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EVALUATION OF UNIAXIAL FATIGUE
CRITERIA APPLIED TO MULTIAXIALLY

LOADED UNNOTCHED SAMPLES

Jan Papuga*, Miguel Vargas*, Martin Hronek*

Several multiaxial fatigue criteria have been developed and improved within the last
couple of decades, but they are not very widely used in industrial applications. Many
engineers and designers still use simple uniaxial criteria for multiaxial load cases. In
order to test and validate/discard these uniaxial criteria on the basis of multiaxial
load cases, the present work presents a comparison between several uniaxial criteria
applied to a large set of experimental results for smooth unnotched samples tested
under multiaxial loading. The effect of mean stress is also evaluated, in order to
determinate how it affects the final results.

Keywords : multiaxial stress, uniaxial fatigue criteria, mean stress, proportional load-
ing

1. Introduction

A vast range of methods for multiaxial fatigue prediction has been proposed in recent
decades. They usually use a solution based on a description of the stress or strain state
on a specific plane. The stress or strain parameters on this plane induced by the external
loading and by the specific shape of the loaded structure are combined into a final damage
parameter. The calculation methods differ in whether the maximum damage parameter
found on a particular plane is looked for, or whether the spatial mean damage parameter is
computed over all possible planes [1]. The only other major approach to the solution is to
analyse the load path in a five-dimensional Ilyushin deviatoric space, which is represented
later here by the Crossland method (Sec. 2.2.2).

All these methods have been developed mostly because of the need to cope in some way
with non-proportional loading. In this kind of loading, the stress or strain tensors during the
loading are not multiples of each other. Their individual components change independently.
As a consequence, not only the principal stresses but also the principal directions change
during the loading. Researchers have found that the utilization of a single load parameter on
a specific plane (be it Mises stress on the octahedral plane, Tresca stress on the maximum
shear stress range plane, or the maximum principal stress) cannot take into account the
complexity of the loading induced when there is non-proportional loading. If the principal
directions change during the loading, the positions of the maximum loaded planes clearly
change as well. Relying on a single stress parameter does not provide an adequate response.

Any loading with two load channels, where there is at least a static non-zero load on one
of the channels while the load on the other load channel is variable, can be classified as non-
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proportional. Here, the principal directions rotate during loading. Because this kind of load
is far from rare in engineering practice, a good understanding of the potential calculation
errors is necessary.

Utilization of a second parameter (affected by the potential phase shift) is the only solu-
tion recognized today in the research community. In practical terms, in order to determine
the response of a material to fatigue under multiaxial stress we can choose among many var-
ious multiaxial methods specifically intended to work under such stress states : Dang Van,
Crossland, Papadopoulus, Liu – Zenner, etc., see [1] for a closer description and evaluation,
and also for a formulation of the currently most precise method – PCr by Papuga.

The multiaxial solution has a very important drawback, in addition to the tangle of
numerous multiaxial methods, where few comparative studies have been published [1], [4], [5].
Applying a multiaxial solution requires good knowledge of the problem, together with either
multiaxial fatigue software equipment or the ability to program the methods oneself. Even
if this issue is solved, the final calculation takes more time than any simple uniaxial solution.

A quite distinct contrast to the application of multiaxial criteria in research practice
therefore can be observed in industrial applications [2]. Simple uniaxial solutions often
replace the application of multiaxial criteria, though the quality of this kind of simplification
has not yet been properly validated. These methods are ready to apply even in the MS Excel
spreadsheet, and no long preparations are needed before the real fatigue limit analysis is
performed. However, for the reasons given above, there is some doubt as to whether these
methods provide an adequate description of the real behaviour. The main objective of the
present work is to validate or discard uniaxial fatigue criteria that are applied to multiaxial
load cases. It is assumed, under these conditions [2], that the applicability of the methods
should be limited to proportional loading. Then, in contrast to the non-proportional loading,
the principal directions remain fixed during the loading. Because of the considerations raised
above, the potential applicability of simplified solutions to other and more complex load cases
will be evaluated in this paper.

2. Description of the problem, and technical background

In order to carry out the present evaluation, we used the results of 407 fatigue test series
derived from the FatLim database [1] on uniaxial and multiaxial loading at the fatigue limit
for various materials and loading conditions*. Various loading types were evaluated: with or
without mean stress, proportional or non-proportional loading. The general condition that
the fatigue limit for smooth unnotched specimens is evaluated was selected intentionally in
order to minimize the impact of other potential degrees of freedom. The calculation of the
final result can otherwise be burdened by many other uncertainties in processing the fatigue
analysis – the way in which the load cycles are separated, partial damage summation, or
the notch effect.

