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MODELLING OF VIBRATION AND MODAL PROPERTIES
OF ELECTRIC LOCOMOTIVE DRIVE

Olimjon Ahmedov*, Vladimı́r Zeman*, Miroslav Byrtus*

The article provides a method of mathematical modelling of the dynamic properties
of the electric locomotive wheelset drive. The linkage of the traction motor by means
of the rotor pinion gear with the gear of wheelset drive is considered. The impact
of couplings and operation conditions on the dynamic properties is studied. The
method of decomposition into subsystems is applied for derivation of mathematical
model of an interconnected system. This model is used for the calculation of modal
values and also for investigating the forced vibration excited by pulsation moments
of the asynchronous traction motor. The method is applied to a particular drive of
the locomotive SKODA 109E.

Keywords : railway vehicle, wheelset drive, modal analysis, modal values, pulsation
moments, dynamic response

1. Introduction

In cooperation with SKODA TRANSPORTATION a.s. and within the frame of research
project 1M0519 Research centre of Rail Vehicles, it has been required to test the dynamic
load of wheelset drive of the 109E electric locomotive in an extreme state of stress caused by
short-circuit torque and pulsation torque in one of the individual drives. Dynamic response
of wheelset drive components at the moment of the sudden short-circuit in one asynchronous
traction motor [1] has been investigated under consideration of a rigid rotor of the traction
motor supported on rigid bearings [2, 3]. For the analysis of vibration excited by high-
frequency pulsation moments [4] of the traction motor it is necessary to respect a flexible
rotor supported on flexible bearings in a vibrating stator of the traction motor. In order to
model the dynamic response, it is necessary to develop a methodology by which a proper
mathematical model of the electric locomotive wheelset drive is formulated. Its computer
program representation allows faults simulation and focuses on the modelling of dynamic
drive effects. Simulations demonstrate that the dynamic response caused by sources gene-
rated in the traction engine depends on the operating parameters of the locomotive at the
moment just before the perturbation. The individual wheelset drive vibrates dominantly,
where the torque pulsation moments resonate with eigen frequencies of the wheelset drive.
The torsional excitation and very flexible disk clutch (DC) between driven gear (G) and
hollow shaft (H) embracing the wheelset axle (Fig. 1) afford separation of the system on
spatially vibrating driving part (in front of DC) and torsional vibrating driven part (hollow
shaft and wheelset) of the individual wheelset drive.
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2. Modelling of subsystems

To model the vibration and dynamic loading, the wheelset drive (Fig. 1) was decomposed
into five subsystems :

– Rotor of traction motor (RM) with a pinion gear (P) in the nodal point 16 without
the bearings,

– Gear (G) with the hub lug and the driving part of disc clutch (DC),
– Stator of traction motor (S) fixed with gearbox,
– Hollow shaft (H) embracing the wheelset axle and the driven part of disc clutch and

driving part of gear clutch (GC),
– Wheelset (W) with the driven gear clutch part.

The general location of the subsystems in the coordinate system displayed right is de-
scribed by generalized coordinates summarized in Tab. 1.

Fig.1: Scheme of individual wheelset drive and coordinate systems

Subsystem Degrees The order of Generalized coordinates
of the generalized

freedom coordinates

Rotor of motor (RM) 108 1–108 u1, v1, w1, ϕ1, ϑ1, ψ1, . . . , u18, v18, w18, ϕ18, ϑ18, ψ18

Gear (G) 1 109 ϕ19

Stator (S) 6 110–115 u20, v20, w20, ϕ20, ϑ20, ψ20

Hollow shaft (H) 5 116–120 ϕ21, . . . , ϕ25

Wheelset (W) 7 121–127 ϕ26, . . . , ϕ32

Tab.1: Generalized coordinate of subsystems

2.1. Rotor of the motor (RM)

Rotor of the traction motor ML4550/6 (Fig. 2) was modelled in [5] provided the spatial
oscillations of its components. The engine model was added to the pinion in the 16th node
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(see Fig. 3). For the purposes of separate modelling of linkages between subsystems the
bearings in nodes 3 and 14 are removed. The rotor is characterized by a flexible shaft with
mounted packet of sheet metals which are equipped with parallel copper bars connected to
short-circuit rings. The shaft is modelled as spatially vibrating one dimensional continuum
discretized into 15 finite elements with 16 nodes. The one dimensional beam elements have
been used because the shaft diameter is relatively small with respect to the shaft length.
The sheet metal packet with copper bars passing through is modelled by five rigid bodies
connected to the shaft nodes 6 and 10 [5]. The model is characterized by mass MRM,
stiffness KRM and gyroscopic GRM matrices of order 108.

