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SPRINGBACK, INTERNAL ELASTIC ENERGY
AND STORED ENERGY

Vratislav Kafka*

Author’s general mesomechanical concept is applied to explanation of the physical
background of the phenomenon of springback and to its modeling. The internal
elastic stress field in the material is modeled on the mesoscale and the variations of
this field clarify the main features of springback that are observed experimentally in
the process of loading, unloading and loading-free creep. Attention is not paid to
minute description of the stress-strain diagram appearing in the course of unloading,
but to the value of the residual strain after unloading, which is important from the
technical point of view. It is shown how creep after unloading depends on stored
energy.
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1. Introduction

Springback is a technically important as well as scientifically interesting phenomenon.
Therefore, it had a great attention in the last decades ([1]–[12]). There are two main scientific
lines related to this topic: that dealing with geometry of sheet forming and that dealing with
material properties. The current study is aimed at the material properties modeled on the
basis of the general author’s mesomechanical concept [13]. In this concept, the material
under study is described as a two-phase continuum with different mechanical properties
(one complient, the other one resistant) as well as different geometry of substructures of
the two phases. In this approach, the pivotal point is a special way of description of the
geometry of the two substructures by ‘structural parameters’ (derived as integral forms in
distribution functions), whose values can be positive, vanishing or infinite. Their different
combinations lead to models of all four possible combinations of connectivity of the two
substructures : (i) both substructures continuous, (ii) both substructures discontinuous,
(iii) substructure [A] forming inclusions in the matrix of substructure [B], (iv) substructure
[B] forming inclusions in the matrix of substructure [A].

As to the material properties of the materials showing springback, one of the essential
problems is modeling the behavior of the material in the course of unloading after plastic
deformation. The simplest description is linear unloading with the stiffness equal to Young’s
modulus. However, experimental findings do not corroborate this simple assumption if strain
overpasses some limit. A closer description has been proposed: decrease of the elastic stiff-
ness with accumulation of plastic strain [4]. But even this description is not accurate enough,
and the next step in approaching the experimental findings was description of unloading by
a non-linear curve [9]. This leads to the question: what is the physical background of this
decrease of elastic stiffness and of the non-linearity?
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A qualitative explanation can be seen in the variation of the dislocation structure
(e.g. [8]), but receiving quantitative description based on this concept is difficult. Another
explanation based on the damage theory has been proposed in [14]. But damage would cause
change of elastic stiffness even at the beginning of unloading, which is not observed [9]. At
the beginning of unloading, the elastic stiffness equals the initial Young’s modulus; only
with proceeding unloading the slope of the unloading curve decreases. Apart from these
elastic-plastic features, in some materials also the phenomenon of creep plays an important
role ([11], [15]).

In what follows, the observed behavior is explained and described by our mesomechanical
model.

2. Basic relations

The basic notion of our model is representation of a metallic material as a macroscopi-
cally homogeneous, but mesoscopically heterogeneous medium with two substructures. The
physical nature of one of these substructures corresponds to inner parts of grains that are
relatively compliant (superscript c). The physical nature of the other substructure can
be different in different materials (precipitates, inclusions, impurities, boundary regions of
grains), but for formulation and use of our model, the only important assumption is that
such substructure exists, that it is relatively resistant, and that can be modeled as elastic
(superscript e). Of course, that such model means simplification of reality, but a number
of papers of the author and of his collaborators proved that it leads to a good description
of many features of mechanical behavior of many materials. For the use of this concept,
it is not necessary to go up to the microscale and to disclose the physical nature and the
details of the atomic structure. The model parameters are determinable from macroscopic
tests. In our works, this mesoscale model has successfully been applied to metallic materials,
concrete, polymers and biological tissues ([16], [17], [13], [18], [19]).