The uniaxial fatigue criteria utilized in this work are based on von Mises or Manson-
McKnight equivalent stresses and their various modifications. In order to check them with
the widely-used multiaxial counterparts, the Dang Van and Crossland criteria were selected
as the criteria representing multiaxial solutions, mainly because of their popularity, though
their popularity is not supported by their prediction quality [1]. It is expected that uniaxial

*The complete database can be found on www.pragtic.com/fatlim.php, while the exact set composition
used here is explained in [1].
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methods can hardly be better than the most enhanced multiaxial criteria (Papuga PCr [1]),
while the selected multiaxial methods correspond to industrial trends in multiaxial ana-
lyses. The Dang Van method is the standard solution used by commercial fatigue solvers
provided by HBM (nCode DesignLife), LMS (LMS.VirtualLab Component Durability), Safe
Technology (FeSafe), and Ricardo (FEARCE).

Because the scope of the evaluated experiments is sufficient, it was possible to divide
them into statistically acceptably large groups according to load mode and proportionality
characteristics. Thus the methods could be analysed in terms of their suitability for defined
conditions. The application of calculation procedures mentioned below transforms the input
complex loading into the equivalent stress amplitude σa,eq, which has to be equal to the
fatigue limit under fully reversed axial loading f−1. Because the experiments are related to
the fatigue limit, equality of the load and material parameters is expected. Any deviation
from equality can be documented by the fatigue index error :

ΔFI =
σa,eq − f−1

f−1
100 % . (1)

According to this relation, values of ΔFI below zero indicate that the criterion fails
to predict the failure though it should do so, and the results will be referred to as
‘non-conservative’. On the other hand, positive values of ΔFI, will be referred to as ‘con-
servative’ [1].

2.1. Uniaxial fatigue criteria

The application of uniaxial fatigue criteria relates to the computation of the equivalent
stress that can be compared (and corrected in the presence of mean stress) with the fatigue
limit of standard S-N curves.

For the case studied here, the equivalent stress is the von Mises equivalent stress, which
can be obtained from the stress tensor components by applying the following formula:

σeq,vM =

√
1
2
[
(σx − σy)2 + (σy − σz)2 + (σz − σx)2 + 6 (τ2

xy + τ2
yz + τ2

zx)
]
. (2)

There are two basic variants, in which the amplitude and the mean value of the equivalent
stress can be derived – computing the equivalent stress at every time instant, or computing
it from the maximum range of stress tensor components during the loading cycle.

2.1.1. Signed von Mises stress (VMI1)

The solution described here as the signed von Mises stress (VMI1) analyses the equivalent
stress signed by the sign of the first stress tensor invariant during loading. The maxima and
minima of the current signed von Mises stress during loading serve to define the amplitude
and the mean stress :

σa =
max

t
[σeq,vM sgn(I1)] − min

t
[σeq,vM sgn(I1)]

2
,

σm =
max

t
[σeq,vM sgn(I1)] + min

t
[σeq,vM sgn(I1)]

2
.

(3)
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2.1.2. Manson-McKnight method (MMK)

By contrast, the various variants of the Manson-McKnight method (MMK) [2] com-
pute the amplitude and mean stresses from the maxima and minima of every stress tensor
component during the loading cycle :

σi,a =
max

t
(σi) − min

t
(σi)

2
,

σi,m =
max

t
(σi) + min

t
(σi)

2
,

τij,a =
max

t
(τij) − min

t
(τij)

2
,

τij,m =
max

t
(τij) + min

t
(τij)

2
.

(4)

In this approach, the tensors of amplitudes can be transformed to the equivalent stress
amplitude and the equivalent mean stress by the following formulas:

σa =

√
1
2
[
(σx,a − σy,a)2 + (σy,a − σz,a)2 + (σz,a − σx,a)2 + 6 (τ2

xy,a + τ2
yz,a + τ2

zx,a)
]
, (5)

σ∗
m =

√
1
2
[
(σx,m−σy,m)2 + (σy,m−σz,m)2 + (σz,m−σx,m)2 + 6 (τ2

xy,m+τ2
yz,m+τ2

zx,m)
]
, (6)

The individual variants of the Manson-McKnight method presented here differ mainly in the
determination of the final equivalent mean stress value, labelled here as σm. This value is
computed from the σ∗

m by some of the signing procedures. The original Manson-McKnight
method also used the first stress invariant for signing, but in its maximum value during the
loading :

σm = σ∗
m sgn(I1,d) , (7)

where I1,d is the value of the first stress tensor invariant at the moment when reaches the
greatest distance from zero during the load cycle.

