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PARAMETERIZATIONS OF GENERALIZED
NURBS VOLUMES OF REVOLUTION

Petr Anděl*, Bohumı́r Bastl**, Kristýna Slabá*

In this paper, we propose several algorithms for computing parameterizations of
NURBS domains (surfaces and volumes) which are motivated by the recent research
in isogeometric analysis. We describe methods for finding parameterizations of planar
NURBS domains bounded by either a given closed NURBS curve, or four NURBS
curves fulfilling compatibility conditions. Further, parameterizations of NURBS volu-
mes of revolution based on two different parameterizations of a disc are presented.
The main result of the paper is the formulation of an algorithm for computing pa-
rameterizations of the so-called generalized NURBS volumes of revolution.
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1. Introduction

In 1950s and 1960s, the developments of the so-called finite element method (FEM)

started with the progress in aerospace industry. In late 1960s, the first commercial software
packages based on the finite element analysis appeared (e.g. NASTRAN). Nowadays, the
finite element method (see e.g. [5]) is also used in many other engineering applications.

On the other hand, computer aided design (CAD) and computer aided geometric design
(CAGD) have their origins mainly in 1970s and 1980s. The motivation came again from
the industry – in this case from automotive industry. The modern history of this discipline
started with the definition of the so-called Bézier curves and fruitful research continues till
the present day.

Since CAD and CAGD originated later then FEM, this is probably the reason why the
connections between CAD/CAGD and FEM were not so strong. Nevertheless, Hughes et al.
in [7] recently proposed a method called isogeometric analysis which bridges this gap and
which strongly connects CAD and FEM. The thorough analysis has followed, see e.g. [3, 4, 1].
This method is based on NURBS objects (see [10]), which are standard objects used in
current CAD/CAM systems. The overall strategy is similar to FEM in standard cases
– the exact geometry in CAD system is used to construct a mesh of the so-called NURBS

elements and this mesh can be subsequently refined by h-, p- or k-refinements. Further,
using weak form of a boundary value problem a system of linear equations for control points
of a new NURBS object representing an approximate solution of the original problem is set.
One of the main advantages of the method is that we can avoid generation of a triangular
(quadrangular) mesh from CAD representation to be able to perform the finite element
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analysis and create this mesh again and again after each change of the geometry, because
this task is very time-consuming. Another advantage is that the geometry is represented
exactly, not only approximately, which is suitable e.g. for thin shell analysis.

Solving boundary value problems with isogeometric analysis is closely related to the
geometrical problem of a description of a computational domain with the help of NURBS
surfaces/volumes. In CAD/CAM, only the boundary of an object is usually stored and
to perform any computation we need to be able to derive automatically a NURBS surface
describing a computational domain, if the boundary NURBS curves are given, and similarly
for a NURBS volume, if the boundary NURBS surface(s) describing an object is(are) given.
This problem has attracted attention of researchers in the last years, see e.g. [6, 8, 11, 1, 9]. It
was revealed that the choice of inner control points of a NURBS description of such a domain
can significantly influence results and convergence rates of the follow-up computations in
isogeometric analysis.

In this paper, we will present several algorithms which propose a solution of this problem
in some cases. Firstly, we will show how to derive a NURBS surface describing a domain
bounded by either one closed NURBS curve, or four connected NURBS curves forming
a closed domain. Further, we will focus on NURBS volumes and, with the help of results for
planar NURBS domains, we formulate algorithms for finding a NURBS volume parameteri-
zation of solids bounded by NURBS surfaces of revolution and by the so-called generalized
NURBS surfaces of revolution which is the main contribution of the paper.

The paper is organized as follows. Section 2 gives a brief overview of the theory of
B-spline and NURBS objects. In Section 3, the algorithm for finding a NURBS description of
a domain bounded by one closed NURBS curve or four NURBS curves fulfilling compatibility
conditions is shown. Section 4 presents the algorithm for a computation of a NURBS
description of a domain bounded by a NURBS surface of revolution. In Section 5, the
algorithm is modified for the so-called generalized NURBS volumes of revolution. Finally,
in Section 6 we conclude the paper.

