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ON POSSIBLE FORMULATION OF THE EXTENDED
IRREVERSIBLE THERMODYNAMICS AND

THE THERMODYNAMICS WITH INTERNAL VARIABLES

Josef Rosenberg*, Miroslava Svobodová*

There exist different formulations of the irreversible thermodynamics. Depending
on the distance from the equilibrium state and on the characteristic time the main
theories are the classical theory (CIT), the thermodynamics with internal variables
(IVT) and the extended theory (EIT). Sometimes it is not easy to choose the proper
theory and to use it efficiently with respect to applied problems considering different
fields of interest. Especially EIT is explained mainly for very special choice of the
dissipative fluxes under specific presumptions. The paper tries to formulate EIT and
IVT in a simple, unified but general enough form. The basic presumptions for EIT are
shown and discussed, further a possible generalization is proposed. The formulation
allows the integration of IVT and EIT even for the mixture of chemically interacting
components and diffusion. The application of the formulation is demonstrated on an
example.

Keywords : extended irreversible thermodynamics, thermodynamics with internal
variables, mixture

1. Introduction

Non-equilibrium thermodynamics is necessary for a suggestion of the mathematical and
numerical models of modern materials especially living tissues. The grounds for it are
dissipative processes with different relaxation times running in those materials.

Instead of a closed theory a lot of different theories can be found. Let the irreversible
thermodynamics with internal variables (IVT) and the extended irreversible thermodyna-
mics (EIT) are considered. Lots of publications are dedicated to both theories, e.g. [4] for
IVT and [2], [3], [5] for EIT. The aim of the paper is to point out certain assumptions and
advantages of the theories in the particular applications. The attention is mainly dedicated
to EIT while IVT was discussed in [7].

According to [5] the application of IVT is limited to processes not far from thermody-
namic equilibrium due to the assumption of either local or accompanying equilibrium state
of the process. It can not be applied in a situation in which the characteristic relaxation
times of the involved irreversible dissipation process (chemical, mechanical, thermal, electric,
etc.) and the dynamic characteristic times of interest are of the same order – the Deborah
number is close to 1. To bridge the gap EIT introduces the local non-equilibrium state. The
thermodynamic fluxes are introduced into the set of state variables. The fluxes describe the
interaction of a material point with its neighborhood. Consequently the entropy depends
not only on the heat flux but also on these fluxes that can be controllable.
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First, EIT applied to a one component continuum is discussed. Then the generalization
to the multicomponent continuum is suggested, the diffusion and chemical reactions are
taken into account. The combination of IVT and EIT is shown together with an example
at the end of the paper.

2. EIT - one component continuum

Let the entropy s(u, q,ai,Ji), i = 1, 2 be a function of internal energy u, heat flux q,
new fluxes Ji, i = 1, 2 and two sets of the state variables ai, i = 1, 2 that need not to be
disjunct. Let the internal energy be expressed by the following relation

ρ u̇ = −∇ · q + Fc1 • ȧ1 + Fc2 • ȧ2 + J1 • ȧ1 + J2 • ȧ2 . (1)

REMARK: Due to the generalization of the discussed theory the authors warrant to use
the notation A • B and A � B leading finally to a scalar and a vector value, respectively.
Throughout the paper a, A, α represents a scalar, a, A, α a vector or a tensor and a, A, � or
� a set of either scalars or vectors or tensors, except ∇ is a vector. For e.g. A = {A1, A2, . . . },
�= {β1, β2, . . . }: �•A = β1 •A1 +β2 •A2 + . . . is a scalar, ��A = β1 �A1 +β2 �A2 + . . .

is a vector, �A = {β1A1, β2A2, . . . }, aA = {A1a, A2a, . . . }, A � a = A1 � a +A2 � a + . . .

are vectors, A • a = A1 • a + A2 • a + . . . is a scalar. If e.g. (β1)j = fj and (A1)kl = gkl

then β1 � A1 = fj g
kl, etc.

Let Fci be the sets of the classical forces producing work in the current space and the
last two terms in (1) express the work of the new fluxes. For the entropy can be written

ṡ =
∂s

∂u
u̇+

∂s

∂q
· q̇ +

∂s

∂a1
• ȧ1 +

∂s

∂a2
• ȧ2 +

∂s

∂J1
• J̇1 +

∂s

∂J2
• J̇2 , (2)

where
∂s

∂u
= θ−1 ,

∂s

∂q
= θ−1α�(u, q,Ji, ai) ,

∂s

∂ai
= −θ−1ρ−1Fei ,

∂s

∂Ji
= θ−1�Ji(u, q,Ji, ai).