2.1.3. Modified Manson-McKnight methods (MMMK)

The modified variants MMMK were introduced mainly because of the understanding that
very slight changes in the loading can have an inappropriately pronounced impact [2] on the
final sign of σm. We have found two different variants, where multiplication is used instead
of signing. The first variant links to the NASALIFE report [2] and is therefore labelled as
the modified Manson-McKnight method, variant NASALIFE (MMMK-N) :

σm = σ∗
m

σ1,max + σ3,min

σ1,max − σ3,min
. (8)

Here the maxima and minima are set during the load cycle with the expectation that σ1 is
the highest principal stress, while σ3 corresponds to the lowest principal stress.

Though the second variant seems to differ only slightly, it is a distinct solution :

σm = σ∗
m

Σσ1 + Σσ3

Σσ1 − Σσ3
. (9)

Because we found it in the paper by Filippini et al. [3], it is labelled as MMMK-F. In order
to understand the meaning of the Σ characters, the following formulas are necessary :

Σσ1 = σ1,max + σ1,min , Σσ3 = σ3,max + σ3,min . (10)
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Because of the composition of the two multiplicators, it can be expected that the most
pronounced difference between the two methods will be found for dominant torsion loading.

2.1.4. Mean stress correction

The examined load cases of many evaluated experiments result in non-zero mean stresses
σm, so the mean stress has to be included in the evaluation. For that purpose, we will use
the Walker correction factor for mean stress. Its use is proposed in [2] :

σa,eq = σγ
a (σm + σa)1−γ . (11)

It gave better results than other corrections (Goodman, Gerber, . . . ), when we tested it.
Usually, the value of parameter γ has to be derived by fitting to the experimental data.
Thanks to the experimental data sets from the FatLim database [1] that is used here, the
information on the fatigue limit in repeated axial loading f0 could be used for transforming
Eq. 11 to :

γ = 1 −
log
(
2 f−1

f0

)
log(2)

. (12)

2.2. Multiaxial Fatigue Criteria

Because of space limitations, only the popular Dang Van and Crossland criteria will be
evaluated. While the Dang Van criterion represents the critical plane criteria, the Cross-
land criterion looks for the minimum hyperball circumscribed to the load path in the five-
dimensional Ilyushin deviatoric space (see [1], [4]). The Papuga PCr method referred to
in [1] as the optimum solution, is not included in the comparison for two reasons. Firstly, it
is not used in the industrial sector today, and, secondly, it is so distinctly better in all cate-
gories evaluated here, that it would not make sense to use it for checking the applicability
of simplified uniaxial methods.

2.2.1. Dang Van method

The equivalent stress amplitude can be described as a mix of the maximum shear stress
amplitude Ca encountered on any plane during loading and the maximum value of the first
invariant of the stress tensor I1 found during the load cycle :

σa,eq = aDV Ca + bDV I1 . (13)

The material parameters aDV and bDV can be derived from two pure uniaxial fatigue limits
in fully reversed push-pull (f−1) and torsion (t−1) loading :

aDV = κ =
f−1

t−1
, bDV = 1 − κ

2
. (14)

The fatigue limit ratio κ is also defined in Eq. (14).

2.2.2. Crossland method

According to Papadopoulos et al. [4], the square root of the amplitude of the second
invariant of stress tensor deviator

√
J2,a relates to the radius of the minimum circumscribed
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hyperball in the five-dimensional Ilyushin deviatoric space defined by the following five
parameters transformed from stress tensor deviator components sij :

s1 =

√
3
2
sxx , s2 =

1√
2

(syy − szz) ,

s3 =
√

2 sxy , s4 =
√

2 sxz , s5 =
√

2 syz .

(15)

The criterion itself follows this formula :

σa,eq = aC

√
J2,a + bC I1,max . (16)

The analyses of the criterion separately under fully reversed push-pull and torsion loads
enable the material coefficients to be derived :

aC = κ , bC = 1 − κ√
3
. (17)

Though the minimization problem of finding the minimum enclosed hyperball is not simple,
the Crossland criterion has the asset that the minimization is run only once for the evaluated
load path. The solution is thus much more straightforward and the computation is quicker
than the solution with the Dang Van method, which operates on a multitude of discrete
planes in the search for the maximum shear stress amplitude.