Fig.2: Rotor of a squirrel cage motor (visualization)

Fig.3: Scheme of rotor model

2.2. Stator of the traction motor (S)

We assume a torsion displacement ϕ19 of the gear wheel inside the spatially vibrating
gearbox, which is fixed with stator of traction motor. Hence, the second subsystem (see
Tab. 1) is displayed in the global mass matrix by torsion moment of inertia IG and mass
concentrated in centre of gravity is associated with stator. It is considered that the stator
with gearbox is a rigid body with centre of gravity in point 20 (see Fig. 1). In configuration
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space
qS = [u20, v20, w20, ϕ20, ϑ20, ψ20] , (1)

the stator is characterized by mass matrix

MS =
[
mS E 0

0 IS

]
∈ R6,6 (2)

of order 6, where mS is mass, E unit matrix and IS is inertia matrix in cordinate system
marked in the Fig. 1 by S with coordinate basic origin in stator centre of gravity (point 20).
The stator with gearbox is connected to the bogie frame by silent blocks with centres of
elasticity A, B, C. We assume that the bogie frame is in its static equilibrium.

Fig.4: Scheme of the couplings between rotor and stator of the traction motor

2.3. Gear (G), hollow shaft (H), wheelsets (W)

We assume torsional oscillations of gear (G) superimposed at spatial motion of its axis
rigidly supported in the gearbox and purely torsional oscillating, hollow shaft and wheelset,
described by angular displacements, ϕ19, . . . , ϕ32 (see Fig. 1). Torsional vibrating subsystem
consisting of the hollow shaft (H) and wheelsets (W) is characterized by a submatrices
MT,KT ∈ R12,12.

The matrices of the mutually isolated subsystems are included in the global matrices of
the individual wheelset drive in the form of the block-diagonal structures

M = diag[MRM, IG,MS,MT] , K = diag[KRM, 0,KS,BF,KT] (3)

according to the global vector of generalized coordinates

q = [qRM, ϕ19,qS,qT]T ∈ R127 , (4)

where the matrices with the subscript T correspond to torsional subsystem and the matrix
KS,BF expresses stiffness elastic supports (silentblocks) A, B, C (see Fig. 1) on the bogie
frame.

3. Stiffness matrices of couplings between subsystems

Coupling stiffness matrices between subsystems are derived in configuration space defined
in (4). In comparison with previous models in [3], [6], the couplings between rotor and stator
of the traction motor and between pinion gear and gearbox wheel are now totally changed.
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Hence, we will introduce theirs derivation. Moreover, the rolling-element bearing stiffness
is linearized relative to static load which is given by an operational state of the running
locomotive defined by longitudinal creepage s0 of the wheels, forward velocity v and by
vertical wheel force N0. The dynamic components of the forces which are transmitted by
bearings change not much because the torsional vibration is dominant.

The shaft of the rotor is supported on two roller bearings B1 and B2, where the left one
is the radial-axial (Fig. 4). Principal directions ηi, ζi of radial bearing stiffnesses kηi , kζi

include angle αi with corresponding frame axes yi, zi (i = 3, 14). The deformation energy
of the bearings is given by following form

EB =
1
2

dT
3 K3 d3 +

1
2

dT
14 K14 d14 , (5)

where Ki = diag[kξi , kηi , kζi ] are diagonal bearing stiffness matrices, whereas kξ14 = 0. The
transfer of the bearing centres caused by stator vibration (1) in the coordinate system of
the rotor is described by the vector TS,RM (u20 + RT

i ϕ20), where TS,RM = diag(−1, 1,−1)
and components of the vector u20 = [u20, v20, w20]T represent displacement of centre gravity
of stator and the vector ϕ20 = [ϕ20, ϑ20, ψ20]T describes angle displacements of the stator.
Operators Ri of cross product are defined by radius vectors of bearing centres in coordinate
system x20, y20, z20. Deformation vectors of the bearings in coordinate system ξi, ηi, ζi of
the main stiffness directions of the bearings can be expressed as

di = Ti [ui − TS,RM (u20 + RT
i ϕ20)] , i = 3, 14 , (6)

where

Ti =

⎡
⎣ 1 0 0

0 cosαi sinαi

0 − sinαi cosαi

⎤
⎦ , i = 3, 14 . (7)