(3)

Here θ is the ‘irreversible’ temperature differing from T due to the entropy dependence on
the additional fluxes.

Inserting (1) and (3) into (2) the following relation is obtained

ρ ṡ = θ−1[−∇ · q + (Fc1 + J1 − Fe1) • ȧ1 + (Fc2 + J2 − Fe2) • ȧ2 +

+ ρα� · q̇ + ρ�J1 • J̇1 + ρ�J2 • J̇2] .
(4)

The first assumption according to [3] follows

α� = α�0 q , �Ji = αJi0 Ji , θ = T , (5)

where α�0 and αJi0 are the scalar functions. Then (4) has the form

ρ ṡ = −∇ · (T−1q) + q · ∇(T−1) + T−1[(Fc1 − Fe1 + J1) • ȧ1 +

+ (Fc2 − Fe2 + J2) • ȧ2] + ρ T−1(α�0 q · q̇ + αJ10 J1 • J̇1 + αJ20 J2 • J̇2) .
(6)
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The entropy source is given according to the general balance equation by

σs = ρ ṡ+ ∇ · Js . (7)

The flux of the entropy can be supposed according to [5] as Js = Js(T, q,Ji, ai). The
polynomial of the second degree is chosen as a function approximation and according to [3]
only the terms containing q are selected

Js = T−1q + (�3 J1) � q + (�4 J2) � q . (8)

This is the second fundamental assumption. A different form of the entropy flux – it
represents different selections from the above mentioned polynomial e.g. [1] – can be found
in literature.

Putting (8) into (7) and using (6) the following relation is obtained

σs = q · [∇T−1 + ρ T−1α�0 q̇ + ∇ � (�3 J1) + ∇ � (�4 J2)] +

+ J1 • (T−1 ȧ1 + ρ T−1αJ10 J̇1 + �3 ∇ q) +

+ J2 • (T−1 ȧ2 + ρ T−1αJ20 J̇2 + �4 ∇ q) +

+ T−1(Fc2 − Fe2) • ȧ2 + T−1(Fc1 − Fe1) • ȧ1 ≥ 0 .

(9)

The terms in brackets represent the forces

X� = ∇T−1 + ρ T−1α�0 q̇ + ∇ � (�3 J1) + ∇ � (�4 J2) ,

XJ1 = T−1 ȧ1 + ρ T−1αJ10 J̇1 + �3 ∇ q ,

XJ2 = T−1 ȧ2 + ρ T−1αJ20 J̇2 + �4 ∇ q ,

Xa1 = T−1 ȧ1 ,

Xa2 = T−1 ȧ2 ,

(10)

and further
Fc1 − Fe1 = Fdis1 , Fc2 − Fe2 = Fdis2 . (11)

The inequality (9) is fulfilled e.g. if

[X�,XJ1 ,XJ2 ,Xa1 ,Xa2 ]
T = L [q,J1,J2,Fdis1,Fdis2]T , (12)

where the superscript [ ]T represents the row vector transpose and the matrix of Onsager
coefficients L fulfills the proper conditions

Lii ≥ 0 , Lii Ljj ≥ 1
4

(Lij + Lji)2 , i, j = 1, 2, . . . . (13)

They are the linear constitutive equations according to [3].

Let the uncoupled case be considered. The matrix L is diagonal

L =

⎡
⎢⎢⎢⎣
L� 0 0 0 0
0 LJ1 0 0 0
0 0 LJ2 0 0
0 0 0 La1 0
0 0 0 0 La2

⎤
⎥⎥⎥⎦ , (14)



192 Rosenberg J. et al.: On Possible Formulation of the Extended Irreversible Thermodynamics . . .

where all Lii are non-negative. More general conditions taking into account the coupling
between fluxes exist. They are mentioned further in the paper. The choice (12) and the
matrix L form (14) are the third fundamental assumption considered in the discussed ap-
proach to the theory. Inserting from (10) and (14) into (12) the evolution equations of all
fluxes are obtained as follows

L� q = ∇T−1 + ρ T−1α�0 q̇ + ∇ � (�3 J1) + ∇ � (�4 J2) ,

LJ1 J1 = T−1 ȧ1 + ρ T−1αJ10 J̇1 + �3 ∇ q ,

LJ2 J2 = T−1 ȧ2 + ρ T−1αJ20 J̇2 + �4 ∇ q ,

La1 Fdis1 = T−1 ȧ1 ,

La2 Fdis2 = T−1 ȧ2 .