3. Results

Figs. 1–3 compare the overall statistic values of ΔFI obtained for individual criteria. In
cases where the particular bar in the chart exceeds the scope of the graph, the number
attached to it marks the final value.

The analysed experimental data was regrouped according to the type of loading, the
presence of mean stress, and proportional or non-proportional loadings.

The experiments cover the following groups:
– All – all 407 experiments defined by Papuga in [1].
– MS, Ax – experiments with loading on the axial load channel only and non-zero mean

stress.
– MS, To – experiments with loading on the torsion channel only with non-zero mean

stress.
– MS, Ax+Ax, IP – experiments with bi-axial tensile loading without any phase shift.

A typical representative might be e.g. a pressurized vessel, which is loaded propor-
tionally because of the inner pressure. The group can nevertheless contain both
proportional and non-proportional load cases, depending on the relation between the
cycle asymmetry factors R on the individual load channels. However, the number
of experiments gathered in this group is low, and separating proportional and non-
proportional experiments would lead to numbers that are not statistically useful.

– MS, Ax+Ax,OP – obviously non-proportional loading, where the effect of out-of-
phase loading mixes with the non-zero mean stress at one load channel at least.
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– MS, Ax+To – the loads cover both in-phase and out-of-phase loading, nevertheless the
loading is mostly non-proportional because of the static stresses that are included.
The proportionality of the loading would be ensured only for the same cycle asym-
metry coefficients R on both load channels. The group is further divided into :
– MS-Ax,Ax+To – an axial static load is accompanied by a torsion amplitude, and

an axial amplitude can also be involved.
– MS-To,Ax+To – a torsion static load is accompanied by an axial load amplitude,

and periodical torsion loading can also be involved. A typical structure of this
type is an unbalanced rotating shaft for power transmission.

– nMS, Ax+To,OP – the perfect adepts of typical non-proportional loading caused by
out-of-phase loading on axial and torsion load channels without any mean stress effect.

– nMS, Ax+To, IP – typical proportional multiaxial loading. Unfortunately, the other
load combination of this type (nMS, Ax+Ax, IP) could not be evaluated because there
is no data of this kind in the database. The probable reason is the limited availa-
bility of experimental facilities able to implement this load combination – specimens
providing the bi-axial tensile load combination are usually pressurized tubes with
an intrinsic mean stress effect due to the typical repeated loading. This group of
experiments further divides into several groups according to the type of material :
– brittle – materials with fatigue limit ratio κ < 1.25 .
– ductile – materials with κ > 1.25 .

4. Discussion

4.1. Overall analysis

The results can analysed separately for each group of experiments. The Crossland and
Dang Van methods provide similar standard deviations for most of the groups, but they differ
in range and mean value parameters. The steadier output of the Crossland solution in these
two parameters improves the credibility of the method, if the intrinsic non-conservativeness
of the output is understood and is included in the safety factors. Papuga [1] criticizes
the Crossland method because of its shift of the mean values of the fatigue index error
to the non-conservative side, and also because its mean values under out-of-phase loading
(nMS, Ax+To,OP here) and in-phase loading (nMS, Ax+To, IP) differ substantially. This
type of behaviour, which can also be observed on a slightly lesser scale in the Dang Van
method, is not an acceptable property for a multiaxial criterion.

An interesting overall comparison can be made between the original Manson-McKnight
(MMK) and Dang Van methods. The Dang Van method is only slightly better. Since it is
known to have appeared in many papers, applications and manuals of commercial fatigue
solvers, it is no wonder that many engineers and companies see no reason to use multiaxial
solution under such conditions. MMK fails in computation on brittle materials, which also
affects its performance in the whole nMS, Ax+To, IP group.

The general failure of the VMI1 method is obvious. Because the most marked problems
are related to problems of the mean stress inclusion if axial and torsion loads are active, it
can be assumed that the signing procedure results in load cycles that do not reflect reality
because there are abrupt changes of sign.