The stiffness matrix results from the identity

∂EB

∂q
= KRM,S q

and in the compressed from is

K̄RM,S =

⎡
⎣ TT

3 K3 T3 0 −TT
3 K3 T3,20

0 TT
14 K14 T14 −TT

14 K14 T14,20

−TT
3,20 K3 T3 −TT

14,20 K14 T14 TT
3,20 K3 T3,20 + TT

14 K14 T14,20

⎤
⎦ , (8)

where
Ti,20 = Ti TS,RM [E3,RT

i ] ∈ R3,6 , i = 3, 14 . (9)

The block in (8) are localized in the full stiffness matrix KRM,S ∈ R127,127 in accordance
with subvectors u3, u14 and q20 in the global vector q of generalized coordinates.

The general configuration of spur helical gears (Fig. 5) is described by pinion gear and
gearbox wheel vectors of displacements qi = [ui, vi, wi, ϕi, ϑi, ψi]T, (i = 16, 19). In the
coordinate system ξ, η, ζ, the vector of relative deviation of the central interaction gearing
point can be expressed in the form

(d)ξηζ =

⎡
⎣ (v16 − v19) cos γ + (w16 − w19) sin γ − rP ϕ16 + rG ϕ19

−(v16 − v19) sin γ + (w16 + w19) cos γ
(u16 + u19) + rP cos γ ϑ16 + rG cos γ ϑ19 + rP sinγ ψ16 − rG sin γ ψ19

⎤
⎦ , (10)
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Fig.5: Scheme of a gearing coupling

where rP is rolling of the radius of the driving pinion gear (driven gearbox wheel rG) and γ is
angle of position. The gearing deformation is given by vector (d)ξηζ projection to normal
line of the tooth faces [7]

dn = eT
n (d)ξηζ = [cosα cosβ, sinα, cosα sinβ] (d)ξηζ , (11)

where α is normal pressure angle and β is angle of inclination of the teeth. In accordance
with (10) and (11) the gearing deformation is

dn = δT
16 q16 + δT

19 q19 , (12)

where vectors of geometrical parameters of the gear pair are expressed as

δ16 =

⎡
⎢⎢⎢⎢⎢⎣

cosα sinβ
cosα cosβ cos γ − sinα sin γ
cosα cosβ sin γ + sinα cos γ

−rP cosα cosβ
rP cosα sinβ cos γ
rP cosα sinβ sinγ

⎤
⎥⎥⎥⎥⎥⎦ , δ19 =

⎡
⎢⎢⎢⎢⎢⎣

cosα sinβ
− cosα cosβ cos γ + sinα sin γ
cosα cosβ sin γ + sinα cos γ

rG cosα cosβ
rG cosα sinβ cos γ
−rG cosα sinβ sin γ

⎤
⎥⎥⎥⎥⎥⎦ . (13)

The displacement vector q19 of the gearbox wheel can be expressed by its torsional
angular displacement ϕ19 and gearbox displacements as

q19 = T19,20 q20 + [0, 0, 0, ϕ19, 0, 0]T , (14)

where transformation matrix

T19,20 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 zk −yk

0 1 0 −zk 0 xk

0 0 1 yk −xk 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦
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is defined by coordinates xk, yk, zk of the nodal point 19 in the space x20, y20, z20. According
to (12) and (14) the gearing deformation is

dn = δT
16 q16 + δT

19 T19,20 q20 + rG cosα cosβ ϕ19 . (15)

Under the condition of uninterrupted gear mesh and main stiffness kG of gearing in normal
direction, the stiffness gear coupling matrix results form identity

∂Ed

∂q
= KP,G q ,

where Ed = kG d
2
n/2 is deformation energy of the gear coupling. This matrix in the com-

pressed form is

K̄P,G = kG

⎡
⎣ δ16 δT

16 RG δ16 δ16 δT
19 T19,20

RG δT
16 R2

G RG δT
19 T19,20

TT
19,20 δ19 δT

16 RG TT
19,20 δ19 TT

19,20 δ19 δT
19 T19,20

⎤
⎦ , (16)

where RG = rG cosα sinβ. The block matrices in (16) are localized in the full stiffness
matrix KP,G ∈ R127,127 in accordance with subvector q16, angular displacement ϕ19 and
subvector q20 in the global vector q of generalized coordinates.