Our approach [13] is described by tensorial internal variables. The essential feature of
this concept is description of the internal stress fields by taking into account not only the
average stresses in the material constituents (substructures), but also the space-dependent
fluctuations of the stress fields. This represents an alternative to the concept that works
with stress fields around individual dislocations and with piling up of dislocations at the
grain boundaries

Here, we are going to use a simple variant of our model that assumes homogeneity of
elastic properties and heterogeneity of inelastic properties in the two substructures :

ve σe
ij + vc σc

ij = σ̄ij , (1)

ve εeij + vc εcij = ε̄ij , (2)

ėeij = μ ṡeij , εe = ρ σe = ρ σ̄ = ε̄ , (3)

ė′eij = ėeij − ˙̄eij , ε′e = εe − ε̄ , (4)

ė′eij = μ ṡ′eij , ε′e = 0 , (5)

ėcij = μ ṡcij + scij ḣ
c , εc = ρ σc = ρ σ̄ = ε̄ , (6)

ė′cij = ėcij − ˙̄eij , ε′c = εc − ε̄ , (7)

ė′cij = μ ṡ′cij + s′cij ḣ
c , ε′c = 0 , (8)
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seij − scij +
s′eij
ηe

− s′cij
ηc

= 0 . (9)

The meaning of the symbols is given in ‘Nomenclature’. For determination of the 9 ten-
sorial variables σe

ij , σ
c
ij , σ

′e
ij , σ

′c
ij , ε

e
ij , ε

c
ij , ε

′e
ij , ε

′c
ij , ε̄ij there are 9 tensorial equations (1) to (9)

available (if the evolution of σ̄ij is prescribed).

Equations (1), (2), (3) and (6) do not need explanation, equations (4) and (7) define
the rates of variables e′eij and e′cij . The symbols ηe, ηc characterize the internal structure
and are called ‘structural parameters’. Equations (5), (8) and (9) have been derived in the
author’s monograph [13]. Their derivation is not simple enough to include it in this short
communication.

The integral forms, by which the structural parameters ηe, ηc have been defined in their
deduction, imply that they are non-negative and the higher the value of ηe, the lower is
the connectivity of the e-substructure (and analogously for the c-substructure). For an
infinite value of ηe, the e-substructure forms discontinuous inclusions. This is an important
feature of our model that the degree of connectivity of individual substructures can easily
be described by the structural parameters.

The internal elastic energy in a macroscopic unit volume of the material is given in terms
of internal stresses by the following expression :

WE =
1
2

{
μ

[
ve

(
seij s

e
ij +

1
ηe
s′eij s

′e
ij

)
+ vc

(
scij s

c
ij +

1
ηc
s′cij s

′c
ij

)]
+ 3 ρσ̄2

}
. (10)

The meaning of the symbol hc differs for elastic deformation from that of elastic-plastic
deformation and that of time-dependent deformation.

In the case of elastic deformation
ḣc = 0 . (11)

In the case of plastic deformation

ḣc =
dλc

dt
, (12)

where dλc means a scalar measure of the increment of plastic deformation in the c-substruc-
ture.

In the case of viscous deformation

ḣc =
1

2Hc
, (13)

where Hc means the coefficient of viscosity of the c-substructure.

Starting from this approach, the behavior of the material in the process of springback can
be modeled. With the use of equations (1)–(9), the differential form of the mesomechanical
constitutive equation can be derived from equations (1)–(9) in a straightforward way [13] to
give :

dε̄ij = dēij + δij dε̄ = μ ds̄ij + vc scij dhc + δij ρ dσ̄ , (14)

dscij = ds̄ij − ve

μ q
(p scij − ηe s′cij) dhc , (15)

dseij = ds̄ij +
vc

μ q
(p scij − ηe s′cij) dhc , (16)
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ds′cij =
ηc

μ q
[ve ηe scij − (vc + ηe) s′cij ] dh

c , (17)

ds′eij =
vc ηe

μ q
[ηc scij + s′cij ] dh

c , (18)

where
p = ve ηe + vc ηc , q = p+ ηe ηc . (19)

The newly introduced expressions p and q have no special physical meaning, their use
only simplifies the form of the equations.

The terms seij , s
c
ij , s

′e
ij , s

′c
ij represent tensorial internal variables. They are not indepen-

dent, as seij and scij are bound by Eq. (1), s′eij and s′cij by Eq. (9). Hence, it is possible to
reduce the above set of five equations to only three equations, which is used in what follows.