(15)

Let the free energy f = u− Ts be introduced, then

ḟ = u̇− Ṫ s− T ṡ . (16)

Inserting from (1) into (6) the inequality is obtained

ρ ḟ ≤ −ρ Ṫ s+ (Fe1 + J1) • ȧ1 + (Fe2 + J2) • ȧ2 +

+ T (�3 J1 + �4 J2) • ∇ q + T [∇ � (�3 J1) + ∇ � (�4 J2)] · q .
(17)

From (16) follows

T ṡ = u̇− Ṫ s− ḟ . (18)

Inserting from (1) into (18) and then into (7) the second law of thermodynamics σs ≥ 0 has
the form

ρ ḟ ≤ −ρ s Ṫ − T−1 ∇T · q + (Fc1 + J1) • ȧ1 + (Fc2 + J2) • ȧ2 +

+ T [∇ � (�3 J1 + �4 J2)] · q + T (�3 J1 + �4 J2) • ∇ q .
(19)

The following relation can be written for the rate of the free energy

ḟ =
∂f

∂T
Ṫ +

∂f

∂q
· q̇ +

∂f

∂a1
• ȧ1 +

∂f

∂a2
• ȧ2 +

∂f

∂J1
• J̇1 +

∂f

∂J2
• J̇2 . (20)

Further from (15) can be obtained

q̇ = T (ρα�0)−1 [L� q −∇ (T )−1 −∇ � (�3 J1 + �4 J2)] ,

J̇1 = T (ραJ10)−1 [LJ1 J1 − T−1 ȧ1 − �3 ∇ q] ,

J̇2 = T (ραJ20)−1 [LJ2 J2 − T−1 ȧ2 − �4 ∇ q] .

(21)
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Inserting from (20) and (21) into (19) the inequality has the form

− ρ

(
s+

∂f

∂T

)
Ṫ −

[
ρ
∂f

∂a1
− ∂f

∂J1
(αJ10)−1 − (Fc1 + J1)

]
• ȧ1 −

−
[
ρ
∂f

∂a2
− ∂f

∂J2
(αJ20)−1 − (Fc2 + J2)

]
• ȧ2 −

−
[
q +

∂f

∂q
(α�0)−1

]
T−1 · ∇T +

+ T

{
�3

[
J1 +

∂f

∂J1
(αJ10)

−1

]
+ �4

[
J2 +

∂f

∂J2
(αJ20)

−1

]}
• ∇ q +

+ T

[
q +

∂f

∂q
(α�0)−1

]
· [∇ � (�3 J1 + �4 J2)] − T

[
∂f

∂q
(α�0)−1L�

]
· q −

− T

[
∂f

∂J1
(αJ10)

−1 LJ1

]
• J1 − T

[
∂f

∂J2
(αJ20)−1 LJ2

]
• J2 ≥ 0 .

(22)

The inequality (22) is fulfilled for

s = − ∂f

∂T
, (23)

ρ
∂f

∂a1
− ∂f

∂J1
(αJ10)−1 − (Fc1 + J1) = 0 ⇒ Fc1 = ρ

∂f

∂a1
; J1 = −(αJ10)

−1 ∂f

∂J1
, (24)

ρ
∂f

∂a2
− ∂f

∂J2
(αJ20)−1 − (Fc2 + J2) = 0 ⇒ Fc2 = ρ

∂f

∂a2
; J2 = −(αJ20)

−1 ∂f

∂J2
, (25)

(α�0)−1 ∂f

∂q
+ q = 0 , (26)

�3 J1 + �4 J2 + (αJ10)−1 �3

∂f

∂J1
+ (αJ20)

−1 �4

∂f

∂J2
= 0 , (27)

(α�0)−1 ∂f

∂q
L� = −α̂ q , (28)

(αJ10)−1 ∂f

∂J1
LJ1 = −β̂1 J1 , (29)

(αJ20)−1 ∂f

∂J2
LJ2 = −β̂2 J2 , (30)

where α̂ ≥ 0, β̂1 ≥ 0, β̂2 ≥ 0.