4. Mathematical model of the individual wheelset drive

Mathematical model of individual wheelset drive excited by pulsation moments of trac-
tion motor is derived by Lagrange’s equations in generalized coordinates q(t) representing
drive component displacements from static equilibrium of the moving vehicle on a geometri-
cally perfect straight track under the operational conditions given by the longitudinal creep-
age s0 of both wheels, electric locomotive velocity v [km/h] and vertical wheel forces N0 [N].
Conservative model leaves out the creep forces in contact of the rails with the wheels has the
form resulting from isolated subsystems and coupling stiffness matrices between subsystems
and can be written as

Mq̈(t) + (K + KRM,S + KP,G + KDC)q(t) = 0 . (17)

Matrix KDC expresses the stiffness disc clutch between gearbox wheel and hollow shaft.

Creep forces in contact of wheels with the rails are expressed by longitudinal adhesion
forces Ti ad and create adhesion Mi ad moments. Their form can be expressed as (the index i
marks nodes in which the wheels are fixed)

Ti ad = μ(si, v)N0 , Mi ad = μ(si, v)N0 r , (18)

where N0 is the normal force, r is wheel radius and μ(s0, v) is coefficient of adhesion ana-
lytically expressed in [8]. Longitudinal creepage of the wheels is

si = s0 +
r ϕ̇i

v
3.6 , s0 =

3.6 r ωW − v

v
,

where v is forward locomotive velocity in [km/h] and s0 is longitudinal creepage before
perturbance. The coefficient of adhesion is expressed in linearized form

μ(si, v) = μ0 +
[
∂μ

∂si

]
si=s0

(s− s0) , (19)



172 Ahmedov O. et al.: Modelling of Vibration and Modal Properties of Electric Locomotive Drive

which corresponds to the moment of adhesion

Mi ad = M(s0, v) + b(s0, v) ϕ̇i , (20)

where

M(s0, v) = μ(s0, v)N0 r and b(s0, v) =
[
∂μ

∂si

]
si=s0

(s− s0)
N0 r

2

v
3.6 .

Linearized vector of adhesion moments in the form

fi = −b(s0, v) q̇i , i = 28, 30 (21)

complements conservative drive model (17) on the right side. A packet of sheets in the
model of the rotor is replaced by five discs mounted on the shaft at nodes 6 to 10 (Fig. 3).
Pulsating torque is evenly distributed to the packet of sheets. The vector representing the
pulsation moments can be written in complex form

f(t) =
∑

k

fk e2π fk t ,

fk =
1
5
M(s0, v) ηk [. . . , 1, . . . , 1, . . . , 1, . . . , 1, . . . , 1, . . . , 5, . . . ]T ,

(22)

where fk is the k-th excitation vector amplitudes with the excitation frequency fk in Hz and
digits 1 (digit 5) are localized on the positions corresponding to torsional displacement of
the shaft nodal points 6 to 10 of the rotor (torsional displacements ϕ20 of the stator).

Excitation frequencies of pulsation moments and their amplitudes are adopted from the
research report [4]. The values are listed in Tab. 2, where ηk is k-th relative amplitude of k-th
component of torque pulsation Mk and M(s0, v) is the nominal torque before perturbance.

k 1 2 3 4 5

fk [Hz] 663 939 1602 2265 2541
ηk = Mk/M(s0, v) 0.15 0.1 0.276 0.008 0.075

Tab.2: Excitation frequency and amplitude of pulsed moments

The comprehensive model of individual drive, including the influence of adhesion mo-
ments in contact of wheels and rails, the impact of control on the engine torque character-
istic determined by its inclination bE and pulsation excitation of the traction motor torque
has the form

Mq̈(t) + (ω0 G + B(s0, v)) q̇(t) + (K + KRM,S + KP,G + KDC)q(t) = f(t) , (23)

where
G = diag[GRM, 0,0,0] , B(s0, v) = diag[BRM, 0,BS,Bad(s0, v)] .

The rotor damping matrix and adhesion properties are in diagonal form

BRM =
1
5

diag(. . . , bE, . . . , bE, . . . , bE, . . . , bE, . . . , bE, . . . ) ,

Bad(s0, v) = diag(. . . , b(s0, v), . . . , b(s0, v), . . . ) and

BS = diag(0, 0, 0, bE, 0, 0) .