2. B-spline and NURBS curves/surfaces/volumes

Current CAD/CAM systems mostly use the so-called B-spline curves and surfaces for
representation of free-form curves and surfaces. In fact, cubic B-spline curves and bicubic
B-spline surfaces are usually used, even though the systems usually offer the possibility to
work also with NURBS curves and surfaces. In this section, we briefly review fundamentals
of B-spline and NURBS objects (for more details see e.g. [10]).

Definition 1 A NURBS curve of degree p is determined by a control polygon of control

points Pi, their associated weights wi, i = 0, . . . , n, and a knot vector T = (t0, . . . , tn+p+1).
Then its parameterization is of the form

c(u) =
∑n

i=0 Ni,p(u)wi Pi∑n
i=0 Ni,p(u)wi

, (1)

where Ni,p(u) are B-spline basis functions of degree p corresponding to the knot vector T.

For the given knot vector T = (t0, . . . , tn+p+1), the B-spline basis functions are defined
by a recursive formula

Ni,0(t) =
{

1 , ti ≤ t < ti+1 ,

0 , otherwise ,
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Ni,k(t) =
t − ti

ti+k − ti
Ni,k−1(t) +

ti+k+1 − t

ti+k+1 − ti+1
Ni+1,k−1(t) , k = 1, . . . , p .

The knot vector T is a non-decreasing sequence of real numbers which determines the
distribution of a parameter of the corresponding curve/surface/volume. In general, two
different forms of knot vectors are commonly distinguished :

– periodic knot vector T = (t0, . . . , tn+p+1) where we have to add the desired degree p

of B-spline basis functions (see Fig. 1 (top row)),
– non-periodic knot vector T = (a, . . . , a︸ ︷︷ ︸

p+1

, tp+1, . . . , tn, b, . . . , b︸ ︷︷ ︸
p+1

) where p is a degree of

the associated B-spline basis functions (see Fig. 1 (bottom row)).

Fig.1: Top row: B-spline basis functions for the knot vector T = (0, 1, 2, 3, 4, 5, 6, 7)
of degree p (p = 1 (left); p = 2 (middle); p = 3 (right)); Bottom row: B-spline
basis functions for the knot vector T = (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4), p = 3 (left)
and for the knot vector T = (0, 0, 0, 1, 2, 2, 3, 3, 3), p = 2 (right)

Furthermore, we distinguish uniform (uniformly distributed knots) and non-uniform

(non-uniformly distributed knots) knot vectors, where only internal knots are considered
for non-periodic knot vectors.

One of the main properties of B-spline basis functions is a relation between the multi-
plicity of knots in the knot vector and the continuity of the corresponding B-spline basis
functions – the B-spline basis functions are of continuity Cp−k, where k is the maximal
multiplicity of inner knots in the knot vector. Among their other properties belong non-
negativity, partition of unity and local support.

Remark 1 If all weights wi of control points Pi, i = 0, . . . , n, are equal, the denominator

of (1) is a constant and a polynomial B-spline curve is obtained.

B-spline/NURBS curves possess a lot of important practical properties which follow from
their definition and from the properties of B-spline basis functions, such as affine/projective
invariance, convex hull property, local modification, variation diminishing property (see [10]).

As a straightforward extension, we can define NURBS surfaces. Similarly to the curve
case, if weights of all control points are the same, the definition covers also polynomial
B-spline surfaces (see Fig. 2).