The conditions (26), (28), (29) and (30) are satisfied if the free energy is quadratic in q,
J1, J2. From the evolution equations (15) or (21) follows

ρα�0

T L�
= −τ� , ρ

T
αJ10 L−1

J1
= −�J1 ,

ρ

T
αJ20 L−1

J2
= −�J2 , (31)

where τ�, �J1 , �J2 are relaxation times. L�, LJ1 , LJ2 , where L−1
J1

= [(LJ1)
−1
1 , (LJ1)

−1
2 , . . . ],

can be expressed if the evolution equations are written for the stationary and homogenous
fluxes

L� q = ∇ (T−1) , LJ1 J1 = T−1 ȧ1 , LJ2 J2 = T−1 ȧ2 . (32)

The first of these equations corresponds to Fourier’s law and therefore

L� = (λT 2)−1 . (33)



194 Rosenberg J. et al.: On Possible Formulation of the Extended Irreversible Thermodynamics . . .

Then from (31) follows
L� =

τ�
λT 2

, α�0 = − τ�
ρ λT

. (34)

LJ1 ,LJ2 can be similarly obtained in the specific cases.

Let the given presumptions be summarized
1. (5) – the forms of the �s,
2. (8) – the form of the entropy flux,
3. (14) – the form of the matrix L (a measure of the coupling state).

The origin of the above used forms 1., 2. is not often mentioned in literature. Further it
is obvious that the basic assumptions are also the forms of the entropy and its flux. They
are quadratic polynomials of the corresponding variables. All these assumptions allow very
large amount of mathematical form variations.

3. EIT – multicomponent continuum

Let the multicomponent system consisting from chemical interacting components be
taken into account. The other processes excluding the heat transfer are neglected for sim-
plicity. The equation (1) has then the form

ρ u̇ = −∇ · q . (35)

The entropy s(u, q, ck,Jk, Yr) is the function of the internal energy, heat flux, concentra-
tion and the diffusion flux of the k-components and state of the r-chemical reactions. The
entropy rate is written as follows

ṡ =
∂s

∂u
u̇+

∂s

∂q
· q̇ +

∂s

∂ck
ċk +

∂s

∂Jk
· J̇k +

∂s

∂Yr
Ẏr , (36)

where
∂s

∂u
= θ−1 ,

∂s

∂q
= θ−1α�(u, q, ck,Jk, Yr) ,

∂s

∂ck
= −θ ρ−1μk ,

∂s

∂Jk
= θ−1α�k

(u, q, ck,Jk, Yr) ,
∂s

∂Yr
= θ−1α

(r)
Y (u, q, ck,Jk, Yr) .

(37)

The similar presumptions according to the case (5) are

α� = α�0(u) q , α�k
= α�k0(u)Jk , α

(r)
Y = ρα

(r)
Y 0 Yr , θ = T . (38)

That leads to

ρ ṡ = −∇ (T−1q) + q · ∇T−1 + ρ T−1 α�0 q · q̇ −
− (ρ T )−1μk ċk + ρ T−1α�k0 Jk · J̇k + ρ T−1α

(r)
Y 0 Yr Ẏr .

(39)

A further presumption deals with the entropy flux (like (8))

Js = T−1q − T−1μk Jk , (40)

where μk is the chemical potential of the k-component. Inserting (39), (40) into (7) the
entropy source is expressed

σs = q · (∇T−1 + T−1ρα�0 q̇) + Jk · [T−1ρα�k0 J̇k −∇ (T−1μk)] +

+ Yr (T−1ρα
(r)
Y 0 Ẏr) − T−1μk (∇ · Jk + ρ ċk) .

(41)
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The terms in brackets are again the forces

X� = ∇T−1 + ρ T−1α�0 q̇ ,

X�k
= ρ T−1α�k0 J̇k −∇ (T−1μk) ,

XY = ρ T−1α
(r)
Y 0 Ẏr ,

Xμ = −(∇ · Jk + ρ ċk) .

(42)

The inequality (41) is fulfilled e.g. if

[X�,X�k
, XY , Xμ]T = L [q,Jk, Yr, μk T

−1]T , (43)

where the matrix of Onsager coefficients L satisfies the above mentioned conditions (13).
Let e.g.

