332 2.158 5217 −7.55
0.0065 MAKOC 335.4 2.1801 5101 −9.61

Experiment 320.4 2.0826 5643 —

Chaboche 339.3 2.7144 3163 +0.38
0.008 MAKOC 343.1 2.7448 3088 −2.00

Experiment 339.9 2.7192 3151 —

Tab.2: Results of uniaxial fatigue analysis

In the case of multiaxial loading higher deviation can be expected because of strong
additional hardening due to nonproportional loading of the stainless steel. Two types of
loading path shapes were simulated too: circle and cloverleaf, see Fig. 1. The values of
fatigue parameter differ significantly, resulting in a significant difference within predicted
number of cycles to fatigue crack initiation as it is clear from Table 3.

For smaller amplitude of equivalent plastic strain may be the differences between the
results of analysis with both models even more pronounced (Table 4).
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Path shape Method FPmax [MPa] α [◦] Nf [1] Deviation [%]

Circle
Chaboche 2.65 25 3350

145
MAKOC 4.74 25 1370

Cloverleaf
Chaboche 2.39 179 4197

110
MAKOC 3.54 179 1996

Tab.3: Results of multiaxial fatigue analysis (equivalent strain aplitude 0.5%)

Path shape Method FPmax [MPa] α [◦] Nf [1] Deviation [%]

Circle
Chaboche 0.87 25 45221

195
Proposed 1.35 25 15308

Tab.4: Results of multiaxial fatigue analysis (equivalent strain amplitude 0.2%)

For the illustration, the Jiang-Sehitoglu fatigue parameter dependence on the angle of
examined plane is shown at Fig. 10. Calculated results from the case of uniaxial loading
and the multiaxial 90◦ out of phase loading with the same value of equivalent total strain
amplitude of 0.5% are presented. These results are consistent with the calculations using
proposed model. For the fully reversed uniaxial loading, the critical plane is identical to the
cross section of the cylindrical specimens.

Fig.10: Dependence of the fatigue parameter on angle
between cross section and examined plane

In cases, where a significant portion of the fatigue life includes transient stress-strain
behaviour of the studied material or for a variable amplitude loading, it is appropriate to
perform the analysis cycle by cycle and consider some of the damage accumulation theory.

7. Conclusions

The proposed cyclic plasticity model, based on AbdelKarim-Ohno [7] and Calloch-
Marquis [12] hardening rules, makes possible to describe very well the stress/strain behaviour
of steel 316L under both proportional and nonproportional loading. The way of model im-
plementation into the FE software Ansys including approximation approach for consistent
tangent modulus determination has been also described.

Results of uniaxial/multiaxial fatigue study presented in this paper, can lead to some
conclusions and recommendations for the identification of material parameters of cyclic
plasticity models of Chaboche type :



96 Halama R. et al.: Choice and Calibration of Cyclic Plasticity Model with Regard . . .

– parameters affecting the plastic module (Ci, γi) should be determined from the cyclic
deformation curve rather than from a large uniaxial hysteresis loop, if no memory
surface is included in the model for description of nonMasing’s behavior.

– calibration procedure of the cyclic plasticity model should generally take into account
the definition of fatigue parameter of criteria selected for the lifetime prediction. For
example there is a possibility of plastic work expression for Chaboche model, which
can be applied in the case of a criterion of Garud type [4].

– for accurate modeling of stress-strain behaviour of materials with a non-negligible
nonproportional hardening (stainless steel, copper, etc.) a material model, which is
able to describe this effect, should be used. In contrast, for materials that exhibit
minimal hardening due to nonproportional loading (structural steel, aluminum, etc.),
classical cyclic plasticity models already implemented in finite element programs (e.g.
Besseling or Chaboche) can be used. There has not been considered ratcheting effect
in the performed fatigue study. The topic is outside of the scope of this paper.
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