296 Anděl P. et al.: Parameterizations of Generalized NURBS Volumes of Revolution

Definition 2 A NURBS surface of degree (p, q) is determined by a control net of (m + 1)×
×(n + 1) control points Pij , their associated weights wij , i = 0, . . . , m, j = 0, . . . , n, and

two knot vectors U = (u0, . . . , um+p+1), V = (v0, . . . , vn+q+1). Then its parameterization

is of the form

s(u, v) =

∑m
i=0

∑n
j=0 Ni,p(u)Nj,q(v)wij Pij∑m

i=0

∑n
i=0 Ni,p(u)Nj,q(v)wij

, (2)

where Ni,p(u) and Nj,q(v) are B-spline basis functions of degree p and q corresponding to

the knot vectors U and V, respectively.

Fig.2: Left: Control net of a NURBS surface; Right: Control net and
the corresponding NURBS surface composed of 4 patches

NURBS surfaces share most of the properties with NURBS curves (see [10]). Finally, we
can analogously define B-spline/NURBS volumes.

Definition 3 A NURBS volume of degree (p, q, r) is determined by a control net of (m+1)×
×(n + 1) × (l + 1) control points Pijk , their associated weights wijk, i = 0, . . . , m, j =
= 0, . . . , n, k = 0, . . . , l and three knot vectors U = (u0, . . . , um+p+1), V = (v0, . . . , vn+q+1),
W = (w0, . . . , wl+r+1). Then its parameterization is of the form

v(u, v, w) =

∑m
i=0

∑n
j=0

∑l
k=0 Ni,p(u)Nj,q(v)Nk,r(w)wijk Pijk∑m

i=0

∑n
j=0

∑l
k=0 Ni,p(u)Nj,q(v)Nk,r(w)wijk

, (3)

where Ni,p(u), Nj,q(v) and Nk,r(w) are B-spline basis functions of degree p, q and r corre-

sponding to the knot vectors U, V and W, respectively.

To close this section, let us point out that the algorithms for finding parameterizations of
planar and spatial NURBS domains presented in the following sections are mainly motivated
by the needs of isogeometric analysis to have the same representation for the geometry and
physical solutions. This leads us to the fact that ‘good’ parameterizations of domains for
isogeometric analysis are described by injective mappings. One of the sufficient conditions
is that a parameterization is injective if it defines a regular boundary and its Jacobian does
not vanish on the parameter domain, see [12] for more details.

3. Parameterizations of planar NURBS domains

In this section we will describe a method for finding a NURBS description of a planar
domain bounded by four connected NURBS curves or by one closed NURBS curve (see [2]).
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At the end, we will apply these methods to obtain different parameterizations of a disc,
which we will need in the remaining sections.

Let Ω be a simply connected domain given by four boundary NURBS curves b1(u),
b2(v), b3(u) and b4(v), u ∈ [0, 1], v ∈ [0, 1], fulfilling the compatibility conditions

b1(1) = b2(0) , b2(1) = b3(1) , b3(0) = b4(1) , b4(0) = b1(0) . (4)

Let us assume that each boundary NURBS curve bi is determined by control points Pi
j ,

their weights wi
j , j = 0, . . . , ni, a non-periodic knot vector Ui and a degree pi. We want to

find a control net and corresponding knot vectors for planar NURBS surface describing Ω.

In the first step of the algorithm, it is necessary to modify opposite boundary curves
b1(u), b3(u) and b2(v), b4(v) such that they have the same knot vectors and, consequently,
also the same number of control points. This can be done in two steps :

1. If p1 �= p3 or p2 �= p4, the standard algorithm for degree elevation (see [10]) is applied
on the curve with the lower degree. After this step, we obtain new knot vectors Ûi,
i = 1, . . . , 4.

2. If the degrees are the same, but the inner knots in the knot vectors Û1, Û3 or Û2, Û4

are still different, the algorithm for knot insertion (see [10]) is used. For instance, if
Û1 �= Û3, we insert all inner knots in Û1, which are not in Û3, into Û3 and vice versa.
Let us denote new knot vectors Ūi and new control points P̄i

j , i = 1, 3, j = 0, . . . , m1

and P̄i
j , i = 2, 4, j = 0, . . . , m2.

