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B-SPLINE FILTRATION OF CONVEX DATA

Ivana Linkeová*, Vı́t Zelený**

A method for B-spline filtration of data measured on a very precisely manufactured
sphere is described in this paper. The method has been developed to decrease the un-
certainty of measurement which can be obtained by least squares method commonly
used when processing the measured data. The B-spline filtration is realised as a B-
spline surface approximating the data measured on 3D coordinate measuring machine
and transformed into the parametric space of the sphere. This transformation elimi-
nates the undesirable consequences of convex hull property of B-spline surfaces when
processing convex data. Furthermore, the B-spline representation of the measured
sphere can be considered as a certain replacement of the original sphere. Subse-
quently, the B-spline representation can be used for a new more precise measuring
strategy in iterative measuring process.

Keywords : B-spline, measured data, uncertainty of measurement, least squares
method, filtration, transformation, reverse transformation

1. Introduction

A sphere as a basic geometrical element is widely used in dimensional metrology, espe-
cially when calibrating coordinate measuring machines (CMM). To determine the volumetric
error of CMM, a tactile probe of spherical shape and measuring standards such as individual
calibration sphere or sets of calibration spheres (so called ball plates [3, 7]) as well as spe-
cial calibration artefacts containing spherical surfaces [1, 8] are used. Therefore, the sphere
measurement and the data measured on the sphere processing belong to the basic problem
in dimensional metrology.

The purpose of measurement is to provide information about a quantity of interest –
a measurand. No measurement is exact. When a quantity is measured, the outcome de-
pends on the measuring system, the measurement procedure, the skill of the operator, the
environment, and other effects [9]. In general, the result of the measurement is only an
approximation of the precise value. Therefore, the measurand, and thus the measurement
result is complete only when accompanied by a quantitative statement of its uncertainty.
The data measured on the sphere are considered to be distorted by two types of errors: ran-
dom error caused by the accuracy limit of the measuring instrument and systematic error
caused by incorrect calibration of the measuring instrument.

To process the data measured on the sphere means to determine its centre S, characteris-
tic radius r, radius rmax of the circumscribed sphere and radius rmin of the inscribed sphere.
The uncertainty zone Δr is given by Δr = |rmax − rmin|. Usually, the least squares method
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(LSM) and some type of filters [5] are implemented in metrological software to obtain these
measurands. If topography of radii is necessary to know, the values obtained by LSM are
insufficient and alternative methods of real sphere surface reconstruction are developed [2].

In this article, the special application of approximation bicubic B-spline surface [6] as
a filtration of data measured on a very precise manufactured sphere is presented. Appro-
ximation B-spline surface is used as a filter rather then interpolation one because the data
measured on the sphere are not accurate. Therefore, the ‘variation diminishing property’
of B-spline basic functions (the total variation of B-spline basic functions is less or equal
to the total variation of the original approximated function) can be applied. Based on this
property, the B-spline basic functions have a blending effect to the approximated data.

2. B-spline surface

Approximation B-spline surface (B-spline surface) is determined by (m + 1) × (n + 1)
control points arranged into a spatial mesh. The resulted surface does not pass through the
control points but its shape is influenced by the configuration of control points. B-spline
surface is a piecewise surface which consists of continuously joined regular elements of the
surface – segments. The continuity of all segments joining is Cp−1 in the direction of u

parameter and Cq−1 in the direction of v parameter, where p is the degree of surface in the
direction of u parameter and q is the degree of the surface in the direction of v parameter.

The vector equation of B-spline surface is given by

S(u, v) =
m∑

i=0

n∑
j=0

Pi,j Ni,j(u, v) , u ∈ [up, ur−p] , v ∈ [vq, vs−q] , (1)

where S(u, v) = (x(u, v), y(u, v), z(u, v)) is radius vector of the surface point, Pi,j =
= [xi,j , yi,j , yi,j ], i = 0, 1, . . . , m, j = 0, 1, . . . , n are control points and Ni,j(u, v),
i = 0, 1, . . . , m, j = 0, 1, . . . , n are B-spline basic functions of two parameters. B-spline
basic functions of two parameters are created as a tenzor product of B-spline basic functions
of one parameter

Ni,j(u, v) = Ni,p(u)Nj,q(v) , i = 0, 1, . . . , m , j = 0, 1, . . . , n . (2)

B-spline basic functions of p-th degree of parameter u, and B-spline basic functions of
q-th degree of parameter v are defined by recurrent formula :