In the case of plastic deformation, dλc is to be determined with the use of a yield criterion.
In previous author’s papers, it has been shown that for metals, the best agreement with
experiments gave the following form of the yield criterion :

scij s
c
ij ≤ 3

2
(cc)2 +

1
ηc
s′cij s

′c
ij . (20)

This is a generalized Mises’ criterion, where the second addend on the right-hand side
represents the effect of stress-fluctuations. With the use of this criterion, the values of dλc

can be calculated for very small finite steps that replace the infinitesimal steps in numerical
calculations. With the use of the above-presented set of equations (15)–(18) and (20), the
differential dλc can be expressed as follows :

dλc = 0 for scij s
c
ij <

3
2
(cc)2 +

1
ηc
s′cij s

′c
ij , (21)

dλc =
dΛc + |dΛc|

2
for scij s

c
ij =

3
2
(cc)2 +

1
ηc
s′cij s

′c
ij . (22)

where

dΛc = μ
q scij ds̄ij

ve p scij s
c
ij − (vc + ηe) s′cij s

′c
ij

. (23)

3. Uniaxial loading and unloading

For uniaxial loading, a new variable W is defined that corresponds to the energy spent
for the deformation process :

W =

ε̄11∫
0

σ̄11 dε̄11 . (24)

3.1. Elastic phase of loading

At the beginning of loading, the process is usually elastic, meaning dhc = 0. According
to criterion (20), this elastic phase ends when sc11 reaches the value cc. Both substructures
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are assumed to deform in the same elastic way and this segment of the stress-strain diagram
is linear. In Fig. 1, this corresponds to the segment 0-A. In this deformation phase

σe
11 = σc

11 = σ̄11 , εe11 = εc11 = ε̄11 , σ′c
ij = σ′e

ij = 0 , ε′cij = ε′eij = 0 . (25)

It is easy to show that in this loading phase W = WE :

WE =
1
2

{
μ

3
2
s̄211 + 3 ρ σ̄2

}
=
σ̄2

11

2E
=

1
2
E ε̄211 =

ε̄11∫
0

σ̄11 dε̄11 = W . (26)

Fig.1: The phenomena of springback for a sample in uniaxial tension
at different extents of strain – with the use of true stress

3.2. Elastic-plastic phase of loading

After reaching the limit given by criterion (20), an elastic-plastic process starts, in which
differential changes of variables follow from equations (14) to (18) to give :

dε̄11 = dē11 + dε̄ = μ ds̄11 + vc sc11 dhc + ρ dσ̄ , (27)

dsc11 = ds̄11 − ve p s
c
11 − ηe s′c11
μ q

dhc , (28)

ds′c11 = ηc v
e ηe sc11 − (vc + ηe) s′c11

μ q
dhc (29)

with dhc = dλc, and dλc given by equations (22) and (23).

In this elastic-plastic deformation phase, the value of W is higher than that of WE, as
a part of W is dissipated, transformed into heat. Under the usually accepted assumption
that the process is approximately isothermal, this part is spread out to surroundings. The
rest that is not dissipated creates the internal energy WE.

In Fig. 1, the elastic-plastic loading phase corresponds to the segment A-B-C-D-E.

With the use of our model equations, the stress-strain diagram can be plotted step-by-
step, choosing very small increments of σ̄11 and calculating the respective increments of ε̄11
and of other variables, treating them as differentials.
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3.3. Elastic-plastic phase of unloading

In the Introduction, the different ways of describing the unloading phase by different
authors were shortly outlined. The main features of the unloading lines that are safely
found out by experimental observations are :

(i) At the beginning of the unloading, the elastic stiffness equals the initial Young’s
modulus.

(ii) At the end of the unloading line, the residual strain is equal to or smaller than
the value that results from purely elastic linear unloading with the initial Young’s
modulus.

(iii) At the beginning of reloading that follows unloading, the elastic stiffness equals again
the initial Young’s modulus.

What is of practical interest, is the final residual strain, not the shape of the unloading
stress-strain diagram that depends on the rate of unloading.

According to our model approach, the unloading starts always as linear with the elastic
stiffness equal to the initial Young’s modulus E. Up to some limit deformation, the unloading
is modeled as linear down to complete unloading. In Fig. 1, this limit is represented by
point C. This is the case, in which sc11 reaches the criterion limit in its negative value, i.e.
−√(cc)2 + (s′c11)2/ηc (cf. criterion 20) just for σ̄11 = 0. For deformations that reach over C
(points D, E in Fig. 1), sc11 reaches the negative value −√(cc)2 + (s′c11)2/ηc in the course of
unloading at σ̄11 > 0. With proceeding unloading, the deformation process is elastic-plastic
and dσ̄11/dε̄11 < E. In the framework of our model, this feature is straightforward to
explain, as the inelastic part of dε̄11 is now nonzero, it has a negative value (dε̄11)plast =
= vc sc11 dλc, where dλc is positive by definition and the value of sc11 is negative (in the
course of unloading the value of sc11 changed from positive value

√
(cc)2 + (s′c11)2/ηc to

negative value −√(cc)2 + (s′c11)2/ηc). The courses of changes of cc11 are shown in Fig. 2 in
the processes of loading, unloading and reloading for different limits of deformation.