The next step is to find inner control points Qi
j , i = 1, . . . , m2 − 1, j = 1, . . . , m1 − 1, of

the final control net⎛⎜⎜⎜⎜⎜⎜⎜⎝

P̄1
0 = P̄4

0 · · · · · · · · · P̄1
m1

= P̄2
0

... Q1
1 · · · Q1

m1−1

...
...

...
...

...
... Qm2−1

1 · · · Qm2−1
m1−1

...
P̄4

m2
= P̄3

0 · · · · · · · · · P̄2
m2

= P̄3
m1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

One of the possibilities is to compute the control points Ai
j , i = 0, . . . , m2, j = 0, . . . , m1,

and Bi
j , i = 0, . . . , m2, j = 0, . . . , m1, of the ruled surfaces given by P̄1

j , P̄3
j , j = 0, . . . , m1

and P̄2
j , P̄4

j , j = 0, . . . , m2, respectively. Thus, we can write

Ai
j = P̄1

j +
i

m2
(P̄3

j − P̄1
j) , Bi

j = P̄4
i +

j

m1
(P̄2

i − P̄4
i ) , i = 0, . . . , m2, j = 0, . . . , m1 .

Then the inner control points Qi
j , i = 1, . . . , m2 − 1, j = 1, . . . , m1 − 1, can be found as

centres of the corresponding line segments Ai
jB

i
j , i.e.,

Qi
j =

1
2

(Ai
j + Bi

j) , i = 1, . . . , m2 − 1 , j = 1, . . . , m1 − 1 .

The weights of control points Qi
j , i = 1, . . . , m2 − 1, j = 1, . . . , m1 − 1, can be set all equal

to 1, or a similar method as described above can be used also for finding these weights.
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Fig.3: Top left: Initial boundary curves; Top right: Boundary curves after degree
elevation and knot insertion; Bottom left: The control net of the planar
domain; Bottom right: Resulting planar domain as the NURBS surface

Example 1 Let the boundary curves b1(u), b2(v), b3(u) and b4(v), u ∈ [0, 1], v ∈ [0, 1], be

given by the control points and weights

P1 = {(0, 6, 1), (1, 7, 1), (2, 5, 1), (3, 6, 2), (4, 7, 1), (5, 5, 1), (6, 6, 1)} ,

P2 = {(6, 6, 1), (7, 9/2, 3), (11/2, 7/2, 1), (7, 5/2, 1), (11/2, 3/2, 1), (6, 0, 1)} ,

P3 = {(0, 0, 1), (3/2,−1, 1), (5/2, 1, 1), (4,−1, 1), (5, 1, 1), (6, 0, 1)} ,

P4 = {(0, 6, 1), (−1, 4, 1), (1, 2, 2), (0, 0, 1)} ,

where the last ‘coordinate’ represents the weight of the control point, and the knot vectors

U1 = (0, 0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1, 1) ,

U3 = (0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1) ,

U2 = (0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1) ,

U4 = (0, 0, 0, 1/2, 1, 1, 1) .

Intermediate steps of the algorithm and the final result are shown in Fig. 3.

This method can be directly modified if only one closed NURBS curve, determining
a simply connected domain, is given. Let b(u), u ∈ [0, 1], be a closed boundary NURBS
curve determined by its control points Pi, their weights wi, i = 0, . . . , n, a non-periodic knot
vector U and a degree p.

In the first step, we need to subdivide b(u) into four parts. Firstly, new knots are inserted
such that U contains 2r internal knot spans of non-zero length. Further, we denote s = � r

2�
and t = r−s. Then, we select internal knots which correspond to end knots of s-th, (s+t)-th
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and (2s + t)-th knot span of non-zero length and we increase the multiplicity of these knots
to p + 1 with the help of knot insertion. For each knot ui of multiplicity p + 1, the control
polygon contains as a control point directly the point b(ui) on the curve, i.e., the boundary
curve is subdivided at these points into four NURBS curves. Similarly, the knot vector can
be subdivided at all inner knots of multiplicity p + 1 to obtain a full description of four
boundary curves determining the same domain.