L =

⎡
⎢⎣
L� 0 0 0
0 L�k

0 0
0 0 LY LYμ

0 0 LμY Lμ

⎤
⎥⎦ . (44)

The coupling between the mass and heat flux is omitted. The other non-zero matrix
elements are the scalars according to Curie-Prigogine principle. Certain authors like e.g. [6]
allow also the non-scalar coefficients to overcome Curie-Prigogine principle. Certain con-
strains valid for the matrix elements can be obtained if they are compared to the known
constitutive equations.

Three last rows of (43) have the forms

(a) ρ T−1α�k0 J̇k −∇(T−1μk) = L�k
Jk ,

(b) ρ T−1α
(r)
Y 0 Ẏr = LY Yr + LYμ μk T

−1 ,

(c) − (∇ · Jk + ρ ċk) = LμY Yr + Lμ μk T
−1 .

(45)

From (45b, c) can be obtained

−(∇ · Jk + ρ ċk) =
Lμ

LYμ
ρ T−1α

(r)
Y 0 Ẏr +

(
LYμ − LY Lμ

LYμ

)
Yr . (46)

The term in brackets is the determinant of the matrix L last minor. If it is equal to zero
then the usual equation (see [7] eq. (25)) for dissipation is obtained in the following form

−(∇ · Jk + ρ ċk) =
Lμ

LYμ
ρ T−1α

(r)
Y 0 Ẏr . (47)

From (45a) the evolution equation of the dissipation flux is expressed

ρ T−1α�k0

L�k

J̇k − Jk =
1
L�k

∇ (T−1μk) , (48)

where
ρ T−1αk0

L�k

= τ�k
, (49)
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is the corresponding relaxation time. It corresponds to ([2] eq. (10.7)) if the coupling between
mass fluxes and the chemical potentials is neglected. The equation (45b) defines the velocity
of the r-chemical reaction.

Let the given presumptions be again summarized
1. (38) – form of the αs,
2. (40) – form of the entropy flux,
3. (44) – form of the L – matrix (measure of the coupling state).

It is again obvious that the basic assumptions are also the forms of the entropy and
its flux. They are quadratic polynomials of the corresponding variables with certain linear
terms (u, ck). Similar approach can be found in [6] where the quadratic polynomial for the
free energy is chosen. A lot of freedom remains in the concrete choice. If (41) is compared
with the equation (23) in [7] the necessity to choose the linear entropy dependence on the
state of the chemical reaction Yr is obvious. Then the term ρ T−1α

(r)
Y 0 equals to Ar T

−1

where Ar is the affinity of the r-reaction.

Inserting from (35) and (39) into (16) the free energy is given

ḟ = −Ṫ s− α�0 q · q̇ + μk ċk − α�k0 Jk · J̇k − α
(r)
Y 0 Yr Ẏr . (50)

Inserting form (35) and (40) in (18) and then into (7) the new form of the 2nd law of
thermodynamics can be written

ρ ḟ ≤ −ρ Ṫ s− T−1∇T · q + T−1∇T · (μk Jk) −∇ · (μk Jk) . (51)

Let the rate of the free energy f(t, q, ck,Jk, Yr) be

ḟ =
∂f

∂T
Ṫ +

∂f

∂q
· q̇ +

∂f

∂ck
ċk +

∂f

∂Jk
· J̇k +

∂f

∂Yr
Ẏr . (52)

From the first row of the matrix equation (43) follows

q̇ =
1
τ�

(
q − 1

L�
∇T−1

)
, τ� =

ρ T−1α�0

L�
, (53)

where τ� is the relaxation time. From the remaining rows of (43) or from (45a, b, c) the
following relations arise

J̇k =
1
τ�k

[
Jk +

1
L�k

∇ (T−1μk)
]
, τ�k

=
ρ T−1α�k0

L�k

,

Ẏr =
1
τY

(
Yr +

LYμ

LY
μk T

−1

)
, τY =

ρ T−1α
(r)
Y 0

LY
,

ċk = −ρ−1∇ · Jk − ρ−1LμY Yr − ρ−1Lμ μk T
−1 .