The difference between the modified MMMK methods is unimportant. The MMMK-N
formula is simpler for calculation, and should therefore be preferred.
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Fig.1: Mean values of ΔFI; the order of the columns corresponds
to the legend read row by row from left to right

Fig.2: Range of ΔFI fatigue index error for the same sets of experiments as in Fig. 1
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Fig.3: Standard deviations of ΔFI fatigue index error
for the same sets of experiments as in Fig. 1

4.2. MS, Ax

With the exception of the Crossland method, the results for this load combination are
very close for all methods. Any of the uniaxial solutions can be used, and it will provide
results with similar prediction quality as the Dang Van method.

The Crossland solution provides a better range, but the pronounced shift to the non-
conservative mean value of the fatigue index error should be noted.

4.3. MS, To

The results of the Crossland and Dang Van method are distinctly shifted to the non-
conservative side for this load combination. The MMK method provides the same range,
and the deviation from the zero mean ΔFI value is also substantial, but to the conservative
side. This method appears to be safer for use than other evaluated methods.

The modified MMMK methods are markedly worse. Though the mean value of ΔFI
is better than in other methods, the output in range and standard deviation parameters
shows that the modifications implemented to fix the behaviour under torsion loads do not
work well.

4.4. MS, Ax+Ax, IP

For this type of loading, the MMMK methods are the best choice. Multiaxial methods
are worse here, and even MMK provides a better solution than they do. Though we noted
in Section 3 that the experiments also include the mean stress effect and result in non-
proportional loading generally, the uniaxial methods are better here.
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The VMI1 method should be abandoned in such cases, because it provides the worst
results.

4.5. MS, Ax+Ax, OP

Out-of-phase loading and the additional influence of mean stress are quite stringent con-
ditions. The multiaxial methods provide predictions closer to in-phase loading in Section 4.4,
while the mean ΔFI values of the (M)MMK methods largely differ. The decrease in the mean
quality of the predictions is very distinct, and the mean value approaches ΔFI = −20 %.
These methods should therefore be abandoned in cases of this kind, though they provide
quite a narrow band of results otherwise. The failure of the VMI1 method is obvious.

4.6. MS, Ax+To

The overall failure of the VMI1 method is obvious, even if the separate sub-groups are
checked. If the evaluation is done over a whole group, the differences among results of other
criteria are not very pronounced. Both multiaxial methods provide better ranges of ΔFI
results, but MMK and its clones are very close, and are not shifted to the non-conservative
side as the results of the Crossland criterion are. The subgroups discussed in Sections 4.7
and 4.8 greatly affect the final outcome, when mixed together. Thus the positive behaviour
of the MMMK methods noted in Sections 4.7 and 4.8 is not wholly reflected in the range
parameter of ΔFI here, and these methods appear inferior to multiaxial solutions. This
is mostly the outcome of the 10% shift between the mean values of ΔFI here in the two
following groups. Anyway, the standard deviation of ΔFI shows that the MMMK methods
behave best.

4.7. MS-Ax, Ax+To

The differences between the two multiaxial methods are minor – only the better-placed
mean value of ΔFI of the Dang Van method can be noted. All (M)MMK methods provide
better prediction than multiaxial counterparts. In comparison to the basic MMK, the mo-
dified MMMK methods form a narrower band of results, as can be seen from the standard
deviation of ΔFI value. They are the optimum solution for use.

4.8. MS-To, Ax+To

Both multiaxial methods provide a mean ΔFI value shifted pronouncedly (by approxi-
mately 10%) to the non-conservative side. Though the MMK method provides worse results
for the MS-To,Ax+To group, the overall mean ΔFI error value is shifted to the conservative
side, so it can be accepted as a safe (and a not substantially worse) solution, if necessary. For
this load combination, the optimum way is to apply the modified MMMK solution, because
it results in a narrower band than the multiaxial solutions provide. The VMI1 method fails
completely in all aspects.

4.9. nMS, Ax+To, OP

The results for cases where there are no mean stresses are almost the same for all uniaxial
methods as regards the overall ranges, though the VMI1 results are worse and slightly shifted
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to the non-conservative side. The application of multiaxial methods leads to more positive
outcomes, and it is apparent that multiaxial methods deserve their position.

4.10. nMS,Ax+To, IP

If we take this group as a unit, we note a marked difference between uniaxial methods
and multiaxial methods. When the analyses continue to a detailed evaluation for indi-
vidual groups of materials, it becomes evident that the applicability of the methods and
the expected quality of their results are more similar when ductile materials are examined.
When brittle materials are admitted into the analysis, the results of all uniaxial methods
deteriorate substantially.