Ni,0(u) =
{

1 u ∈ [ui, ui+1) ,

0 u �∈ [ui, ui+1) ,

Ni,k(u) =
u − ui

ui+k − ui
Ni,k−1(u) +

ui+k+1 − u

ui+k+1 − ui+1
Ni+1,k−1(u) , k = 1, 2, . . . , p ,

(3)

Nj,0(v) =
{

1 v ∈ [vj , vj+1) ,

0 v �∈ [vj , vj+1) ,

Nj,k(v) =
v − vj

vj+k − vj
Nj,k−1(v) +

vj+k+1 − v

vj+k+1 − vj+1
Nj+1,k−1(v) , k = 1, 2, . . . , q ,

(4)

where
U = (u0, u1, . . . , ur) ,

V = (v0, v1, . . . , vs)
(5)
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are knot vectors. The members of knot vectors – knots – create a nondecreasing sequence.
The number of knot spans is

r = m + p + 1 , s = n + q + 1 . (6)

The domain of parameterization of B-spline basic functions is the whole range of knot
vectors, i.e. u ∈ [u0, ur], v ∈ [v0, vs]. However, the domain of parameterization of B-spline
surface is the reduced range of knot vectors u ∈ [up, ur−p], v ∈ [vq, vs−q], so called active

domain of parameterization [4]. The first and the last p knot spans of U knot vector and
the first and the last q knot spans of V knot vector create so called passive domains of pa-
rameterization [4]. Usually, the normalized active domain of parameterization is considered,
i.e. [up, ur−p] = [0, 1], [vq, vs−q] = [0, 1].

If the knots are equally spaced, the knot vector is called uniform. Here, the uniform
normalized knot vectors in the following form are used

U =

⎛⎜⎝−p Δu,−(p− 1)Δu, . . .︸ ︷︷ ︸
passive domain

, 0, Δu, 2 Δu, . . . , 1︸ ︷︷ ︸
active domain

, . . . , (r − p)Δu︸ ︷︷ ︸
passive domain

⎞⎟⎠ ,

V =

⎛⎜⎝−q Δv,−(q − 1)Δv, . . .︸ ︷︷ ︸
passive domain

, 0, Δv, 2 Δv, . . . , 1︸ ︷︷ ︸
active domain

, . . . , (s − q)Δv︸ ︷︷ ︸
passive domain

⎞⎟⎠ ,

(7)

where the knot spans are given by [4]

Δu = ui − ui−1 =
1

m − p + 1
, i = 1, 2, . . . , r ,

Δv = vj − vj−1 =
1

n − q + 1
, j = 1, 2, . . . , s .

(8)

It is possible to proof that B-spline basic functions (3) and (4) are total positive and
that their sum for the arbitrary knot span from the active domain of parameterization
u ∈ [up, ur−p], v ∈ [vq, vs−q] is unit. Consequently, the whole B-spline surface is lying in the
convex hull of its control mesh.

2.1. Bicubic B-spline surface

The B-spline basic functions degree influences the shape of the resulted B-spline surface
in the following way: the higher degree is chosen the more intensive blending effect on the
filtered data is indicated. Simultaneously, the original shape information of the filtered data
is lost. Then, it is necessary to accept a compromise. The bicubic B-spline surfaces, where
p = q = 3, have been proved the most successful in practice. The continuity of these surfaces
is C2 in the direction of both parameters, which is sufficient in the majority of applications.
The control mesh of bicubic B-spline surface has to be created by sixteen control points at
minimal, i.e. m ≤ 3, n ≤ 3.

The example of B-spline basic functions of 3rd degree is shown in Fig. 1. On the left side,
there are depicted B-spline basic functions of one parameter acc. (3) and (4) for m = 3 and
n = 5. Their tenzor product, i.e. the basic functions of two parameters acc. (2), is depicted
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on the right side. The control mesh with four rows (m = 3) and six columns (n = 5) and
the corresponding bicubic B-spline surface is depicted in Fig. 2.

Note that the basic functions in Fig. 1 are depicted in the whole domain of parameteriza-
tion, i.e. u ∈ [u0, u7] and v ∈ [v0, v9]. Whereas, the resulted bicubic B-spline surface in Fig. 2
is depicted in the reduced active domain of parameterization u ∈ [u3, u4] and v ∈ [v3, v6].

Fig.1: B-spline basic functions of one parameter (left) and their tenzor product (right)

Fig.2: Control mesh and its approximation B-spline surface

2.2. Open and closed bicubic B-spline surface

The surface in Fig. 2 is the so called open bicubic B-spline surface. The open surface does
not pass through the control points and it is created approximately around the inner part of
control mesh without end polygons of control points. Therefore, the set of input data must
be larger than the surface which characteristic dimensions have to be determined.