Then, we can directly apply the above mentioned algorithm, only the degree elevation is
not necessary because all boundary curves have the same degree now.

Fig.4: Top left: Initial closed boundary curve; Top right: Curve subdivided into
four parts; Bottom left: Boundary curves after knot insertion; Bottom right:
The control net and the resulting planar domain as the NURBS surface

Example 2 Let the closed boundary curve b(u), u ∈ [0, 1], be given by the control points

and weights

P = {(0, 1, 1), (0, 2, 1), (2, 3, 1), (4, 1, 1), (6, 3, 1), (8, 2, 1), (8, 1, 1), (8, 0, 1),

(6,−1, 1), (4, 1/2, 1), (2,−1, 1), (0, 0, 1), (0, 1, 1)} ,

where the last ‘coordinate’ represents the weight of the control point, and the knot vector

U = (0, 0, 0, 0, 0, 1/10, 1/5, 1/5, 2/5, 1/2, 1/2, 3/5, 9/10, 1, 1, 1, 1, 1) .

The subdivision into four boundary curves and other intermediate steps of the algorithm,

together with the final result, are shown in Fig. 4.

In this example, the curve b(u), u ∈ [0, 1], is C1 continuous everywhere, as follow from

the special position of the first two and the last two control points of P. Nevertheless, the

above mentioned method can be applied to an arbitrary C0 continuous closed NURBS curve.

In the rest of this section, we will focus on different parameterizations of a disc, which
we will need in the next sections, and how they can be obtained with the help of algorithms
described above.
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Fig.5: Top left: NURBS description of the unit disc obtained by the method (a);
Top right: Distribution of parameter curves for the case (a); Bottom left:
NURBS description of the unit disc obtained by the method (b); Bottom
right: Distribution of parameter curves for the case (b)

Example 3 The unit circle with the center at the origin can be described by the control

polygon

P =
{
(1, 0, 1), (1, 1,

√
2/2), (0, 1, 1), (−1, 1,

√
2/2), (−1, 0, 1), (−1,−1,

√
2/2),

(0,−1, 1), (1,−1,
√

2/2), (1, 0, 1)
}

,

where the last ‘coordinate’ represents the weight, and the knot vector

U = (0, 0, 0, 1/4, 1/4, 1/2, 1/2, 3/4, 3/4, 1, 1, 1) .

In this example, we will show two possibilities of NURBS description of the unit disc, which

will be used in the next sections :

(a) The first possibility is to add the circle center to the control net and connect it with all

boundary control points – moreover, it is possible to choose the second knot vector V
(see Fig. 5 (top row)). From the computational point of view, the problem is that

the circle center becomes a singular point of the parameterization, i.e., this center

corresponds to the whole line segment in a parameter domain.

(b) The second possibility exploits the chosen NURBS description of the unit circle. Since

the unit circle described by these control points and the knot vector is composed of four

arcs, we can directly apply the above mentioned algorithm and obtain the paramete-

rization with better distribution of parametric curves for the follow-up computations

(see Fig. 5 (bottom row)).

Remark 2 The algorithm presented in this section can be directly used also for spatial

NURBS curves, i.e., either for one closed spatial NURBS curve, or for four spatial NURBS

curves fulfilling the compatibility conditions (4).



Engineering MECHANICS 301

4. Parameterizations of domains bounded by NURBS surfaces of revolution

In this section we will demonstrate two different approaches for finding a NURBS volume
parameterization of a solid bounded by a NURBS surface of revolution.

Let Σ be a volume bounded by a NURBS surface of revolution s(u, v), u ∈ [0, 1], v ∈ [0, 1],
which is determined by a NURBS curve c(u), u ∈ [0, 1], rotating around an axis o. Let c(u),
u ∈ [0, 1], be given by control points Pi, associated weights wi, i = 0, . . . , n and a knot
vector R.