There is no pronounced difference among the results for each of the uniaxial methods.

4.11. Overall

If the focus is set only on proportional multiaxial loading without any mean stress effect,
it is apparent that any uniaxial method can be used and the results will not be substantially
worse than for any of the popular multiaxial methods examined here, provided that the
material is not brittle. The MS, Ax and MS, To groups can also be qualified as proportional
loading, though there is no multiaxial loading. Here, the original MMK provides better
quality than other uniaxial methods and approaches the results of the Dang Van solution.

The out-of-phase loading group shows the domain where multiaxial methods achieve
better results. Out-of-phase loading is not correctly reflected by (M)MMK methods, and
this results in the obvious shift of the ΔFI mean value to a non-conservative prediction.
The output of the whole MS, Ax+Ax group is not shown here, but the shift of the ΔFI
mean value to the non-conservative solution is so extreme that the multiaxial methods
are obviously superior here. On the other hand, the (M)MMK methods provide better
predictions for MS, Ax+To load cases, probably because of the better implemented mean
stress effect, even when the out-of-phase experiments are included.

Among the uniaxial methods, the (M)MMK criteria provide much better quality than
the VMI1 method. However, potential users should note that only periodical and static
loads were admitted into this analysis. This limitation completely avoided the necessity to
find a way to separate the individual cycles from the load history and to sum the partial
damages from every load cycle. If the evaluated load history is more complex, the use of
VMI1 allows immediate load decomposition, but the (M)MMK methods are designed to be
run on already defined cycles. The additional step of load decomposition has to be performed
by some yet undefined solution.

5. Conclusion

A comparison has been made of the prediction quality of two multiaxial methods (by
Dang Van and Crossland) and several uniaxial solutions based on the von Mises stress
(various variants of the Manson-McKnight criterion and direct processing of the instanta-
neous signed von Mises stress – VMI1). The test set comprised data on experimentally set
multiaxial fatigue limits on unnotched smooth samples from various materials, with a total
of 407 experiments.
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1. The starting assumption that uniaxial methods should provide an adequate solution for
multi-channel proportional loading is confirmed for the current set, with the exception of
brittle materials, where the range of relative error of these criteria increases substantially.
For these proportional load cases, all evaluated uniaxial solutions provide similar results.
It is preferable to use either of the two multiaxial criteria for brittle materials.

2. Instantaneous signing of the von Mises stress by the actual value of the first stress invari-
ant and subsequent decomposition to individual cycles provided by the VMI1 method
leads to similar results as by other methods for proportional multiaxial load cases with-
out mean stress, but for any more complicated loading it provides results burdened by
disastrous errors.

3. For simple torsion loading with mean stress involved, the MMK method is simpler than
the other methods and provides acceptably safe results.

4. Biaxial loading with mean stress involved and in-phase loading (e.g. a pressurized vessel)
is optimally covered by MMMK methods, while MMK results are acceptable. Both
multiaxial representatives lead to worse scatter of the results in this case.

5. The positive properties of multiaxial methods are reflected above all in cases with out-
of-phase loading, where the uniaxial methods tend to provide results that are either
excessively non-conservative or excessively scattered. In the case of in-phase loading,
even load combinations that are more complex (and potentially lead to non-proportional
loading) can be satisfactorily and more quickly solved by (M)MMK methods.

6. If (M)MMK methods are to be preferred for any application with a more complex load
history, it will first be necessary to find a suitable method for decomposing the load
history to separate cycles.
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Nomenclature :

aC, bC material parameters of the Crossland method
aDV, bDV material parameters of the Dang Van method
Ax, To axial loading, torsion loading
C shear stress on the examined plane
ΔFI fatigue index parameter
f−1 fatigue limit in fully reversed axial loading
f0 fatigue limit in repeated axial loading
In n-th invariant of the stress tensor
IP, OP In-Phase loading, Out-of-Phase loading
κ fatigue limit ratio (κ = f−1/t−1)
Jn n-th invariant of the stress tensor deviator
MS experiment includes mean stress
nMS experiment does not include any mean stress
R coefficient of the cycle asymmetry (R = σmin/σmax)
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sij components of the stress tensor deviator
σa,eq equivalent stress amplitude
σi, τij normal and shear stress tensor components
t−1 fatigue limit in fully reversed torsion loading

Indices :

a amplitude
eq equivalent value
m mean
1,2,3 index of the principal stress, invariants, . . .
max maximum value
min minimum value
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