The bicubic B-spline surface closed in the direction u (v) arises when repeating three
beginning rows (columns) at the end of control mesh. The C2 continuity is preserved along
the joined boundary. The increasing number of control points leads to increasing number of
knots in the corresponding knot vector (6).
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2.3. B-spline filtration of convex data

The main aim of this work is to design the method for B-spline filtration of points
measured on a very precisely manufactured sphere. The configuration of these points is
shown in Fig. 3. The measured points cannot be considered as the control points of B-spline
surface (see Fig. 4), because the obtained result is absolutely distorted (see Fig. 5).

Fig.3: Configuration of measured points

Fig.4: Control mesh created by measured points Fig.5: Direct filtration of measured points

The reason of this distortion is that the sphere is a convex surface and the points measured
on the very precisely manufactured sphere create just convex hull of B-spline surface inside
which the B-spline surface lies. It cannot be assumed that the measured points deviations
from the ideal sphere are so big to disrupt the convexity.

The above mentioned B-spline filtration disadvantage can be eliminated by transfor-
mation of Cartesian coordinates x, y, z of the measured points into the spherical coordi-
nates ϕ, θ, ρ :

ϕ = arctan
y

x
,

θ = arctan

√
x2 + y2

z
,

ρ =
√

x2 + y2 + y2 .

(9)

Following the substitution control points Pi,j = [ϕi,j , θi,j , ρi,j ], i = 0, 1, . . . , m, j =
= 0, 1, . . . , n in (1), the B-spline surface S(u, v) = (ϕ(u, v), θ(u, v), ρ(u, v)) is obtained.
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The ideal sphere in the space (ϕ, θ, ρ) is mapped into the plane perpendicular to the ρ axis
and passing through the point ρ = r, where r is the radius of the ideal sphere (see Fig. 6). The
points on the ideal sphere are mapped into the points in that plane. The measured points
are mapped into the points above and below that plane due to the deviations. Thereby, the
input data completely loses its convex character and B-spline filtration provides the relevant
results.

Fig.6: Points on ideal sphere and ideal sphere in the space (ϕ, θ, ρ)

After B-spline filtration of the data in the space (ϕ, θ, ρ), the reverse transformation into
the space (x, y, z) has to be done

x(u, v) = ρ(u, v) cos(ϕ(u, v)) sin(θ(u, v)) ,

y(u, v) = ρ(u, v) sin(ϕ(u, v)) sin(θ(u, v)) ,

z(u, v) = ρ(u, v) cos(θ(u, v)) ,

(10)

to be able to draw and evaluate the points on B-spline surface S(u, v) = (ϕ(u, v), θ(u, v),
ρ(u, v)) in the common way.

2.4. Minimal and maximal radii of the sphere determination

The minimal radius rmin and the maximal radius rmax of the sphere are determined as
the global extremes of the coordinate function ρ(u, v) from the vector equation of the surface
S(u, v) = (ϕ(u, v), θ(u, v), ρ(u, v)) :

rmin = min(ρ(u, v)) , rmax = max(ρ(u, v)) . (11)

2.5. Characteristic radius of the sphere determination

The characteristic radius r can be determined as the altitude of the prism with the base
Ω in the plane (ϕ, θ) (top view of the B-spline surface S(u, v) = (ϕ(u, v), θ(u, v), ρ(u, v)))
and with the volume V

V =
∫∫
Ω

ρ(ϕ, θ) dϕdθ . (12)
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The volume V must be the some as is the volume of the prismatic solid with the base Ω
in the plane (ϕ, θ) (top view of the B-spline surface) and bounded by B-spline surface from
above. This approach is correct due to the fact that the ideal sphere in the space (ϕ, θ, ρ) is
mapped into the plane perpendicular to the ρ axis and passing through the point ρ = r.

The characteristic radius r is calculated according to the following formula

r =
V

SΩ
, (13)

where SΩ is an area of the base Ω in the plane (ϕ, θ).

3. Preparation phase of filtration

The set of measured data contained the information about the diameter of measuring
probe dS = 4.9997mm (i.e. radius rS = 2.49985mm) and Cartesian coordinates of 101 mea-
sured points – centres of the measuring probe. The center M of the measuring probe is
shown in Fig. 7. Point of contact T between the sphere and the measuring probe lies on the
connecting line SM, therefore only the centres of measuring probe M will be considered in
the following procedure.