Input: Control points Pi, weights wi, i = 0, . . . , n of a NURBS curve c(u), u ∈ [0, 1], knot
vector R, axis o : x = O0 + α(O1 − O0)

Output: NURBS volume Σ determined by control net Pi,j,k, weights Wi,j,k, i = 0, . . . , n,
j = 0, 1, 2, k = 0, 1, 2, knot vectors R, S and T

1: S = (0, 0, 0, 1, 1, 1), T = (0, 0, 0, 1, 1, 1) {Set the knot vectors S, T.}
2: P′

i ∈ O0 O1 · (x − Pi) ∩ o {Determine the orthogonal projections P′
i of Pi to axis o.}

3: if
∧n−1

i=0 (‖O0 P′
i‖ < ‖O0 P′

i+1‖)
4: for i = 0, . . . , n

5: di = ‖P′
i Pi‖

6: q = di
O0 Pi×Pi P′

i

‖O0 Pi×Pi P′
i‖

7: Compute control points of the disc centred at P′
i and lying in x = P′

i +αP′
i Pi +β q

Prs =

⎧⎪⎨⎪⎩
P′

i + sq for r = 0, s �= 0 ,

P′
i + r P′

i Pi for s = 0, r �= 0 ,

P′
i + r P′

i Pi + sq for r �= 0, s �= 0 ,

where r = −1, 0, 1 , s = −1, 0, 1

8: NURBS description of the disc

Pijk =

⎛⎝ Pi P1,1 P0,1

P1,−1 P′
i P−1,1

P0,−1 P−1,−1 P−1,0

⎞⎠ , j = 0, 1, 2 , k = 0, 1, 2

9: Associated weights of the control points Pijk

Wijk =

⎛⎝ 2wi wi wi

wi 2wi wi

wi wi 2wi

⎞⎠ , j = 0, 1, 2 , k = 0, 1, 2

10: end for

11: end if

12: return Pi,j,k, Wi,j,k, R, S, T

Algorithm 1: Parameterization of NURBS volume of revolution

Remark 3 Let a rotation axis o be given by two points O0 and O1 and let c(u), u ∈ [0, 1], be

given by control points Pi, associated weights wi, i = 0, . . . , n and a knot vector R. Further,

let P′
i be an orthogonal projection of Pi to the axis o and let v(u, v, w) be a NURBS volume
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bounded by s(u, v) and obtained by Algorithm 1. If

n−1∧
i=0

(‖O0 P′
i‖ < ‖O0 P′

i+1‖
)

holds, then all u-parametric curves of v(u, v, w) do not mutually intersect (and similarly for

v- and w-parametric curves).

Fig.6: The final NURBS volumes for Example 4 obtained by
Algorithm 1 (right) and by the modified approach (left)

If the condition mentioned in Remark 3 is fulfilled, we can use different parameterizations
of a disc (see Section 3) to construct a control net of the corresponding NURBS volume. For
each control point Pi determining c(u) we need to determine a plane perpendicular to the
rotation axis o and containing Pi. In this plane, we construct the disc centred at P′

i and
with the radius ‖Pi P′

i‖, i.e., we can directly modify control points and weights obtained
by the method mentioned in Example 3 (b) (see Steps 7–9 of Algorithm 1). The whole
algorithm is summarized in Algorithm 1.

The approach used in Algorithm 1 can be modified by taking another NURBS description
of a disc (see Example 3 (a)). In particular, we can replace Steps 7–9 by the following
expressions

7’: Prs =
{

P′
i + r P′

i Pi for s = 0 ,

P′
i + r P′

i Pi + sq for s �= 0 ,
where r = −1, 1, s = −1, 0, 1

8’: Pijk =
(

P1,0 P1,1 P−1,1 P−1,0 P−1,−1 P1,−1 P1,0

P′
i P′

i P′
i P′

i P′
i P′

i P′
i

)
j = 0, 1, k = 0, . . . , 6

9’: Wijk =
(

wi wi/2 wi/2 wi wi/2 wi/2 wi

1 1 1 1 1 1 1

)
, j = 0, 1 , k = 0, . . . , 6

where another NURBS description of a circle is used in Step 7′ and each control point Prs,
r = −1, 1, s = −1, 0, 1, determining the circle is connected with P′

i.