It is clear enough that in the inelastic part of unloading segment e1-e2 (Figs. 1–2) some
energy must be dissipated. The source of this energy is the internal energy WE. In Fig. 3,
the drop of WE caused by the elastic part of unloading is marked δWE. Its value is relatively
low. However, ΔWE – the drop of WE caused by total unloading – elastic plus plastic – is
substantially higher.

Thus, the value of WE at point C is reduced by ΔWE due to elastic-plastic unloading
and the rest represents the so-called stored energy SWE. In Fig. 4, the relation between the
value of SWE in comparison to W is shown to correspond to the values of SWE measured
calorimetrically for different materials [20].

It is interesting to analyze the value of SWE (value of WE at point e2 corresponding to
full unloading) splitting it into two parts :

SWE = (SWE)⊕ + (SWE)⊗ , (30)

where

(SWE)⊕ =
1
2

{
μ

3
2
[
ve (se11)

2 + vc (sc11)
2
]
+ 3 ρ σ̄2

}
e2

(31)

means that part of the stored energy SWE that is represented by the average stresses in the
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two substructures, whereas

(SWE)⊗ =
1
2

{
μ

3
2

[
ve (s′e11)

2

ηe
+
vc (s′c11)

2

ηc

]}
e2

(32)

means that part of the stored energy SWE that is represented by the space-dependent
fluctuations.

In many models of composite materials, only the average stresses in the material con-
stituents are taken into consideration. However, in what follows the value of (SWE)⊗ is
shown to be substantially higher than (SWE)⊕. This means that (SWE)⊗ must not be
neglected to receive a realistic model.

3.4. Creep after unloading

After full unloading from macroscopic stress, the deformation process is usually seen as
finished. However, it is not always the case. Thus it was revealed in [15] that the speci-
men shapes for aluminum alloys can continue to change for long periods following forming
and unloading. Steels tested under identical conditions showed no such time-dependent
springback.

Fig.2: Courses of the main deviatoric stress component sc11 in the compliant
substructure in the deformation processes shown in Fig. 1

From the point of view of our concept, it is easy to explain why such creep can appear. In
Fig. 2, the stress component sc11 is shown to take on the negative value −√(cc)2 + (s′c11)2/ηc

after sufficiently large deformation. Without the effect of the e-constituent, this would cause
shortening of the specimen, either elastic or viscous. However, it is clear from the preceding
considerations that the elastic as well as plastic deformation has stopped and cannot proceed.
On the other hand, the time-dependent creep can in some materials proceed according to
equations (6) and (13). With proceeding creep, the absolute value of sc11 diminishes (cf.
Eq. (15)) and so does the rate of creep (cf. Eq. (14)).
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Two factors decide whether the creep will appear. Firstly, it is temperature [21], as Hc

is temperature dependent. Secondly, the stored energy must be high enough to supply
sufficient energy for dissipation in the course of creep. After spending some sufficient part
of stored energy for dissipation, the process will stop at some limit (WE)L, from which the
value of WE is not high enough for the creep to go on.

4. Numerical example

Let us apply our model to an aluminum alloy with the following material parameters :
μ = 2.28×10−5 MPa−1, ρ = 5.4×10−6 MPa−1, cc = 63.66 MPa, ve = 0.056, vc = 0.944,
ηe = 2.7433125, ηc = 0.011429242, Hc = 50000 MPah.

Fig.3: Course of the internal elastic energy WE in the processes
of loading and unloading shown in Fig. 1

The graphical demonstrations in Figs. 1 to 5 were based on these material parameters.
The main general results are presented in the preceding sections. From the numerical results,
the values of the two parts of stored energy deserve special attention :

(SWE)⊕ = 1.351 MPa , (SWE)⊗ = 5.624 MPa , (33)

which verifies the importance of taking into account the energy of space-dependent fluctua-
tions.