Fig.7: Point of contact between sphere and probe

3.1. Centre of measured sphere determination

It is necessary to know the coordinates of the centre S of the measured sphere to be able
to determine the point of contact T. The least squares method has been used for finding
the best-fitting sphere (centre S = [m, n, p] and radius r) to the set of measured points Mi,
i = 0, 1, . . . , 100. The following values have been found by means of Solver in MS Excel (by
minimizing the sum of the squares of the points deviations from the sphere) :

m = 0.001439 , n = 0.001495 , p = 0.001372 , r = 17.499886

and the following correction of the measured points has been done :

Mi = [xi = xi − m, yi = yi − n, zi = zi − p] , i = 0, 1, . . . , 100 . (14)

After that, the centre S of the measured sphere is identical with the coordinate system
origin.
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3.2. Points of contact determination

Point of contact Ti, i = 0, 1, . . . , 100 lies on the radius vector of point Mi, i = 0,

1, . . . , 100 (14) in the distance rS = 2.49985mm from the point Mi, i = 0, 1, . . . , 100. The
coordinates of point Ti, i = 0, 1, . . . , 100 are given by

Ti = Mi − Ui rS , i = 0, 1, . . . , 100 , (15)

where Ui, i = 0, 1, . . . , 100 is unit radius vector of the point Mi, i = 0, 1, . . . , 100,

Ui = (u1
i , u

2
i , u

3
i ) =
(

xi

ri
,
yi

ri
,
zi

ri

)
, i = 0, 1, . . . , 100 , (16)

where
ri =
√

x2
i + y2

i + z2
i , i = 0, 1, . . . , 100 (17)

is the size of radius vector of the point Mi, i = 0, 1, . . . , 100.

3.3. Transformation into the space (ϕ, θ, ρ)

The points of contact Ti = [xi, yi, zi], i = 0, 1, . . . , 100 are transformed into the space
(ϕ, θ, ρ) acc. (9). The points of contact Ti = [ϕi, θi, ρi], i = 0, 1, . . . , 100 in the space (ϕ, θ, ρ)
are obtained by reverse transformation

Ti =

[
arctan

yi

xi
, arctan

√
x2

i + y2
i

zi
,
√

x2
i + y2

i + z2
i

]
, i = 0, 1, . . . , 100 . (18)

The points of contact calculated acc. (18) create the base for control mesh of B-spline surface.

3.4. Control mesh of B-spline surface

The measured data is approximated by bicubic B-spline surface. This surface has to be
closed in u direction (corresponds to the ϕ direction) and open in v direction (corresponds
to the θ direction). The points of contact (18) are placed into the control mesh in such a way

Fig.8: Control mesh in the space (ϕ, θ, ρ)
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to fulfil not only the requirement to close the surface in u direction, but also to ensure the
extension of the control mesh in v direction.

This extension guarantees overlapping of input data required in section 2.2 Open and
closed bicubic B-spline surface. The coordinates of control points Pi,j = [ϕi,j , θi,j , ρi,j ],
i = 0, 1, . . . , 12, j = 0, 1, . . . , 12 in control mesh are calculated from the coordinates of
points of contact (18) according to the rules which are obvious from Tab. 1. The control
mesh in the space (ϕ, θ, ρ) is shown in Fig. 8.

Coordinate �

i, j 0 1 2 3 4 5 6 7 8 9 10 11 12
0 2π−ϕ11 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11 2π+ϕ2 2π+ϕ3