(54)

Let insert from (52), (53) and (54) into the inequality (51)

− Ṫ ρ

(
s+

∂f

∂T

)
− ∇T

T
·
(

q − μk Jk − ρ
1

T L� τ�

∂f

∂q
− ρ

μk

T L�k
τ�k

∂f

∂Jk

)
−

−∇ · Jk

(
− ∂f

∂ck
+ μk

)
−∇μk · (Jk + ρ

1
T L�k

τ�k

∂f

∂Jk
) − ρ

q

τ�
· ∂f
∂q

+

+ Yr

(
LμY

∂f

∂ck
− ρ

1
τY

∂f

∂Yr

)
+
μk

T

(
−ρ LYμ

LY τY

∂f

∂Yr
+ Lμ

∂f

∂ck

)
−

− ρ
Jk

τ�k

· ∂f
∂Jk

≥ 0 .

(55)
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The inequality (55) is fulfilled if the following equations hold

− ∂f

∂T
= s , (56)

μk =
∂f

∂ck
, (57)

Jk = −ρ 1
T L�k

τ�k

∂f

∂Jk
, (58)

ρ
1

T L� τ�

∂f

∂q
− ρ

μk

T L�k
τ�k

∂f

∂Jk
+ q − μk Jk = 0 , (59)

ρ
1
τ�

∂f

∂q
= −δ̂� q , (60)

LμY
∂f

∂ck
− ρ

1
τY

∂f

∂Yr
= δ̂

(r)
Y Yr , (61)

Lμ
∂f

∂ck
− ρ

LYμ

τY LY

∂f

∂Yr
= δ̂μ μk , (62)

−ρ 1
τ�k

∂f

∂Jk
= δ̂�k

Jk , (63)

where δ̂s are non-negative.

4. Integration of EIT and IVT

The integration of both theories IVT and EIT seems to be logic for the processes with
different relaxation times. Comparing the equations of the entropy production (9) and (41)
the following relation can be written

σs = q · [∇T−1 + ρ T−1α�0 q̇ + ∇ � (�3 J1) + ∇ � (�4 J2)] +

+ J1 • (T−1 ȧ1 + ρ T−1αJ10 J̇1 + �3 ∇ q) +

+ J2 • (T−1 ȧ2 + ρ T−1αJ20 J̇2 + �4 ∇ q) +

+ Jk · (ρ T−1α�k0 J̇k −∇ (T−1μk)) +

+ T−1(Fc1 − Fe1) • ȧ1 + T−1(Fc2 − Fe2) • ȧ2 + ρ T−1A • �̇≥ 0 .

(64)

If α�k0 = 0, ρ Yr α
(r)
Y 0 = achem, ρ ċk = −∇ · Jk, etc. then (64) corresponds to the IVT

results – compare it with [7]. If the fluxes J1,2 do not apear in the relation u̇ (the balance
equation) and if �3,4 = 0 then the fluxes J1,2 can be mentioned in the theory as the internal
variables. From the mentioned point of view EIT seems to be much more general than IVT.

If the free energy using (17), (19), (51)–(54) is introduced then

ḟ = −Ṫ s− α�0 q · q̇ + ρ−1(Fe1 • ȧ1 + Fe2 • ȧ2) − αJ10 J1 • J̇1 − αJ20 J2 • J̇2 +

+ μk ċk − α�k0 Jk · J̇k − α
(r)
Y 0 Yr Ẏr − A • �̇ ,

(65)

ρ ḟ ≤ −ρ s Ṫ − T−1 ∇T · q + (Fc1 + J1) • ȧ1 + (Fc2 + J2) • ȧ2 + T [∇ � (�3 J1 +

+ �4 J2)] · q + T (�3 J1 + �4 J2) • ∇q + T−1 ∇T · (μk Jk) −∇ (μk Jk) .
(66)
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Let the forces and the corresponding fluxes be summarized

X� = ∇T−1 + ρ T−1α�0 q̇ + ∇ � (�3 J1) + ∇ � (�4 J2) ,

XJ1 = T−1 ȧ1 + ρ T−1αJ10 J̇1 + �3 ∇ q ,

XJ2 = T−1 ȧ2 + ρ T−1αJ20 J̇2 + �4 ∇q ,

Xa1 = T−1 ȧ1 ,

Xa2 = T−1 ȧ2 ,

X�k
= ρ T−1α�k

J̇k −∇ (T−1μk) ,

XY = ρ T−1α
(r)
Y 0 Ẏr ,

Xμ = −∇ · Jk − ρ ċk ,

X� = ρ T−1�̇ .