Another numerical result of interest is the relation of the value of stored energy SWE to
the energy W spent for the deformation process from which the value of SWE stems. The
value of this relation turned out to be :

SWE

W
= 0.246 .

This means that stored energy for our material and the respective loading strain repre-
sents about 25% of the energy spent for realization of the deformation process. This is in
the range of results received with the use of calorimetric measurements for different metallic
materials [20].
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Fig.4: Course of the energy W spent for deformation of the sample – compared
with stored energy SWE after 0.15 strain and unloading

Fig.5: Decrease of the values of internal elastic energy WE (starting
from the stored energy SWE) and of residual strain due to creep
that spends and dissipates stored energy. For values of internal
energy under (WE)L the process cannot proceed

5. Conclusion

The author’s mesomechanical model applied to the explanation and description of spring-
back clarifies the energetic internal processes in the material that lead to springback. Com-
parison of the main features observed in the course of springback with the outcomes of our
model verifies its justness.
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Nomenclature

cc limit value of sc11 at the start of plastic deformation in a uniaxial elastic-
plastic process

ēij {eeij , ecij} macroscopic {mesoscopic} deviatoric strain

e′eij {e′cij} deviatoric parts of ε′eij {ε′cij}
E Young’s modulus

ḣc formal variable that equals 0 in elasticity, λ̇c in plasticity, and 1/(2Hc)
in creep

Hc coefficient of viscosity in the c-constituent

i, j indices that can take on the values 1, 2, 3; their repetition means sum-
mation

e {c} superscripts that relate the respective value to the resistant e-substruc-
ture {to the compliant c-substructure}; repetition does not mean sum-
mation

s̄ij {seij , scij} macroscopic {mesoscopic} deviatoric stress

s′eij {s′cij} deviatoric parts of σ′e
ij {σ′c

ij}
t time measured in hours

ve volume fraction of the resistant constituent

vc (= 1 − ve) volume fraction of the compliant constituent

W energy spent in the course of the deformation process

WE elastic energy of internal stresses comprised in a volume unit of the whole
material

SWE stored energy

(SW e)⊕ that part of the stored energy SWE that corresponds to the average
stresses in the two substructures

(SW e)⊗ that part of the stored energy SWE that corresponds to the space-
dependent fluctuations

δij Kronecker delta

σ̄ij {ε̄ij} macroscopic stress {strain}
σe

ij {σc
ij} mesoscopic stress in the elastic resistant {inelastic compliant} substruc-

ture – averaged values in the respective substructure

σ′e
ij {σ′c

ij} stresses related to ε′eij {ε′cij} similarly as are σe
ij {σc

ij} related to εeij {εcij}
δij σ̄ {δijσe, δijσ

c} macroscopic {mesoscopic} isotropic part of the stress tensors

δijσ
′e {δijσ′c} isotropic parts of σ′e

ij {σ′c
ij}

εeij {εcij} mesoscopic strain in the elastic resistant {inelastic compliant} substruc-
ture – averaged values in the respective substructure

δij ε̄ {δijεe, δijεc} macroscopic {mesoscopic} isotropic parts of the strain tensor

ε′eij = εeij − ε̄ij {ε′cij = εcij − ε̄ij} definitions of variables ε′eij {ε′cij}
δijε

′e {δijε′c} isotropic parts of ε′eij {ε′cij}
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ηe, ηc positive ‘structural parameters’ that characterize the structure of the
material [ηe = ηc = 0 corresponds to Voigt’s homogeneous strain model,
ηe = ηc = ∞ corresponds to Reuss’ homogeneous stress model, generally
higher value {lower value} of one of the parameters describes a lower
{higher} connectivity of the respective substructure. In their deduc-
tion [13], they have been defined as integral forms in the distribution
functions of microscopic stress-fields and strain-fields, but the user of
the model works only with these parameters, without specifying the dis-
tribution functions themselves]

λc scalar measure of plastic deformation in the c-constituent

Λc formal expression whose differential increment dΛc is defined by Eq. (23);
in an active plastic process dΛc > 0 and dλc = dΛc, otherwise dλc = 0

ν Poisson’s ratio

μ = (1 + ν)/E deviatoric elastic compliance

ρ = (1 − 2 ν)/E isotropic elastic compliance
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