1 2π−ϕ11 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11 2π+ϕ2 2π+ϕ3

2 2π−ϕ11 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11 2π+ϕ2 2π+ϕ3

3 2π−ϕ21 ϕ12 ϕ13 ϕ14 ϕ15 ϕ16 ϕ17 ϕ18 ϕ19 ϕ20 ϕ21 2π+ϕ12 2π+ϕ13

4 2π−ϕ31 ϕ22 ϕ23 ϕ24 ϕ25 ϕ26 ϕ27 ϕ28 ϕ29 ϕ30 ϕ31 2π+ϕ22 2π+ϕ23

5 2π−ϕ41 ϕ32 ϕ33 ϕ34 ϕ35 ϕ36 ϕ37 ϕ38 ϕ39 ϕ40 ϕ41 2π+ϕ32 2π+ϕ33

6 2π−ϕ51 ϕ42 ϕ43 ϕ44 ϕ45 ϕ46 ϕ47 ϕ48 ϕ49 ϕ50 ϕ51 2π+ϕ42 2π+ϕ43

7 2π−ϕ61 ϕ52 ϕ53 ϕ54 ϕ55 ϕ56 ϕ57 ϕ58 ϕ59 ϕ60 ϕ61 2π+ϕ52 2π+ϕ53

8 2π−ϕ71 ϕ62 ϕ63 ϕ64 ϕ65 ϕ66 ϕ67 ϕ68 ϕ69 ϕ70 ϕ71 2π+ϕ62 2π+ϕ63

9 2π−ϕ81 ϕ72 ϕ73 ϕ74 ϕ75 ϕ76 ϕ77 ϕ78 ϕ79 ϕ80 ϕ81 2π+ϕ72 2π+ϕ73

10 2π−ϕ91 ϕ82 ϕ83 ϕ84 ϕ85 ϕ86 ϕ87 ϕ88 ϕ89 ϕ90 ϕ91 2π+ϕ82 2π+ϕ83

11 2π−ϕ101 ϕ92 ϕ93 ϕ94 ϕ95 ϕ96 ϕ97 ϕ98 ϕ99 ϕ100 ϕ101 2π+ϕ92 2π+ϕ93

12 2π−ϕ91 ϕ82 ϕ83 ϕ84 ϕ85 ϕ86 ϕ87 ϕ88 ϕ89 ϕ90 ϕ91 2π+ϕ82 2π+ϕ83

Coordinate �

i, j 0 1 2 3 4 5 6 7 8 9 10 11 12
0 θ6 θ7 θ8 θ9 θ10 θ11 θ2 θ3 θ11 θ2 θ3 θ4 θ5

1 θ1 θ1 θ1 θ1 θ1 θ1 θ1 θ1 θ1 θ1 θ1 θ1 θ1

2 θ11 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ2 θ3

3 θ21 θ12 θ13 θ14 θ15 θ16 θ17 θ18 θ19 θ20 θ21 θ12 θ13

4 θ31 θ22 θ23 θ24 θ25 θ26 θ27 θ28 θ29 θ30 θ31 θ22 θ23

5 θ41 θ32 θ33 θ34 θ35 θ36 θ37 θ38 θ39 θ40 θ41 θ32 θ33

6 θ51 θ42 θ43 θ44 θ45 θ46 θ47 θ48 θ49 θ50 θ51 θ42 θ43

7 θ61 θ52 θ53 θ54 θ55 θ56 θ57 θ58 θ59 θ60 θ61 θ52 θ53

8 θ71 θ62 θ63 θ64 θ65 θ66 θ67 θ68 θ69 θ70 θ71 θ62 θ63

9 θ81 θ72 θ73 θ74 θ75 θ76 θ77 θ78 θ79 θ80 θ81 θ72 θ73

10 θ91 θ82 θ83 θ84 θ85 θ86 θ87 θ88 θ89 θ90 θ91 θ82 θ83

11 θ101 θ92 θ93 θ94 θ95 θ96 θ97 θ98 θ99 θ100 θ101 θ92 θ93

12 π−θ91 π−θ82 π−θ83 π−θ84 π−θ85 π−θ86 π−θ87 π−θ88 π−θ89 π−θ90 π−θ91 π−θ82 π−θ83

Coordinate �

i, j 0 1 2 3 4 5 6 7 8 9 10 11 12
0 ρ6 ρ7 ρ8 ρ9 ρ10 ρ11 ρ2 ρ3 ρ11 ρ2 ρ3 ρ4 ρ5

1 ρ1 ρ1 ρ1 ρ1 ρ1 ρ1 ρ1 ρ1 ρ1 ρ1 ρ1 ρ1 ρ1

2 ρ11 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10 ρ11 ρ2 ρ3

3 ρ21 ρ12 ρ13 ρ14 ρ15 ρ16 ρ17 ρ18 ρ19 ρ20 ρ21 ρ12 ρ13

4 ρ31 ρ22 ρ23 ρ24 ρ25 ρ26 ρ27 ρ28 ρ29 ρ30 ρ31 ρ22 ρ23

5 ρ41 ρ32 ρ33 ρ34 ρ35 ρ36 ρ37 ρ38 ρ39 ρ40 ρ41 ρ32 ρ33

6 ρ51 ρ42 ρ43 ρ44 ρ45 ρ46 ρ47 ρ48 ρ49 ρ50 ρ51 ρ42 ρ43

7 ρ61 ρ52 ρ53 ρ54 ρ55 ρ56 ρ57 ρ58 ρ59 ρ60 ρ61 ρ52 ρ53

8 ρ71 ρ62 ρ63 ρ64 ρ65 ρ66 ρ67 ρ68 ρ69 ρ70 ρ71 ρ62 ρ63

9 ρ81 ρ72 ρ73 ρ74 ρ75 ρ76 ρ77 ρ78 ρ79 ρ80 ρ81 ρ72 ρ73

10 ρ91 ρ82 ρ83 ρ84 ρ85 ρ86 ρ87 ρ88 ρ89 ρ90 ρ91 ρ82 ρ83

11 ρ101 ρ92 ρ93 ρ94 ρ95 ρ96 ρ97 ρ98 ρ99 ρ100 ρ101 ρ92 ρ93

12 ρ91 ρ82 ρ83 ρ84 ρ85 ρ86 ρ87 ρ88 ρ89 ρ90 ρ91 ρ82 ρ83

Tab.1: Coordinates ϕ, θ, ρ of points of contact in the control mesh of B-spline surface
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4. Filtration

The number of knot spans acc. (6) is

r = s = 12 + 3 + 1 = 16 (19)

because m = n = 12. The size of knot spans acc. (8) is

Δu = Δv =
1

12 − 3 + 1
= 0.1 (20)

and knot vectors acc. (7) are
U = (u0, u1, . . . , u16) = (−0.3,−0.2, . . . , 1.3) ,

V = (v0, v1, . . . , v16) = (−0.3,−0.2, . . . , 1.3) .
(21)

First, we express the B-spline basic functions (3) and (4) for the knot vectors (21). After
that, we calculate their tenzor product (2) and then, together with the coordinates of control
points acc. (18) we substitute them in (1). Thus, we obtain the mathematical description
of the measured data – bicubic B-spline surface S(u, v) = (ϕ(u, v), θ(u, v), ρ(u, v)). This
mathematical description is too large – the resulting surface consists of 100 segments which
are C2 continuously joined in the direction of both parameters. Each segment is described