(67)

The inequality (64) is satisfied if e.g.

[X�,XJ1 ,XJ2 ,Xa1 ,Xa2 ,X�k
, XY , Xμ,X�]T =

= L [q,J1,J2,Fdis1,Fdis2,Jk, Yr, μk/T,A]T .
(68)

As an example, the mostly uncoupled case is shown when the matrix of Onsager coeffi-
cients is diagonal with an exception of LYμ, LμY

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L� 0 0 0 0 0 0 0 0
0 LJ1 0 0 0 0 0 0 0
0 0 LJ2 0 0 0 0 0 0
0 0 0 La1 0 0 0 0 0
0 0 0 0 La2 0 0 0 0
0 0 0 0 0 LJk

0 0 0
0 0 0 0 0 0 LY LYμ 0
0 0 0 0 0 0 LμY Lμ 0
0 0 0 0 0 0 0 0 LA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (69)

The evolution equations are then

q̇ =
T

ρα�0
[L� q −∇T−1 −∇ � (�3 J1 + �4 J2)] ,

ȧi = T Lai Fdis i , i = 1, 2 ,

J̇1 =
T

ραJ10
(LJ1 J1 − La1 Fdis 1 − �3 ∇ q) ,

J̇2 =
T

ραJ20
(LJ2 J2 − La2 Fdis 2 − �4 ∇ q) ,

J̇k =
T

ρα�k0
[L�k

Jk + ∇ (T−1μk)] ,

Ẏr =
T

ρα
(r)
Y 0

(
LY Yr + LYμ

μk

T

)
,

ċk = −ρ−1
(
Lμ

μk

T
+ LμY Yr + ∇ · Jk

)
,

�̇=
T

ρ
LA A .

(70)
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Inserting from (70) into (65) and (66) and taking into account the rate of the free energy
f(T, q, a1, a2, J1, J2, ck, Jk, Yr, �)

ḟ =
∂f

∂T
Ṫ +

∂f

∂q
· q̇ +

∂f

∂a1
• ȧ1 +

∂f

∂a2
• ȧ2 +

∂f

∂J1
• J̇1 +

+
∂f

∂J2
• J̇2 +

∂f

∂ck
ċk +

∂f

∂Jk
· J̇k +

∂f

∂Yr
Ẏr +

∂f

∂�
• �̇ ,

(71)

from (66), (70) and (71) the following relation is obtained

0 ≤ −ρ
(
s+

∂f

∂T

)
Ṫ −

[
ρ
∂f

∂a1
− ∂f

∂J1
α−1

J10
− (Fc1 + J1)

]
• ȧ1 −

−
[
ρ
∂f

∂a2
− ∂f

∂J2
α−1

J20
− (Fc2 + J2)

]
• ȧ2 −

−
(
ρ
∂f

∂q

1
τ� T L�

+ ρ
∂f

∂Jk

μk

τ�k
T L�k

+ q − μk Jk

)
· ∇T

T
+

+ T

(
∂f

∂J1

�3

αJ10
+

∂f

∂J2

�4

αJ20
+ �3 J1 + �4 J2

)
• ∇ q +

+ T

(
∂f

∂q
α−1
�0 + q

)
• ∇ (�3 J1) + T

(
∂f

∂q
α−1
�0 + q

)
• ∇ (�4 J2) −

− T
∂f

∂q

L�
α�0

· q̇ − T
∂f

∂J1

LJ1

αJ10
• J1 − T

∂f

∂J2

LJ2

αJ20
• J2 −

−
(
μk − ∂f

∂ck

)
∇ · Jk −

(
Jk + ρ

∂f

∂Jk

1
τ�k

T L�k

)
· ∇μk +

+
(
∂f

∂ck
LμY − ρ

∂f

∂Yr

1
τY

)
Yr +

(
∂f

∂ck
Lμ − ρ

∂f

∂Yr

LYμ

τY LY

)
μk

T
−

−
(
ρ
∂f

∂Jk

1
τ�k

T

)
· Jk − ∂f

∂�
T LA • A ,

(72)

where the relaxation times are given by (53), (54).