(24)
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Localization of matrix nonzero elements in Bad(s0, v) corresponds to torsional deflections of
wheels fixed on the axle wheelset.

5. Modal analysis of the individual wheelset drive

For illustration, Table 3 contains the first 10 natural frequencies fv of conservative
model (17), natural values of the model (24), damping factors defined by −αv/|λv| and
includes the corresponding mode shape characteristics of the wheelset drive for operational
parameters s0 = 0.002, v = 200km/h and N = 105 N.

v Model (17) Model (24) Dv Characteristics of mode shapes
fv [Hz] λv = αv ± iβv [Hz]

1 0 0± i 0 0 torsion with no deformation
2 4.07 −1.55± i 0 1.0 torsion drive with large deformation of disc clutch
3 27.16 −2.0e−03± i 24.92 8.19e−05 yaw and lateral deformations RM and S
4 35.07 −4.8e−03± i 35.91 1.36e−04 roll RM and S and vertical deformations end

copper bars

5 48.97 −27.49± i 40.51 5.6e−01 torsion DC and twisting of W
6 55.15 −12.7e−04± i 55.10 2.32e−05 transverse vibrations RM and S
7 71.27 −1.93e−02± i 65.63 2.9e−04 longitudinal vibrations RM and S
8 97.32 −34.3e−02± i 97.67 3.5e−03 yaw of RM and P, pitch G
9 117.30 −3.36e−02± i 115.1 2.92e−04 lateral of RM
10 123.60 −3.2e−01± i 120.46 2.69e−03 roll of P and pitch G

Tab.3: Modal values of the individual drive

Dynamic gearing deformation (relative motion of gear teeth in normal line of the tooth
faces) corresponding to particular mode shapes (Fig. 6) is important in terms of dynamic
load of gearing.

Fig.6:. Dynamic gearing deformation
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6. Steady dynamic response caused by pulsation moments

Steady vibration of the wheelset drive excited by pulsation moments f(t) is expressed by
particular solution of motion equations (24) in the complex form

q̃(t) =
5∑

k=1

q̃k eωk t , ωk = 2 π fk , (26)

where complex amplitude vectors of displacements are

q̃k =
{−Mω2

k + iωk (ω0 G + B(s0, v)) + (K + KRM,S + KP,G + KDC)
}−1

fk . (27)

Real displacements can be expressed as

q(t) = Re{q̃(t)} =
5∑

k=1

(Re{q̃} cosωkt− Im{q̃} sinωkt) . (28)

As an illustration the amplitudes of the force transmitted by gearing for two longitudinal
creepage s0 = 0.002 and s0 = 0.005 and for locomotive velocity v = 200km/h and vertical
wheel forces N = 105 N are presented in Fig. 7. The time behaviour of this force in interval
t ∈ 〈0, 0.01〉 [s] is presented in Fig. 8.

Fig.7: Amplitudes of force transmitted by gearing excited
by harmonic components of pulsating moment

7. Conclusions

The paper presents the method of mathematical modelling of the individual wheelset
drive vibration of the electric locomotive caused by pulsation moments of the asynchronous
traction motor. The derived linearized model and developed software in MATLAB code,
expressed in perturbance coordinates with respect to static equilibrium (without pulsation
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Fig.8: Time course of force transmitted by gearing

moments) of the moving locomotive on a geometrically ideal straight track, allows to inves-
tigate the possible resonant states caused by harmonic sources of excitation. For gear and
pinion gears such resonances are dangerous when the first harmonic component of pulsating
moment of traction motor resonates with natural frequencies up f17 to f19, four harmonic
component with frequency f33 and fifth harmonic with frequency f37.

The developed software enables graphically record the time behaviour of the arbitrary
generalized coordinate of the force transmitted by gearing for the arbitrary operational
parameters of the locomotive expressed by the longitudinal creepage, locomotive velocity and
vertical wheel forces using analytically defined creep characteristics. The dynamic response
caused by pulsation moments depends especially on longitudinal creepage. In a close future,
the derived wheelset drive model will be used for simulation of vibration and dynamical
loading of drives components caused by kinematic transmission error of gearing.
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[8] Čáp J.: Some aspects of uniform comment of adhesion mechanism, Proceeding of VŠCHT
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