by a different vector equation containing three coordinate functions of two parameters.
Therefore, this description is not written here.

Fig.9: B-spline surface S(u, v) as a filter of measured data in the space (ϕ, θ, ρ)
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The resulting bicubic B-spline surface (in the front view, top view, profile view and
axonometric view) is depicted in Fig. 9; the control mesh is included.

4.1. Minimal and maximal radii of the sphere

The global extremes of the coordinate function ρ(u, v) (11) have been calculated nume-
rically by means of grid method [10] and the following values have been obtained

rmin = 14.999791 mm , rmax = 15.000365 mm .

4.2. Characteristic radius of the sphere

Double integral in (12) has been calculated numerically by means of rectangle rule for
multivariate integration and the obtained value of characteristic radius of the sphere is

r = 15.000028 mm .

The sphere with characteristic radius r = 15.000028mm is mapped into the plane per-
pendicular to the ρ axis and passing through the point ρ = 15.000028. In front and profile
view, this plane is projected into the line perpendicular to the ρ axis, see thick black line
in Fig. 10.

Fig.10: Characteristic radius of the sphere determination

The measured points after reverse transformation (10) into the space (x, y, z) are shown
in Fig. 11 together with the sphere with characteristic radius r = 15.000028mm. The control
mesh acc. Tab. 1 and bicubic B-spline surface after reverse transformation (10) into the space
(x, y, z) are shown in Fig. 12.

5. Refining of measured data via B-spline filtration

The filtered data can be considered as a certain replacement of the original data measured
on the sphere. Then, the B-spline representation of the sphere, especially the free-form
surface acc. Fig. 12, has to be taken into account instead of the original sphere.
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Fig.11: Measured points and sphere with characteristic radius in the space (x, y, z)
(the scale of distance between measured points and sphere is 10 000:1)

Fig.12: B-spline surface S(u, v) as a filter of measured data in the space (x, y, z)
(the scale of distance between measured points and the sphere is 10 000:1)
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The measuring probe is moved in the normal direction to the measured surface at the
specific point which has to be measured. The software of measuring machine calculates the
normal direction to the basic geometrical shapes (e.g. to the sphere, conical or cylindrical
surface) automatically according to the known formulas from differential geometry. This
calculation respects the chosen strategy of measuring – distribution and density of measured
points. Therefore, in the case of free-form measuring it is necessary to know both – the
coordinates of measured points and coordinates of normal vectors at these points.

5.1. Normal vector at the point of B-spline surface

The direction of normal vector at the point of B-spline surface is perpendicular to the
tangent plane at this point. The tangent plane at the point of B-spline surface is determined
by a pair of tangent vectors : tangent vector to the parametric u-curve and tangent vector
to the parametric v-curve passing through this point.