From (72) follows

− ∂f

∂T
= s ,

∂f

∂q
= −α�0 q ,

∂f

∂a1
= −ρ−1 Fc1 ,

∂f

∂a2
= −ρ−1 Fc2 ,

∂f

∂J1
= −αJ1 J1 ,

∂f

∂J2
= −αJ2 J2 ,

∂f

∂Yr
= −α(r)

Y 0 Yr , μk =
∂f

∂ck
,

Jk = −ρ ∂f

∂Jk

1
τ�k

T L�k

,
∂f

∂�
= −A .

(73)

The brackets need to be equal to zero or the terms should be positive in the first nine
and the last two terms in (72). It is fulfilled for (73)! The following positive conditions can
be written for the remaining terms (72)

∂f

∂ck
LμY − ρ

∂f

∂Yr

1
τY

= δ̂
(r)
Y Yr ,

∂f

∂ck
Lμ − ρ

∂f

∂Yr

LYμ

τY LY
= δ̂μ μk , (74)

where both δ̂s are non-negative.
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5. Example

The case published in [2] is chosen as an example of the above mentioned formalism usage.
Let a1 ∼ {e, ε̃}, a2 ∼ 0, Fc1 ∼ {s′, τ̃ ′}, Fe1 = Fc1, J1 ∼ {s′′, τ̃ ′′}, Fc2 ∼ 0, Fe2 = Fc2,
J2 = 0, where e = εi

i/3 and s′, s′′ is elastic and viscous hydrostatic stress, respectively.
ε̃, τ̃ ′, τ̃ ′′ is the deviator of the deformation tensor, the deviator of the elastic and viscous
stress, respectively. It gives

τ = τ ′ + τ ′′ , τ ′ = s′ I + τ̃ ′ , τ ′′ = s′′ I + τ̃ ′ , ε = e I + ε̃ . (75)

Inserting (75) into (1) and (6) follows

ρ u̇ = Fc1 • ȧ1 + J1 • ȧ1 = s′ ė+ τ̃ ′ · ˙̃ε + s′′ ė+ τ̃ ′′ · ˙̃ε , (76)

ρ ṡ = T−1(Fc1 − Fe1 + J1) · ȧ1 + ρ T−1αJ10 J1 · J̇1 =

= T−1(s′′ ė T−1 + τ̃ ′′ · ˙̃ε) + ρ T−1(αJ101 s
′′ ṡ′′ + αJ102 τ̃ ′′ · ˙̃τ ′′) ,

(77)

where αJ10 = (αJ101, αJ102). Then from (10) follows

XJ1 = (T−1 ė+ ρ T−1αJ101 ṡ
′′, T−1 ˙̃ε + ρ T−1αJ102

˙̃τ ′′) . (78)

Let LJ1 = (LJ11, LJ12). Then from the second equation in (15) follows

T−1 ė+ ρ T−1αJ101 ṡ
′′ = LJ11 s

′′ , T−1 ˙̃ε + ρ T−1αJ102
˙̃τ
′′

= LJ12 τ̃ ′′ . (79)

These equations can be transferred into the following form

τs ṡ
′′ + s′′ =

1
T LJ11

ė , ττ ˙̃τ ′′ + τ̃ ′′ =
1

T LJ12

˙̃ε , (80)

where for αJ101 < 0, αJ102 < 0

τs = −ραJ101

T LJ11
, ττ = −ραJ102

T LJ12
. (81)

Let τ̃ ′′, s′′ be exchanged by τ̃ , s using (76) and Hook’s law in the forms e = s′/(3λ+ 2μ),
ε̃ = τ̃ ′/(2μ). Finally the constitutive equations for the Poynting-Thompson body are

τs ṡ+ s = 3K (e+ τ ′s ė) , τ ′s =
1

T LJ11 3K
+ τs ,

ττ ˙̃τ + τ̃ = 2G (ε̃ + τ ′τ ˙̃ε) , τ ′τ =
1

T LJ12 2G
+ ττ ,

(82)

where 3λ+ 2μ = 3K and 2μ = 2G. For ττ = 0 the Kelvin-Voigt continuum and for G = 0
the Maxwell continuum is obtained.

COMMENT: The Poynting-Thompson continuum corresponds in the 1D case with the four
element body consisting from one spring and the Maxwell continuum in series.
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6. Conclusion

The main results for EIT were summarized and the main assumptions considered in the
theory were pointed out. The general integration formulation using both EIT and IVT were
shown in the last part of the paper. It will be used in the future modelling of the living
tissues – above all the smooth muscles – where the chemical and diffusion processes are
crucial and should be taken into account.
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