Example 4 Let c(u) be given by the control points

P = {(1, 0, 7, 1), (0, 3, 6, 1), (0, 2, 4, 2), (1, 3, 2, 2), (1, 1, 3/2, 2), (5, 6,−5, 2),

(1, 2,−6, 1/2), (1, 0,−7, 1/2)} ,
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where the last ‘coordinate’ represents the weight, and the knot vector

R = (0, 0, 0, 0, 1/4, 1/4, 1/2, 3/4, 1, 1, 1, 1).

Using Algorithm 1 we obtain the result shown in Fig. 6 (right), the result obtained by the

modified approach is shown in Fig. 6 (left).

5. Parameterizations of domains bounded by generalized NURBS surfaces of
revolution

In this section, two methods for finding a NURBS volume parameterization of the so-
called generalized NURBS volume of revolution are presented.

Input: Boundary NURBS surface determined by a control net

P =

⎛⎜⎝P0,0 · · · P0,m

...
. . .

...
Pn,0 · · · Pn,m

⎞⎟⎠ ,

where P0,0 = P0,1 = · · · = P0,m, Pn,0 = Pn,1 = · · · = Pn,m and Pi,0 = Pi,m, ∀i, weights
wi,j , i = 0, . . . , n, j = 0, . . . , m, and knot vectors R and S

Output: NURBS volume Σ determined by control net Pi,j,k, weights Wi,j,k, knot vectors
R, S and T

1: o : x = P0,0 + α (Pn,0 − P0,0) {The axis determined by the points P0,0, Pn,0.}
2: P′

i,j ∈ P0,0 Pn,0 · (x − Pi,j) ∩ o {Determine the orthogonal projections P′
i,j of Pi,j to

o.}
3: if
∧m

j=0

∧n−1
i=0 (‖P0,0 P′

i,j‖ < ‖P0,0 P′
i+1,j‖)

4: for i = 1, . . . , n − 1

5: Compute control points, weights and knot vectors of a NURBS surface with boundary
NURBS curve determined by i-th row of P with the help of algorithm in Section 3

{Pi,j,k, Wi,j,k,S1,S2} = NURBSSurface(Pi,0, . . . ,Pi,m, wi,0, . . . , wi,m,S)

6: end for

7: end if

8: return Pi,j,k, Wi,j,k, R, S1, S2

Algorithm 2: Parameterization of generalized NURBS volume of revolution

Definition 4 Let a NURBS surface s(u, v), u ∈ [0, 1], v ∈ [0, 1], be determined by a control

net

P =

⎛⎜⎝P0,0 · · · P0,m

...
. . .

...
Pn,0 · · · Pn,m

⎞⎟⎠ , (5)

where P0,0 = P0,1 = · · · = P0,m, Pn,0 = Pn,1 = · · · = Pn,m and Pi,0 = Pi,m, ∀i, weights

wi,j , i = 0, . . . , n, j = 0, . . . , m, and knot vectors R and S. Further, let o be an axis

determined by points P0,0 and Pn,0 and P′
i,j be an orthogonal projection of Pi,j to the

axis o. If
m∧

j=0

n−1∧
i=0

(‖P0,0 P′
i,j‖ < ‖P0,0 P′

i+1,j‖) (6)
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holds, then the volume bounded by s(u, v) is called a generalized NURBS volume of revolu-
tion.