For B-spline surface (1), the parametric u-curve S(u, β) and the parametric v-curve
S(α, v) are obtained via substitution the constant value of parameter u = α, α ∈ [up, ur−p]
and v = β, β ∈ [vq, vs−q] in (1) :

S(u, β) =
m∑

i=0

n∑
j=0

Pi,j Ni,j(u, β) , u ∈ [up, ur−p] (22)

and

S(α, v) =
m∑

i=0

n∑
j=0

Pi,j Ni,j(α, v) , v ∈ [vq, vs−q] , (23)

where p is the degree of the surface in u-direction, q is the degree of the surface in v-direction,
and r and s are numbers of knot spans of knot vectors (5).

The first partial derivative

Su(u, v) =
∂S(u, v)

∂u
and Sv(u, v) =

∂S(u, v)
∂v

(24)

is a vector function. This vector function determines for (α, β) the tangent vector of para-
metric u-curve (22) and tangent vector of parametric v-curve (23). The cross product of
tangent vectors (24) is the normal vector n(α, β) at the point (α, β) of B-spline surface

n(α, β) = Su(α, β) × Sv(α, β) . (25)

The unit normal vectors are more useful for graphical representation. The unit normal
vector is determined by

n(α, β) =
(

nx(α, β)
||n(α, β)|| ,

ny(α, β)
||n(α, β)|| ,

nz(α, β)
||n(α, β)||

)
, (26)

where
||n(α, β)|| =

√
nx(α, β)2 + ny(α, β)2 + nz(α, β)2 (27)

is the magnitude of the normal vector (25).
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5.2. New measured data determination

Firstly, the coordinates of points Di,j = [ϕi,j , θi,j , ρi,j ], i = 0, 1, . . . , 10, j = 0, 1, . . . , 10
in the space (ϕ, θ, ρ) on bicubic B-spline surface are obtained by substitution of suitable
uniformly chosen values of parameters u and v

u = 0, 0.1, . . . , 1 and v = 0, 0.1, . . . , 1 (28)

in (1). Thus, the mesh containing 11×11 points in the space (ϕ, θ, ρ) is obtained, see Fig. 13.

Fig.13: New input data for measuring – points in the space (ϕ, θ, ρ)

Secondly, the coordinates of tangent vectors (24) and normal vectors (25) in the space
(ϕ, θ, ρ) for the values of parameters (28) are calculated. After that, the reverse trans-
formation (10) is done and the Cartesian coordinates of points Di,j = [xi,j , yi,j, zi,j ],
i = 0, 1, . . . , 10, j = 0, 1, . . . , 10 on B-spline surface and normal vectors ni,j = [xi,j , yi,j, zi,j ],
i = 0, 1, . . . , 10, j = 0, 1, . . . , 10 in the space (x, y, z) are calculated.

The measured points after the reverse transformation (10) into the space (x, y, z) are
depicted together with the sphere in Fig. 14. The radius of the sphere in Fig. 14 is equal to
the characteristic radius calculated in the section 4.2 Characteristic radius of the sphere. To
keep the readability of Fig. 14, the scale 10 000:1 is used for the distance of calculated points
from the sphere.
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Fig.14: New input data for measuring obtained by B-spline filtration :
points and normal vectors in the space (x, y, z) (the scale of
distance between calculated points and sphere is 10 000:1)

Fig.15: New input data for measuring obtained by B-spline filtration :
points and normal vectors in the space (x, y, z) (the scale of
distance between calculated points and sphere is 10 000:1, the
scale of unit normal vectors length is 2:1)
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The bicubic B-spline surface in the space (x, y, z) with the points Di,j = [xi,j , yi,j, zi,j ],
i = 0, 1, . . . , 10, j = 0, 1, . . . , 10 is shown in Fig. 15. The scale of distance between calculated
points and sphere is 10 000:1 (therefore, the direction of depicted normal vectors is distorted),
the scale of unit normal vectors length is 2:1.

6. B-spline filtration and LSM comparison

In the case of LSM, the obtained characteristic radius r represents the only value which
can be used for new input data and normal vectors calculation. The characteristic dimen-
sions (i.e. radius rmax of the circumscribed sphere, radius rmin of the inscribed sphere and
characteristic radius r) obtained by means of B-spline filtration method and by means of the
least squares method are compared in Tab. 2, uncertainty zone Δr = |rmax−rmin| including.

Characteristic dimension B-spline filtration Least squares method

rmax (mm) 15.000365 15.000576
rmin (mm) 14.999791 14.999706

r (mm) 15.000028 15.000036
Δr (mm) 0.000574 0.000870

Tab.2: Obtained results comparison

Fig.16: Characteristic dimensions and uncertainty zone for the B-spline
filtration method and least square method (LSM)

It is obvious, that the B-spline uncertainty zone is thinner than the LSM uncertainty
zone. The reason is visible from Fig. 16, where the orthogonal view of the B-spline surface
and its control mesh from Fig. 9 is depicted.

The characteristic dimensions obtained by the LSM are calculated directly from the
measured data. In the (ϕ, θ, ρ) space, the radius of the circumscribed sphere corresponds
with the highest measured point – i.e. with the highest point of control mesh (designated as
rmax – LSM in Fig. 16). Similarly, the radius of the inscribed sphere corresponds with the
lowest measured point – i.e. with the lowest point of control mesh (designated as rmin – LSM
in Fig. 16).
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On the contrary, the characteristic dimensions obtained by B-spline filtration method are
calculated from the filtered data. The filtered data is representing by analytic expression
of B-spline surface lying in the convex hull of its control mesh (see 2.1 Bicubic B-spline
surface) and approximating all control points. Therefore, the global extremes of B-spline
surface are less than the global extremes of its control mesh. Specifically, the radius of
circumscribed sphere corresponds with the global maximum of B-spline surface – i.e. with
the highest point of B-spline surface (designated as rmax – B-spline in Fig. 16) and the radius
of inscribed sphere corresponds with the global minimum of B-spline surface – i.e. with the
lowest point of B-spline surface (designated as rmin – B-spline in Fig. 16).

The differences between characteristic radii values (designated as r – B-spline and
r – LSM in Fig. 16) obtained by B-spline filtration and the LSM are caused by different
approaches to the calculation of these values from the different sets of input data.

In the (ϕ, θ, ρ) space, the characteristic radius obtained by LSM represents the horizontal
plane (fitted by LSM through all measured points) passing through the value 15.000036 on
the ρ axis. Its orthogonal view is designated as r – LSM in Fig. 16. The characteristic radius
obtained by B-spline method (designated as r – B-spline in Fig. 16) represents the upper
base of the prism. The lower base of this prism is represented by top view of B-spline surface
in the plane (ϕ, θ). The volume of this prism is equal to the volume of the prismatic solid
with the same base in the plane (ϕ, θ) and bounded by the B-spline surface from above.

7. Conclusion

The method of B-spline filtration of the points measured on the sphere is realised as
a bicubic B-spline surface approximating the input data. The bicubic B-spline surface is
closed in u direction and open in v direction.

The procedure of B-spline filtration includes the following steps :

– Firstly, it is necessary to recalculate the input data (coordinates of measuring probe
centres) to obtain points of contact between the sphere and the measuring probe.

– After that, the Cartesian coordinates [x, y, z] of points of contact are transformed into
the spherical coordinates [ϕ, θ, ρ] to avoid the problems with B-spline approximation
of convex data.

– Then, the points of contact are placed into the control mesh with respect to the
conditions for closing and opening the resulting surface.

– Next, the calculation of B-spline surface is accomplished and its mathematical ex-
pression S(u, v) = (ϕ(u, v), θ(u, v), ρ(u, v)), (u, v) ∈ [0, 1]2 is obtained.

– Finally, the minimal, maximal and characteristic radii of the sphere are determined.
The minimal and maximal radii are calculated as the global extremes of coordinate
function ρ(u, v). The mathematical description of B-spline surface is realised in the
space (ϕ, θ, ρ), where the ideal sphere is mapped into the plane perpendicular to the
ρ axis and passing through point ρ = r. Therefore, the characteristic radius can be
determined as the altitude of the prism with the base in the plane (ϕ, θ) (top view
of B-spline surface) and with the volume equal to the volume of the prismatic solid
with the same base in the plane (ϕ, θ) and bounded by B-spline surface from above.

– Additionally, for the following metrological processing, the B-spline surface can be
considered as an improvement of the initial estimation of measured surface given
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by the original measured data. In this case, the Cartesian coordinates of points on
B-spline surface and the normal vectors at these points are necessary to determine,
because the directions of the measuring probe is identical with the directions of normal
vectors.

The suggested method can be used for the filtration of the data measured on an arbitrary
surface with known analytic expression of its ideal shape (e.g. cylindrical surface, conical
surface, . . . ).
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[4] Linkeová I.: NURBS (Non-uniform rational B-spline) curves, Publishing house of CTU in
Prague, 2007 (in Czech)

[5] Muralikrishnan B., Raja J.: Computational Surface and Roundness Metrology, Springer-Verlag
London Limited 2009, London

[6] Piegl L., Tiller W.: The NURBS Book, Springer, London, 1997
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