Let s(u, v), u ∈ [0, 1], v ∈ [0, 1], be a NURBS surface given by a control net (5) fulfilling
P0,0 = P0,1 = · · · = P0,m, Pn,0 = Pn,1 = · · · = Pn,m and Pi,0 = Pi,m, ∀i, weights
wi,j , i = 0, . . . , n, j = 0, . . . , m and knot vectors R and S. Let us denote by ci(u),
i = 1, . . . , n − 1, a NURBS curve determined by control points Pi,0, . . . ,Pi,m, associated
weights wi,0, . . . , wi,m and a knot vector S.

In the first step of the algorithm, we check whether the condition (6) is satisfied and
s(u, v) bounds a generalized NURBS volume of revolution.

Further, we take each ci(u) and the algorithm presented in Section 3 is applied to this
curve (see Remark 2). We obtain control points with associated weights describing a NURBS
surface bounded by ci(u), together with new knot vectors S1, S2. The knot vectors S1, S2

arise from the subdivision of the given knot vector S and depend on the knots inserted to S
in order to subdivide ci(u) into four parts. Let us emphasize that it is necessary to insert
the same knots into S during subdividing ci(u) for all i = 1, . . . , n − 1 in order to ensure
that the knot vectors S1 and S2 are common for all ci(u) (see Step 5 of Algorithm 2). The
final NURBS volume description is only a composition of NURBS descriptions obtained for
each ci(u), i = 1, . . . , n − 1. The whole algorithm is summarized in Algorithm 2.

The method used in Algorithm 2 can be again modified. In particular, it is possible to
replace Step 5 by the following steps

5’: T = (0, 0, 1, 1)
6’: Ki = 1

m+1

∑m
j=0 P′

i,j

7’: Pijk =
(

Pi,0 · · · Pi,m

Ki · · · Ki

)
, j = 0, . . . , m , k = 0, 1

8’: Wijk =
(

wi,0 · · · wi,m

1 · · · 1

)
, j = 0, . . . , m , k = 0, 1

where this approach is based on the NURBS description of a disc presented in Example 3 (a).
Each control point Pi,j , j = 0, . . . , m is connected with the point Ki on the axis o by a line
segment, i.e., the third knot vector is chosen to be T = (0, 0, 1, 1).

Fig.7: The final NURBS volumes for Example 5 obtained by
Algorithm 2 (right) and by the modified approach (left)
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Example 5 Let s(u, v) be given by the control points

P1,j = {(0, 2, 3), (1, 2, 3), (1/2,−1, 5/2), (0,−2, 3), (−2, 0, 5/2), (−1, 2, 3), (0, 2, 3), } ,

P2,j = {(0, 3, 1), (3, 3, 1), (2, 1, 1), (1,−2, 2), (−2,−1, 2), (−1, 3, 1), (0, 3, 1)} ,

P3,j = {(0, 2, 0), (1, 1, 0), (0,−2, 0), (−2,−3, 1), (−1, 0, 0), (−1, 3, 0), (0, 2, 0)} ,

P0,j = (0, 0, 3), ∀j, P4,j = (0, 0, 0), ∀j, and weights of all control points are equal to 1.

The knot vectors are R = (0, 0, 0, 1/3, 2/3, 1, 1, 1) and S = (0, 0, 0, 0, 1/4, 1/2, 1/2, 1, 1, 1, 1).
Using Algorithm 2 we obtain the result shown in Fig. 7 (right), the result obtained by the

modified approach is shown in Fig. 7 (left).

6. Conclusion

In this paper, we presented several algorithms for finding parameterizations of NURBS
domains (surfaces and volumes). The motivation for this study arose from the recent exten-
sive research in isogeometric analysis. We proposed methods for finding parameterizations of
NURBS domains bounded by either a one closed NURBS curve, or four NURBS curves ful-
filling compatibility conditions. Further, parameterizations of NURBS volumes of revolution
based on two different parameterizations of a disc were demonstrated. Finally, we formu-
lated an algorithm for computation of parameterizations of generalized NURBS volumes of
revolution which is the main result of the paper.
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